鲁南化工有限公司 发精细化学品节能示范项目 型/ III 47

境影响报告书

(信息公开版)

# 关于兖矿鲁南化工有限公司微及(对高效合成精细化学) 品节能示范项目环境影响报告书涉及商业秘密 部分进行删除的说明

我公司计划技术 60 亿元,建设"微反应高效合成精细化学品节能灵范项区",主要建设 3000 吨/日半废锅粉煤气化炉、变换、允体净化、变压吸附制氢、深冷分离、硫回收制酸、40 万吨/年辛醇装置及配套公用工程装置,以丙烯以及 6 化平台产出的合成气、氢气为原料生产辛醇等产品。

项目已取得山东省建设项目备案证明,项目代码 2407-370400-89-01-675052。

为做到项目建设与环境保护协调同步发展,我公司特委托山东优纳特环境科技有限公司编制了"兖矿鲁南化工有限公司微反应高效合成精细化学品节能示范项目环境影响报告书",现因报告书内容分及我公司技术资料保密范围,为保证企业权利特对报告书文及公示前涉及技术保密的部分内容进行了删除处理

特此说明!





# 概述

#### 一、项目由来

山东能源集团"十四五规划"等。南化工定位为高端化工新材料产业园区和高端化工转型发展示流基地,要求以鲁南高科技化工园区转型升级为契机,依托甲醇、醋酸产业链存量,通过外购煤炭、甲醇等煤基化工产业原料,延伸产业转大力发展辛醇等高附加值产品,形成种类丰富、风险对冲体系完善的产品经常打造国内一流的高端化工示范园区。

了好會南化工有限公司积极响应国家"碳达峰、碳中和"之一重大品格决策, 有实体有能源集团要求,服从国家宏观调控安排和区域协调发展,全力打造化工 行业和山东能源集团践行"碳达峰碳中和"的"先行者"并关系",推动企业在新一 轮能源变革升级的浪潮中积极把握主动、实现高质量发展。

在此背景下, 兖矿鲁南化工有限公司计划投资 50 亿元, 建设"微反应高效合成精细化学品节能示范项目", 主要建设 2000 吨 日半废锅粉煤气化炉、变换、气体净化、变压吸附制氢、深冷分离、硫回收制酸、40 万吨 年辛醇装置及配套

公用工程装置,以丙烯以及气化平台产出的形成。 氢气为原料生产辛醇,同时气化装置富余合成气为厂区规划项目提供原料 本项目通过实施能源化工延链补链行动,推动煤炭清洁高效转化,和造平台化原料集中生产,下游产品多头并进的发展模式,同时延伸产业链、提高附加值,不断向高端化、园区化、终端化升级,构建"从原料到终端"的全产业链发展新格局。

本次环评评价内容不包含的编辑对内容,项目如涉及辐射类装置设施的建设,建设单位应按相关规定等外流长、单独评价。

## 二、建设项目特点

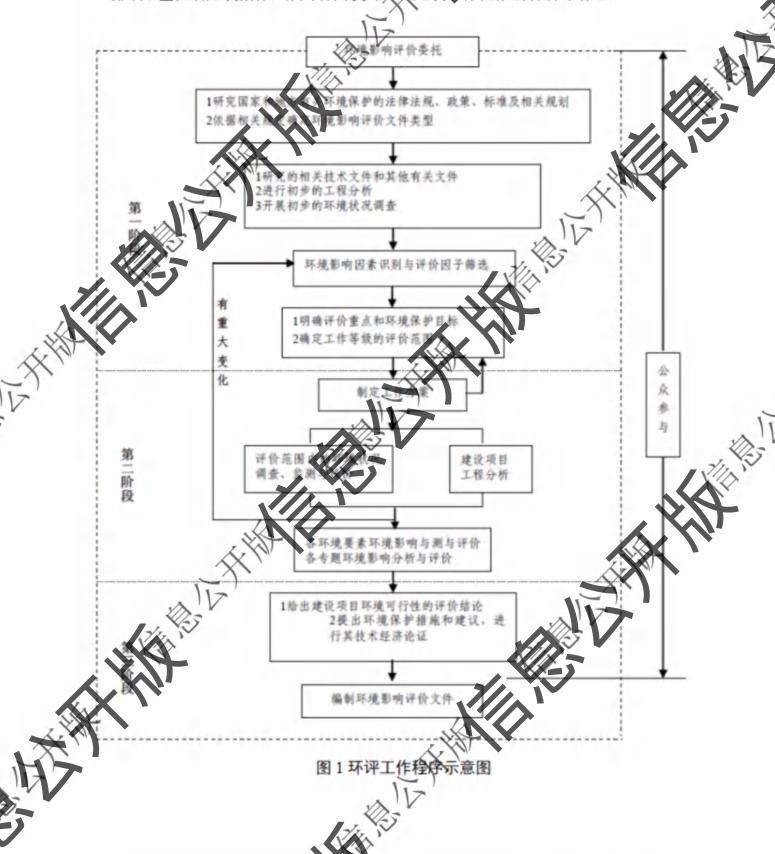
拟建项目总投资 500459.85 万元,占地 28.2ha,其中新增用地指标 29hx 小区现有用地 10ka,涉及用地全部位于鲁南高科技化工园区起步区范围内。计划新上一套 3000 吨/日半废锅粉煤气化炉并配套变换、热回收、低温甲醇洗净化、变压吸附制氢、深冷分离、硫回收制酸等装置,其中低温率减少净化装置依托厂区现有粉煤低温甲醇洗装置进行改造。新建 1 套 40 万顷 年辛醇装置,利用气化平台产出的合成气及氢气,同时外购丙烯生产辛酸,以实现产业链延伸,提高产品附加值,同时富余合成气为企业规划项目提供原料气。

新建气化装置采用山能集团与华东理工大学产学研合作开发的多喷嘴对置式半废锅流程粉煤加压气化技术。利用新型洁净煤气化技术优势,提高合成气热

新建 40 万吨 年辛醇装置采用"微鬼面强化反应技术"利用微米级高能气、液涡流能量转换原理,将气液、气液液、气液固界面的几何尺度高效调控为微米级,大幅度优化反应条件。从一成气转化为高附加值的辛醇产品,助力高端化工产业高效、绿色化发展

本项目废气污染源包括各装置工艺尾气、焚烧炉尾气、蒸汽过热炉尾气、 产区、储罐区、装卸区等处产生的无组织废气等。废水主要为各装置工艺废水 循环冷却水畅统排水、脱盐水站排水、生活污水等;噪声污染源主要为生产设备 及各噪声,本次工程固废主要为有机废液、废催化剂、冷水灰渣等,须采取各建的处置措施,防止造成二次污染。

本次工程生产过程中涉及较多的化学原料,包括为余、品、辛醇、异丁醛、 CO、H<sub>2</sub>S等,大部分为有毒有害、易燃易爆发质、生产工艺涉及煤气化工艺、 加氢工艺,属于重点监管危险化工工艺,若控制、当,项目存在较大环境风险性。


三、建设项目环境影响评价工作协程

(1) 环境影响评价的工作程

建设项目环境影响评价工作《产》阶段,即前期调研和工作方案阶段;分析论证和预测评价阶段以及环境影响评价文件编制阶段。环境评价工作程序见图1、

- (2) 环境影响来像的 入作过程
- ▶ 了解评价区域环境现状,调查现有、在建装置建设及运行情况,受物物,排放情况及相接环保手续履行情况,梳理厂区存在的环境问题并提出整改措施。
- 现分。 确定产污环节及源强,确定污染物性质及排放规律,从的与类财治措施 现分。并遵循"清洁生产、达标排放、总量控制"的原则、发展,量控制要求。
- 采用合适的预测模式或采用定性分析的手段,分析项目所排污染物对环境造成的影响程度及范围,从而分析环境的可承受。
- 通过对涉及物料的理化性质及生产不及分析,确定风险事故发生的部位。 类型及规律,提出相应的事故风险防范措施建议和应急预案。
  - 论证项目经济、社会和环境效益,使经济建设与环境保护协调发展。

本落实清洁生产工艺和末端治理的来说。 提出工程废气、废水污染物排放总量控制建议指标,从环保角度对工程建设可行性作出明确的结论。



#### 四、分析判定相关情况

产业政策符合性:根据《产业结构调整指导自录(2024年本)》,拟建项目不属于"鼓励类""限制类"项目、属于允许建设项目;项目不属于《自然资源要素支撑产业高质量发展指导包隶(2024年本)》中限制和禁止用地目录内的建设项目。该项目于 2024年7月8日取得山东省建设项目备案证明,项目代码 2407-370400-89-01-8 505%。

规划符合性、规定项目市局在鲁南高科技化工园区内,用地为工业用地。因项目用地全部位长高政府认定化工园区起步区范围内,符合《滕州市水石镇图为空间规划(1021-3035年)》。根据鲁南高科技化工园区管理委员会出具的《关于杨龙花矿鲁南化工有限公司微反应高效合成精细化学品节能元范项目入园建设的意义》(鲁园管字[2024]20号),项目符合《鲁南高科技化工园区总体发展规划(2016-2030)》和《鲁南高科技化工园区产业发展规划》要求,对照鲁南高科技化工园环境准入条件,不属于禁入和限制体入的产业,项目建设可行。

生态环境分区管控符合性: 拟建项目位于公共省滕州市鲁南高科技化工园北部,项目建设符合《关于以改善环境质量为核心加强环境影响评价管理的通知》(环环评[2016]150号)、《惠克米人民政府关于印发枣庄市"三线一单"生态环境分区管控方案的通知》(枣皮类(2021]16号)和《枣庄市"三线一单"生态环境分区管控方案》(2023年45次更新版)要求;根据《滕州市国土空间总体规划(2021-2035)年》中,域国土空间控制线规划图,项目位于城镇开发边界外、不占用永久基本农园、不在生态保护红线范围内。

五、美注的主要环境问题及环境影响本次环境影响评价过程中,主要关注以不问题:

(1) 拟建项目属于化工项目、生产工艺与产污分析,拟采取的污染物防治

措施及其可行性分析,项目建设对周边环境的影响 为评价关注的重点内容;

- (2) 拟建项目与相关产业政策、环保政策及规划的符合性分析为本次评价 关注的重点内容;
- (3) 拟建项目风险潜势为 10% 涉及物料具有易燃易爆、有毒有害特性, 一旦发生风险事故,可能对身边环境造成污染,且企业周边人口较多,建设项目 环境风险评价、风险应急措施是本项目关注的重点。

#### 六、环境影响接着书的主要结论

拟建项目设置南高科技化工园区内,符合滕州市国土空间规划、农 产业政策 (诗音) 东省和枣庄市相关规划要求,符合枣庄市 2023 年生态环境分 合所在园区规划及规划环评要求。项目采取了沧进、可靠的生产 对项目排放的污染物,采取了可行的污染防治措施公污染物排放符合国 如地方规定的排放标准。

在采取污染防治、严格落实环境风险防范 各类污染物均可稳定达标 「环境、声环境质量可达到 排放,固体废物得到妥善处置,区域地表水环境 相应标准限值要求。在落实本次评 设是合理可行的。

目 录

|      | 第1章 总论                                                               | 1     |
|------|----------------------------------------------------------------------|-------|
|      | 1.1 编制依据                                                             | 1     |
|      | 1.2 评价目的与指导思想                                                        | 16    |
|      | 1.3 评价重点                                                             | 16    |
|      | 1.4 环境影响因素识别和产价因子的筛选                                                 | 17    |
|      | 1.5 评价标准                                                             | 19    |
|      | 1.6 评价等级                                                             | V/d   |
|      | 1.7 评价范围和重点保护目标                                                      |       |
|      | 1.80                                                                 | 36    |
|      | 第1/6 现有工程回顾分析                                                        | 25 77 |
|      | 企业概况                                                                 | 77    |
| X    | 2.2. 现有工程概况                                                          | 81    |
| 14.  | 2.3. 现有公用工程                                                          | 95    |
| -XX, | 2.4. 现有工程工艺及产污                                                       | 113   |
| IV   |                                                                      | 127   |
| >    |                                                                      | 178   |
|      |                                                                      | 190   |
|      | 2.1. 不可用机识                                                           | 190   |
|      | 3.2 项目产品方案                                                           | /197  |
|      | 3.4 项目主要生产设备                                                         | 2000  |
|      | 3.5 总平面布置                                                            | 712   |
|      | 3.6. 原辅材料消耗及物料储运                                                     | 216   |
|      | →用工程                                                                 | 227   |
|      | 3.8 项目生产工艺分析                                                         | 241   |
| II.  | 3.9 项目施工期污染物排放及采取的环保措施。                                              | 320   |
| N. Y | 3.10 项目运营期污染物排放及采取的环保措施                                              | 326   |
| リタフ  | 3.11 污染物量排放核算                                                        | 380   |
| 10   | 3.12 清洁生产分析                                                          | 385   |
| 7    | 第4章 环境现状调查与评价                                                        | 389   |
| 1    | 20 1 + 1 30 W W 44 = -2 11 M 4 11 11 11 11 11 11 11 11 11 11 11 11 1 |       |

| 4.1 自然环境现状调查与评价                                  | 389 |
|--------------------------------------------------|-----|
| 4.2 水源保护地                                        | 405 |
| 4.3 新薛河流域(滕州段)人工湿地水质净化工程                         | 406 |
| 4.4 南水北调东线工程(山东段)概况                              | 407 |
| 4.5 环境质量现状调查与评价                                  | 408 |
| 第5章 环境影响预测与证                                     | 485 |
| 5.1 施工期环境影响预测与评价                                 | 185 |
| 5.2 运营期的 企工影响预测与评价                               |     |
| 5.3 地表水环境影响评价                                    | 568 |
| *************************************            | 582 |
| 声环境影响预测与评价                                       | 657 |
| ○ · 固体废物评价 · · · · · · · · · · · · · · · · · · · | 671 |
| 5.7 土壤环境影响评价                                     | 677 |
| 5.8 生态环境影响评价                                     | 692 |
| 5.9 退役期环境影响评价                                    | 694 |
| 第6章 环境风险评价                                       | 697 |
| 6.1 环境风险评价目的和重要                                  | 697 |
| 6.2 现有工程回顾性评价                                    | 697 |
| 6.3 拟建项目风险调查                                     | 705 |
| 6.4 环境风险潜势初入                                     | w.  |
| 6.5 评价等级划分及评价范围                                  |     |
| 6.6 风险设剂                                         | 718 |
| 62、风险事故情形分析                                      | 731 |
| 8 环境风险预测与评价                                      | 736 |
| 6.9 环境风险管理                                       | 762 |
| 6.10 突发环境事件应急预案编制要求                              | 776 |
| 6.11 评价结论与建议                                     | 776 |
| 第7章 碳排放影响评价                                      | 779 |
| 7.1 政策符合性分析                                      | 779 |
| 7.2 现有工程温室气体排放                                   | 786 |

|       | 7.3 拟建项目温室气体排放      | 787              |   |
|-------|---------------------|------------------|---|
|       | 7.4 降碳措施可行性分析       | 794              |   |
|       | 7.5 温室气体排放管理要求与监测计划 | 795              |   |
|       | 7.6 温室气体排放评价结论与建议   | 795              | F |
|       | 第8章 环境保护措施及其可存性论证   | 797              | 7 |
|       | 8.1 环境保护措施不良        | 797              |   |
|       | 8.2 废水处理横施及风入性分析    | 1/93             |   |
|       | 8.3 废气治理 6施及可行性分析   |                  |   |
|       | 8.4 固体废物处置措施及可行性分析  | 804              |   |
|       | 25% 产治理措施及可行性分析     | 804              |   |
|       | 了。<br>异保措施经济可行性分析   | 805              |   |
|       | 小结                  | 805              |   |
|       | 第9章 环境影响经济损益分析      | 806              |   |
| 1.1   | 9.1 经济效益            | 806              |   |
| 1     | 9.2 社会效益分析          | 806              |   |
| 5     | 9.3 环保投资及效益分析       | 806              | 1 |
|       | 9.4 小结              | 811              | 2 |
|       | 第10章 环境管理及监测计划      | 812 XX           |   |
|       | 10.1 环境管理           | 812              |   |
|       | 10.2 信息公开           |                  |   |
|       | 10.3 环境监测           |                  |   |
|       | 10.4 及保设施竣工验收管理     | 824              |   |
|       | 第 4 章、评价结论、措施及建议    | 825              |   |
|       | Y: 评价结论             | 825              |   |
| 4     | 112 建议              | 833              |   |
| K. H. |                     |                  |   |
| THE   | XX MV               |                  |   |
|       | 112                 |                  |   |
| 5     | 14.                 |                  |   |
|       |                     |                  |   |
|       | —9— 山东优纳特           | <b>持环境科技有限公司</b> |   |
|       |                     |                  |   |
|       |                     |                  |   |
|       |                     |                  |   |

## 第1章 总

#### 1.1 编制依据

## 1.1.1 国家相关法律法规、各部门文件

- (1) 《中华人民共和国承境保护法》, 2015.1.1 施行;
- (2) 《中华人民共和国环境影响评价法》,2018.12.29 修订施行;
- (3) 《中华人》共和国噪声污染防治法》, 2022.6.5 施行;
- (4) 《中华人民共和国大气污染防治法》, 2018.10.26 施行;
- (5) ○中華人民共和国水污染防治法》,2018.1.1 施行;
- 《平华人民共和国土壤污染防治法》,2019.1.1施行》
- 《中华人民共和国固体废物污染环境防治法》2020.9.1施行;
- (8) 《中华人民共和国水法》, 2016.9.1 施行
- (9) 《中华人民共和国清洁生产促进法》。2012、1 施行;
- (10) 《中华人民共和国土地管理法》 2020.1.1 施行;
- (11) 《中华人民共和国能源法》 2025.1.1 施行;
- (12) 《中华人民共和国水产保持法》, 2011.3.11 施行;
- (13) 《排污许可管理办法》, 2024.7.1 施行;
- (14) 《危险废物结合管理办法》, 2022.1.1 施行;
- (15) 《企业环境信息依法披露管理办法》, 2022.2.8 施行;
- (16) 《美子修改部分部门规章的决定》, 2021.12.13 施行;
- (17) 【重点管控新污染物清单(2023年版)》, 2023.3.1 施行:
- 《生态环境行政处罚办法》,2023.7.1施行;
  - )《突发环境事件应急管理办法》,2015.6.5 施入
- 20) 《建设项目环境影响评价分类管理名录》(2011.1) 施行;
- (21) 《产业结构调整指导目录(2024年本)2. 2024.2.1 施行;
- (22) 《环境影响评价公众参与办法》、2019.1.1 施行;
- (23) 《排污许可管理条例》, 2021.13 1 施行;
- (24) 《危险化学品安全管理条例》, 2013.12.7 施行;



- (25) 《地下水管理条例》, 2021.12. 1667
- (26) 《基本农田保护条例》, 2011,0108,66行;
- (27) 《建设项目环境保护管理条例》, 2017.10.1 施行;
- (28) 《关于印发<自然资源要素支撑产业高质量发展指导目录(2024年本)>的通知》,自然资本[2024]273号,2024.12.2;
  - (29) 《非道路移动机械亏染防治技术政策》, 2018.8.21;
- (30) 《水共》央 国务院关于深入打好污染防治攻坚战的意见 2021.11.2;
- (197) 《关于印发<"十四五"噪声污染防治行动升划<的通知》,环大气 2023]1号,2023.01.05;
- (33) 《关于以改善环境质量为核心加强环境影响评价管理的通知》,环环 150号,2016.10.26;
- (34) 《关于做好环境影响评价制度与推污许可制衔接相关工作的通知》 环办环评[2017]84号,2017.11.12
- (35) 《关于加强环境影响报告书(表)编制质量监管工作的通知》,生态环境部,环办环评函(2524) 181号,2020.04.20;
- (36) 《关于50条 钢铁焦化、现代煤化工、石化、火电四个行业建设项目 环境影响评价文件审批原则>的通知》,环办环评[2022]31号,2022.12.65。
- (37) 国家发展改革委等部门关于推动现代煤化工产业健康发展的通知,分发改产业[2023]773 号, 2023.6.14;
- 知》《关于印发<"十四五"环境影响评价与排污许以《发弃施方案>的通知》 环环评[2022]26号, 2022.04.01;
- (39) 《关于加强重点行业建设项目区域削减增减少督管理的通知》,环办环评[2020]36号,2020.12.31;
- (40) 《关于实施工业污染源全面 本标样放计划的通知》,环环监[2016]172 号, 2016.11.29;

- (41) 《关于发布国家生态环境标准》从此五年发性有机物泄漏检测与修复技术指南>的公告》,生态环境部公告2021年第75号,2021.12.22;
- (42) 《关于印发<重点行业挥发性有机物综合治理方案>的通知》,环大 气[2019]53 号, 2019.06.26; ② >
- (43) 《关于加快解决监前挥发性有机物治理突出问题的通知》,环大气 [2021]65号, 2021.8.04)
- (44) 《关于的友本中四五"生态保护监管规划>的通知》,环生态[28/27) 号,2022.03.18
- (43) 《光子印发<"十四五"节能减排综合工作方案>的通知》,国发 [34] [34] 《2022.01.24;
- (大) 《关于发布<一般工业固体废物管理台账制定指南(试行)>的公告》、 (法 2021 年第 82 号, 2021.12.31;
- (47) 《关于"十四五"大宗固体废弃物系态利用的指导意见》,发改环资 [2021]381号,2021.03.18;
- (48) 《关于推进危险废物环境管理信息化有关工作的通知》,环办固体 函[2020]733号,生态环境部办公司。2020/12.31;
- (49) 《关于印发强化发发传物监管和利用处置能力改革实施方案的通知》,国办函[2021]47 号 2021 3.11;
- (50) 《关于50条 ★ 图五全国危险废物规范化环境管理评估工作方案 的通知》,环办固体 18021]20号,2021.09.02;
- (51) 《关于加强危险废物鉴别工作的通知》,环办固体函区021/419号。 202/99.06
- (关于发布<危险废物排除管理清单(2021年) (2021年) (
- (53) 《关于发布国家生态环境标准<危险废水管理计划和管理台账制定技术导则>的公告》,公告 2022 年第 15 号,2022 06.21;
- (54) 《关于发布国家生态环境标准·危险废物识别标志设置技术规范>的公告》,生态环境部,公告 2022 年第 38 号, 2022.12.30;



- (55) 《关于发布国家固体废物污染技术》,环境保护图形标志—固体 废物贮存(处置)场>(GB 15562.2-1995) 修改单的公告》,公告 2023 年第 5 号,2023.02.03;
- (56) 《关于发布国家固体度物污染控制标准<危险废物贮存污染控制标准>的公告》,公告 2023 年 6号,2023.02.03;
- (57) 《关于进入专业强危险废物规范化环境管理有关工作的通知》,环 办固体[2023]17 表 (23.11.07;
- 国家危险废物名录(2025年版)》,生态环境等。国家发展和改革。 公安部、交通运输部和国家卫生健康委员会(1985年)。2025.1.1;
- (60) 《关于进一步加强危险废物环境治理严密防护环境风险的指导意见》,环固体[2025]10号,2025.2.5;
- (61) 《关于开展重点行业建设项目碳块放环境影响评价试点的通知》, 环办环评函[2021]346号, 2021.07.27;
- (62) 《国务院关于加快建筑金绿色低碳循环发展经济体系的指导意见》, 国发[2021]4号,2021.2.22;
- (63) 《国务院关节(10 法 2030 年前碳达峰行动方案的通知》, 国发[2021]23 号, 2021.10.26;
- (64) 《国务院关于印发<2024-2025 年节能降碳行动方案>的通知》,是发 [2024]12, 号,1024-5.23;
- 火65个《关于加强企业温室气体排放报告管理相关工作的通知》 环办气 628719号,2021.03.29;
- (66) 《关于印发<工业领域碳达峰实施方案》的通知》,工信部联节 [2022]188号,2022.07.07;
- (67) 《关于印发<重污染天气重点行业绩效分级及减排措施>补充说明的通知》,环办便函[2021]341号,2021.07 № 2
  - (68) 《生态环境部关于加强高耗能、高排放建设项目生态环境源头防控

的指导意见》, 环环评[2021]45号;

- (70) 《关于加强生态保护公线管理的通知(试行)》,自然资发[2022]142 号,2022.08.16;
- (71) 《关于印发·生态保护红线生态环境监督办法(试行)>的通知》 国环规生态[2024] 2022.12.27;
- (72) 关于印发<生态环境分区管控管理暂行规定>的通知》、 数数许[2024]41 号 20 1.7.6;
- 国务院关于支持山东深化新旧动能转换推动绿色低碳高质量发展的。 1 国发[2022]18号,2022.09.02;
- (74) 《生态环境部关于支持山东深化新旧改改转 英性动绿色低碳高质量 发展的实施意见》,环综合[2022]65号,2022(1908)
- (75) 《关于进一步加强环保设备设施交叉生产和生态环境安全隐患排查工作的通知》, 2022.12.30;
- (76) 《关于进一步优化TARAINITATE 的意见》,环环评[2023]52号, 2023.9.20;
- (77) 《关于开展工业最声排污许可管理工作的通知》, 环办环评[2023]14号, 2023.9.29;
- +739 (《关于发布<有毒有害水污染物名录 (第一批) >的《法》, 《 告 2019 第 23 号 2019.7.24;
- (80) 《关于印发<空气质量持续改善行动计划的通知》,国发[2023]24 号,2023.11.30;
- (81) 《关于印发<土壤污染源头防控系数计划>的通知》, 环土壤[2024]80 号, 2024.11.06;
  - (82) 《关于"十四五"推进沿黄重点地区工业项目入园及严控高污染、高

耗水、高耗能项目的通知》,发改办产业[2021/85] 2021.8.16;

- (83) 《关于印发<减污降碳协同增效实施方案>的通知》, 环综合[2022]42 号, 2022.6.10;
- (84) 《关于发布 2024 年电为碳足迹因子数据的公告》,公告[2025]第 19 号,2025.10.23;
- (85) 《关于"十四九"雕动石化化工行业高质量发展的指导意见》,工信部联原[2022]24.条3、2022-4.7;
- (86) 《天子》发<石化化工行业稳增长工作方案(2025~2026年)》的通知》,工言现象原[2025]195号,2025.9.25;
- 关于进一步加强环保设备设施安全生产工作的确知》,安委办明 电 22.7 号,2022.12.23;
  - (88) 《新化学物质环境管理登记办法》,生态 / 填部 / 第 12 号, 2021.1.1;
- (89) 《国务院办公厅关于印发新污染》及建行动方案的通知》,国办发 [2022]15号,2022.5.24;
- (90) 《关于加强重点行业涉养》、杂物建设项目环境影响评价工作的意见》, 环环评[2025]28号, 2025年
- (91) 《关于印发<市场(水) 通清单(2025年版)>的通知》,发改体改规[2025]466号,2025445
- (92) 《关于发帝·重点控制的土壤有毒有害物质名录(第一批)>的公告公告[2025]第 18 号,2025.9.22。

## 1.1.2 地方相关法规文件

- 《山东省环境保护条例》,2019.1.1施行;
- (2) 《山东省实施<中华人民共和国环境影响评价法》 山东省第十届人大常委会第十七次会议,2018.01.23 修正;</p>
  - (3) 《山东省水污染防治条例》, 2020.11、天流行;
  - (4) 《山东省大气污染防治条例》,2018 11 30 修订施行;
  - (5) 《山东省环境噪声污染防治条例》, 2018.1.23 修订施行;
  - (6) 《山东省固体废物污染环境防治条例》,2023.1.1施行;



- (7) 《山东省土壤污染防治条例》, 200011施行;
- (8) 《山东省清洁生产促进条例》、2020.127施行;
- (9) 《山东省南水北调工程沿线区域水污染防治条例》,2018.1.23 修正;
- (10) 《山东省南四湖保护条例》, 2022.1.1 施行;
- (11) 《山东省绿色低滤高质量发展促进条例》,2025.3.1 施行;
- (12) 《山东省扬·公为公历治管理办法》(2018年修订), 2018.1.24修订;
- (14) 《大印发<山东省饮用水水源保护区管理规定(试行)的通知》 1907—19022 196号,2022.09.30;
- (1) 《山东省人民政府关于发布政府核准的投资项包国录(山东省 2017 (本) 的通知》,鲁政发[2017]31号,2017.10.15;
- (16) 《关于印发山东省贯彻落实〈中共企义、国务院关于深入打好污染 防治攻坚战的意见〉的若干措施的通知》、多次委[2022]1号;
- (17) 《山东省生态环境厅关于中发山东省重点排污单位名单制定和污染源自动监测安装联网管理的通知》。鲁政发[2019]134号,2019.99;
- (18) 《关于印发<山东省》海发性有机物企业分行业治理指导意见>的通知》,鲁环发[2019]146号,2019:12.13;
- (19) 《关于政策》,《首工业企业无组织排放分行业管控指导意见负语知》,鲁环发[2030]30号,2020.6.30;
- (20) 国东省生态环境厅关于进一步做好挥发性有机物治理工作的通知》,鲁环字[2021]8号, 2021.1.15;
- ★ 《关于印发山东省建设项目主要大气污染物排放,量者代指标核算及管理办法的通知》,鲁环发[2019]132号,2019.9.2
- (22) 《山东省生态环境厅关于印发山东省固定状态原自动监控管理办法的通知》,鲁环发[2020]6号, 2020.1.19;
- - (24) 《山东省非道路移动》,排气污染防治规定》,山东省人民政府令

327号, 2020.2.1;

- (25) 《关于印发<山东省非道路移动机械污染排放管控工作方案>的通知》,鲁环发[2022]1号,2022.2.17;
- (26) 《关于进一步加强建设项目固体废物环境管理的通知》,鲁环办函 [2016]141号,2016.9.30;
- (27) 《关于印发》系首是险废物专项排查整治方案的通知》,鲁政办字 [2019]58号,2012.24。
- (28) 《山本省生态环境厅关于加强危险废物处置设施建设和管理的意见》,鲁政发[2019]113号,2019.5.28;
- (30) 《山东省生态环境厅关于进一步加强危险度协考染防治工作的指导 意见》,鲁环发[2020]29号,2020.6.22;
- (31) 《关于印发<山东省化工行业投资项件管理规定>的通知》,鲁工信 发[2022]5号, 2022.10.10;
- (32) 《关于印发<山东省化双远区常理办法>的通知》,鲁工信化工 [2023]266号,2023.12.25;
- (33) 《山东省人民的府关下加快推动全省化工园区高质量发展的意见》 鲁政办字[2024]13号,2024\_22
- (34) 《关于政发<山东省化工产业"十四五"发展规划>的通知》,是实 化工[2021]213号,2021.9.29;
- (350) 关于严格项目审批工作坚决防止新上"散乱污"项目的通知,鲁环(2021.3.4;
- (38) 《山东省人民政府关于印发<山东省"十四五"生然不说保护规划>的 通知》,鲁政发[2021]12号,2021.8.22;
- (37) 《山东省生态环境委员会办公室关于研发、山东省深入打好蓝天保卫战行动计划(2021-2025 年)>、《山东省深入打好碧水保卫战行动计划(2021-2025 年)>、《山东省深入打好净土保卫战行动计划(2021-2025 年)>的通知》,鲁环委办[2021]30 号、 2021-2025 年)>

- (38) 《山东省生态环境委员会关于欧发大小介省空气质量持续改善暨第三轮"四减四增"行动实施方案>的通知》人鲁政等[2024]102 号, 2024.7.12;
- (39) 《关于进一步加强土壤活染重点监管单位管理工作的通知》,鲁环发[2020]5号,2020.1.16;
- (40) 《山东省贯彻格文》中共中央、国务院"关于深入打好污染防治攻坚战的意见"的若干措施。(40) 事环委[2022]1号,2022.04.03;
- (41) 《山东省关于实施"三线一单"生态环境分区管控的意见》,鲁政东 [2020]269号,2001(2.20)
- (42) 《山东省生态环境厅关于印发山东省生态环境分区管控动态更新成果 (2024) 188号, 2024.12.13; (2024) 188号, 2024.12.12.13; (2024) 188号, 2024.12.13; (2024) 188号, 2024.12.13; (2024) 188号, 2024.12.13; (2024)
- 知》 《关于印发<山东省生态环境行政处罚裁量标准(1922年版)>的通知》 鲁环发[2022]13号,2022.07.28;
- (44) 《山东省生态环境厅关于实行危险废物/火势类管理的通知》, 2022.7.19;
  - (45) 《关于进一步深化环评"放管服义革的若干意见》,鲁环发[2020]48号;
- (46) 《山东省重污染天气重点计划统分级管理规范(试行)》,鲁环 发[2020]34号;
- (47) 《关于加强生态保护工术管理的通知》,鲁自然资发[2023]1号, 2023.1.06;
- (48) 《关于欧洲·人家省 2023 年大气、水、土壤环境质量巩固提升分支方案>的通知》,曾环委办[2023]9 号, 2023.5.23;
- (49) 关于印发<山东省生态保护红线生态环境监督办法(试行)>的通知》之鲁环发[2023]11号,2023.5.19;
- 发展,《关于深化建设用地土壤环境管理服务高质量发展的意见》,鲁环发展2023[20号, 2023.10.19施行;
- (51) 《山东省"十四五"推动黄河流域生态保护和高质量发展实施方案的通知》,鲁黄河办[2021]9号;
- (52) 《山东省城镇开发边界管理实施细则(试行)》,鲁自然资字[2024]50 号,2024.04.28;
  - (53) 《关于加强生态环境》、管控的实施意见》, 2024.11.08;

- (54) 《关于严禁投资建设"两低三高、4.4 项目的紧急通知》,鲁办发电 [2019]117号,2019.8.2;
- (55) 《山东省生态环境厅关于加强高耗能、高排放建设项目生态环境源 头防控的实施意见》,鲁环发[20215号, 2021.7.16;
- (56) 《关于迅速开展》两高一资"项目核查的通知》,鲁发改工业[2021]59 号,2021.1.23;
- (57) 《山东省人民政府办公厅关于加强"两高"项目管理的通知》,是 办字[2021]57 景。 (021.8.19;
- (58) 关于即发山东省"两高"项目管理目录的通知》,鲁农改工业 [2021/80]号 2021.6.19;
- 《关于印发坚决遏制"两高"项目盲目发展的若干措施的通知》, 鲁政小字[2021]98号,2021.9.30;
- (60) 《关于"两高"项目管理有关事项的通知》 鲁发改工业[2022]255 号,2022.3.31;
- (61) 《山东省"两高"建设项目或指示收储调剂管理办法(试行)》 鲁政办字[2022]172号, 2023.1.3;
- (62) 《关于"两高"项目"为有关事项的补充通知》,鲁发改工业[2023]34 号, 2023.1.12;
- (63) 《关于优化调整部分行业"两高"项目管理》, 鲁发改工业[2024]828 号, 2024.10.25;
  - (64) 《山东省"两高"项目管理目录(2025年版)》, 2025.8.26%
  - (65) 《山东省重点产业能效基准水平和标杆水平(2025年版)》 2025.8.26;
  - 火66》《山东省工业领域碳达峰工作方案》鲁工信发[20034号, 1023.4.28;
  - (6) 《山东省减污降碳协同增效实施方案》鲁环发 (4) 13 号,2023.5.23;
  - 68) 《山东省石化化工行业碳达峰工作方案》,1923.6.20
- (69) 《山东省"两高"建设项目碳排放减量替代办法》的通知(鲁环发 [2024]6号), 2024.9.1;
- (70) 《山东省发展和改革委员会来于进一步做好新上耗煤项目煤炭消费减量替代工作的通知》(鲁发改环资化和5]1177号;
  - (71) 《山东省煤炭消费减量代工作方案》,鲁发改环资[2017]857号;

- (72) 《山东省发展和改革委员会关于北方山东省耗煤项目煤炭消费减量替代管理办法的通知》,鲁发改环资[20] \$16 补导:
- (73) 《关于印发<山东省固定资产投资项目能源和煤炭消费减量替代管理办法>的通知》,鲁发改环资[2021]491号,2021.6.19;
- (74) 《关于优化重点区域新上原料用煤项目煤炭消费替代有关事项的通知》,鲁发改环资[2034] \$9.5
- (75) 《关系印发<山家省关于加强煤炭清洁高效利用的实施方案>的通知》,鲁发改运行2023/268号,2025.4.10;
- (76) 关于即发<山东省钢铁行业建设项目温室气体排放环境影响评价技术技术资势(试证) >、<山东省化工行业建设项目温室气体排放环境影响评价技术(关于) >的通知》,鲁环发[2022]4号,2022.5.1;
- (77) 《关于印发山东省实施<生态环境损害赔偿管理规定>细则的通知》, 多环发[2024]2号,2024.3.4;
  - (78) 《关于开展碳足迹试点的通知》, 美术发[2024]11号, 2024.12.20;
- (79) 《关于印发山东省碳普惠试点》作指导意见的通知》,鲁环发[2025]2 号,2025.1.20;
- (81) 《山东省》是香建宁关于印发<山东省危险化学品生产使用企业老旧装置安全风险防控发频整治实施方案(2024年度)>的通知》,2024.1.76、
- (82) 发生进一步加强化工企业环保设施安全风险管控工作的通知》 鲁安办完成02361号, 2023.12.19;
- ★83 × 《关于进一步加强环保设施和项目环境监管的通知》,多环便函 ◆2 × 10 = 号;
- (84) 《山东省生态环境厅关于开展传统产业集解大气店杂防治水平提升 的通知》,鲁环发[2025]1号,2025.1.16;
- (85) 《山东省生态环境厅关于进一步加强固体废物环境管理信息化工作的通知》,鲁环发[2025]3号,2025.1.23、
- (86) 山东省人民政府关于滕州帝国土空间总体规划(2021-2035年)的批复,鲁政字[2024]14号,2024



- (87) 《枣庄市饮用水水源保护条例》 (2008.1) 30 批准;
- (88)《枣庄市发展和改革委员会关于转发医东省耗煤项目煤炭消费减量替代管理办法的通知》,枣发改规划[2018]98号;
- (89) 《枣庄市煤炭消费压藏工作总体方案 (2019-2020 年》, 枣政办字 [2019]32 号;
  - (90) 《枣庄市杨少、桑族冶管理办法》,枣政发[2012]47号,2012.6.21;
- (91) 《关系加强安全外保节能管理加快全省化工产业转型升级的意义 鲁政办字[2015][23] 号;
- (92) 关于枣庄市滕州市饮用水源保护区划定方案的复函》 鲁环图
- 《枣庄市人民政府关于划定枣庄市大气污染物排放区的通告》, 2016 10.8;
  - (94) 《关于印发枣庄市水污染防治工作方案的通知》,枣政发[2016]9号;
  - (95) 《关于印发枣庄市土壤污染防治工作,东的通知》,枣政发[2017]7号;
- (96)《枣庄市人民政府关于印发更广东"上线一单"生态环境分区管控方案的通知》,枣政字[2021]16号;
- (97) 《枣庄市生态环境》,《麦贵尝关于印发《枣庄市"三线一单"生态环境分区管控更新方案(2022)年现公里新)>的通知》,枣环委字[2023]3号;
- (98) 《枣庄市》 老环境保护委员会关于发布枣庄市 2023 年生态环境分区管控动态更新成果的通知》,2024.6.12;
- (99) 《美子加强生态环境保护突出问题综合整治的实施意见》 发
- 火1009 《枣庄市生态环境局关于进一步加强建设项周轮境景则评价管理工作的通知》,枣环函字[2019]78号,2019.12.16;
- (101) 《枣庄市关于印发全市排放硫酸盐分益量专项整治工作方案的通知》,枣环函[2022]5号,2022.02.23;
- (102) 《枣庄市生态环境局关于进步加强建设项目环境影响评价管理工作的通知》,枣环函字[2019]78号,2019.12.16;
- (103) 《枣庄市生态环境局关于严格执行山东省大气污染物排放标准的通知》,枣环函字[2019]56 (103)



- (104) 《枣庄市人民政府关于印发》方方 上四五"生态环境保护规划的通知》,枣政发[2021]15号, 2021.12.30。
- (105) 《枣庄市人民政府关于印发枣庄市突发事件总体应急预案的通知》,枣政发[2022]6号,2022.00215
- (106) 《关于印发》 在市"十四五"推动黄河流域生态保护和高质量发展实施方案>的通知》 (2022]7号;
- (107) 李庄市推动黄河流域生态保护和高质量发展 20年工作要点>的通知,李黄河办[2023]2号;
  - (108) 《枣庄市主要污染物排污权确权暂行办法》,枣环委办学(2024)3号;
- 《枣庄市人民政府办公室关于印发枣庄市排污权有偿使用和交 第15办法的通知》,枣政办发[2023]17号;
- (110) 枣庄市生态环境保护委员会办公室关于(10) 枣庄市排污权有偿使用和交易实施细则(试行)》的通知,枣环季办字(2001) □号;
- (111) 枣庄市生态环境保护委员会办验。 推污权确权暂行办法》的通知,枣环委为至(2021)3号;
- (112) 山东省人民政府关于联州市 五土空间总体规划(2021-2035年)的批复,鲁政字[2024]14号;
- (113) 《枣庄市人民政府另一印发枣庄市碳达峰工作方案的通知》,枣政字[2023]27号,2021.1472

## 1.1.3 技术规范:

- 《建设项目环境影响评价技术导则 总纲》(HJ2.1-2016)。
- (2)>《环境影响评价技术导则 大气环境》(HJ2.2-2018)
- 《环境影响评价技术导则 地表水环境》(HJ2.3.70)
- (4) 《环境影响评价技术导则 地下水环境》(H1610);
- 5) 《环境影响评价技术导则 声环境》(HV)
- (6) 《环境影响评价技术导则 生态影响》(199022);
- (7) 《环境影响评价技术导则 土壤环境 (试行)》 (HJ964-2018);
- (8) 《环境影响评价技术导则 石油化工建设项目》(HJ/T89-2003);
- (9) 《建设项目环境风险评价技术导则》 (HJ169-2018);



- (10) 《化工建设项目环境保护工程设计标准》(GB/T 50483-2019);
- (11) 《石化建设项目环境影响评价文件事批原则》:
- (12) 《现代煤化工建设项目环境影响评价文件审批原则》;
- (13) 《重点监管的危险化学品名录》(2013年版);
- (14) 《重点监管危险》之工艺目录》(2013年版);
- (15) 《首批重点监督的危险化工工艺目录》;
- (16) 《第二批重点监管的危险化工工艺目录》;
- (17) 《首林董点监管的危险化学品名录》;
- (18) 第二批重点监管的危险化学品名录》;
- 後去 《有毒有害大气污染物名录(2018)》;
- 《有毒有害水污染物名录(第一批)》
- 21) 《有毒有害水污染物名录(第二批)》
- (22) 《重点控制的土壤有毒有害物质名录(菜人物)》;
- (23) 《重点管控新污染物清单(2024年版》;
- (24) 《优先控制化学品名录(第一张)》
- (25) 《优先控制化学品名录人事》和》》
- (26) 《关于持久性有机》,斯德哥尔摩公约》(文本和附件2017年修改);
- (27) 《关于多氯萘等》,种类等人性有机污染物环境风险管控要求的公告》;
- (28) 《关于增业和发史中国现有化学物质名录>的公告》:
- (29) 《建设域目危险废物环境影响评价指南》;
- (30) 《污水监测技术规范》 (HJ91.1-2019);
- (31) 《地下水环境监测技术规范》 (HJ164-2020);
- (32) 《水污染治理工程技术导则》(HJ2015-2012)
  - → 《大气污染治理工程技术导则》(HJ2000-2010)
- 34) 《固体废物鉴别标准通则》(GB 34330-7077)
- (35) 《危险废物鉴别标准通则》(GB 5085~20.9)
- (36) 《危险废物鉴别标准技术规范》(41)298-2019);
- (37) 《土壤环境监测技术规范》(HI/T166-2004);
- (38) 《排污许可证申请与核发技术规范总则》(HJ942-2018);
- (39) 《排污许可证申请与《发技术规范 石化工业》 (HJ 853-2017)

- (40) 《排污许可证申请与核发技术规模》类如工-合成气和液体燃料生产》(HJ1101-2020);
  - (41) 《排污许可证申请与核发技术规范 锅炉》 (HJ953-2018);
  - (42) 《排污许可证申请与校发技术规范 工业噪声》(HJ1301-2023);
  - (43) 《污染源源强 核草技术指南 准则》 (HJ884-2018);
  - (44) 《排污单位》《盐测技术指南 总则》(HJ819-2017);
  - (45) 《排污单位自行监测技术指南 石油化学工业》(HJ 947-2018)
- (46) 《排》单位自行监测技术指南 煤炭加工-合成气和液体燃料 (HJ1247-0022):
  - 全方 《排污单位自行监测技术指南 火力发电及锅炉》(HJ810~2017);
    - 《固体废物分类与代码目录》
  - (49) 《一般固体废物分类与代码》(GB/T391%(0))
  - (50) 《大气污染治理工程技术导则》(HJ2000 VAX)
  - (51) 《突发环境事件应急监测技术规范》(HJ589-2010);
  - (52) 《危险废物处置工程技术导列》(H) 2042-2014);
  - (53) 《危险废物收集贮存运输技术规范》(HJ 2025-2012);
  - (54) 《突发环境事件应为"大大指南》 (DB37/T3599-2019);
  - (55) 《化工建设项图环境保护设计标准》(GB50483-2019);
  - (56) 《石油化》工程》分类技术规范》(GB/T50934-2013);
  - (57) 《石油化工环境保护设计规范》(SH/T 3024-2017);
  - (58) 《石油化工企业防渗设计通则》(Q/SY1303-2010);
  - (59) 《石油化工厂区绿化设计规范》(SH3008-2000);
  - 《60》《石化行业 VOCs 污染源排查工作指南》(2015)
  - ★《挥发性有机物(VOCs)污染防治技术政策》:
  - (62) 《重点行业建设项目碳排放环境影响评价,为指南(试行)》;
- (63) 《温室气体排放核算与报告要求第一部分: 化工生产企业》 (GB/T32151.10-2015);
- (64) 《山东省化工行业建设项目温室气体排放环境影响评价技术指南(试行)》;
  - (65) 《工业企业土壤和域》(自行监测技术指南(试行)》(HJ 1209-2021)。

山东优纳特环境科技有限公司

第 15 页

## 1.2 评价目的与指导思想

#### 1.2.1 评价目的

为了正确处理项目与所在地区的经济发展、社会发展和环境保护,维护生态平衡的关系,做到瞻前顾告,统筹兼顾,维护和创造良好的生产与生活环境,使该项目的建设达到经济交益。社会效益和环境效益的统一,按照国家建设项目影响评价技术导则处现于开展环境影响评价工作,力求达到下述目的:

(1) 通过对允建项目所在的评价区环境现状调查与评价,摸清评价值的 的环境质量视识。了解评价区的自然、社会和环境状况。

- (3)通过对拟建项目工程分析,分析拟建项目污染物的排放种类、类型和排放量,并提出合理的污染防治措施。
- (4)选择适当的评价因子和预测模式,预测工程投产后对环境的正负效应, 论证工程环保措施在技术上的可须找到经济上的合理性,提出清洁生产、污染物 总量控制和防止污染的措施及发光,对环境管理决策和工程设计提供依据。
- (5) 依据环保法规、产业政策,从环保角度对项目建设可行性做出明确结论,并提出相应建议。 (5) 依据环保法规、产业政策,从环境主管部门决策和企业环境管理提供科学依据。

## 1.2.2 指导思想

评价力求使出工程特点,根据设计资料及工程分析,抓住影响环境的主要因子,有重点地进行环境影响评价;评价方法以项目工程分析及环境质量现状监测数据分基础,力求科学、严谨,评价结论客观公正、实事或是,贯彻节能降耗、精洁生产、达标排放的原则;提出的环保措施和建议力多技术可靠、经济合理,真正做到为建设单位服务,为环境管理服务。

## 1.3 评价重点

根据拟建项目排污特点及周边地区环境特征,本次评价以工程分析为基础,重点分析环境空气影响评价、地质水影响评价、土壤环境影响评价、环境风险评

价,同时注重污染物防治措施经济技术论证

- 1.4 环境影响因素识别和评价因子的游览
  - 1.4.1 环境影响因素识别

#### 1.4.1.1 施工期

结合施工期的主要特点,本项目施工期对环境造成的影响因素主要有:

施工期的环境影响具有阶段性,是短期影响,会随着施工期的结束而消失。 另外,施工机械设备作业、车辆运输作业及人员活动等将使施工区的生态遭到破坏,拆除施工、建构筑物砌筑,导致与原有原因,观的环协调,破坏景观美学。 因此说该类影响是长期的,但影响范围是高部的。

#### 1.4.1.2 运营期

在工程分析的基础上,结合为产用的原料、产品输送方式、工艺技术情况、生产装置及辅助设施产活。排污法之及周围环境特点,运营期产生的主要影响有:

本工程废气包括工艺装置、辅助生产设施废气、装置和罐区无组织排放气、会对当地环境空气质量产生不利影响;本工程生产废水和污染雨水等均排采食。 净化水厂接管处理。生产过程中各种设备产生的机械噪声等将对声环境产生不利 影响。生产中产生的各种废渣,如工艺废催化剂、废杂醇油等,如不安含处置, 可能多为漏影响地下水。在物料储运过程中产生无组织废气、影响环境空气和水 环境、进产过程中使用、生产、储存、运输大量易燃、易爆发有毒有害的危险性 物质,存在着发生突发性事故导致环境事件的可能性、具有一定的环境风险。

根据环境影响矩阵方法主要环境影响要素识别表现者出,施工期和服务期满后对环境将产生一定的不利影响,但均是短期的,且可逆的,营运期除对环境空气和声环境等要素产生轻微影响外,更多是长期的、有利的影响,以上这些影响在整个生产运营期都长期存在,需要通过有效的环保治理措施降低其影响程度。

| 1 | 4.1 | = | 要环    | t音 B         | Kon     | 亜  | 表记     | 뫼     | 矩阵-  | - 临表    |
|---|-----|---|-------|--------------|---------|----|--------|-------|------|---------|
| 1 |     | 工 | 35-74 | <b>为元</b> .万 | C> HILL | 35 | 272 WY | נינד. | ALI- | JAL ADK |

|            | 工程项目             |            | 人。於生期      |                  |       |       |       | DEA            |      |      |      |
|------------|------------------|------------|------------|------------------|-------|-------|-------|----------------|------|------|------|
| 环境项        | 自                | 场地/土石方/基建  | 这曲拆除 清洗/安装 | <b>施工人员/车辆活动</b> | 力变换装置 | 净化装置  | 硫回收瓷  | 甲醇装置           | 储运工程 | 公辅设施 | 环保工科 |
|            | SO <sub>2</sub>  |            | 7          | ○☆               |       |       | 17    |                |      |      | ∘★   |
|            | NOx              | 11/2       | V          | ○☆               |       | 2     | >- de |                |      |      | •★   |
|            | TSP              |            |            | ○☆               |       | 1/1/2 |       |                |      |      |      |
| 大气         | 颗粒物              |            |            | ○☆               |       | XX    |       |                |      |      | ₽¥   |
| 环境         | H <sub>2</sub> S |            |            |                  |       | 2     | ∘★    |                |      |      |      |
|            | NH               |            |            |                  |       | *     | ∘★    |                |      |      | 0    |
|            | 更醒               |            |            | 9                | de la | ∘★    |       | ∘★             | ∘★   | ∘★   |      |
|            | NMHC             |            | ∞☆         |                  | 1     | ∘★    |       | ∘★             | ∘★   | ∘★   | 1.7  |
| 2          | 施工废水             | 合公         | ○☆         | 0417             |       |       |       |                |      |      |      |
| <b>水流谱</b> | 生活污水             |            |            |                  | 4     |       |       |                |      | NV   | 1    |
| 3          | 生产污水             |            | o☆         |                  |       | ∘★    |       | ∘★             | 1    | 435  |      |
|            | 清净废水             |            |            |                  | •*    |       |       |                | 14   | , ∘★ |      |
| 1,         | 危险废物             |            | 0☆         |                  | •*    |       | ∘★    | •*             |      |      | •*   |
| 固体         | 一般固废             |            | ्रं        |                  | ∘★    |       | ∘★    |                |      | •*   | •*   |
| 废物         | 生活垃圾             |            | 1.17       | ○☆               |       |       |       |                |      |      |      |
|            | 建筑垃圾             | • <b>☆</b> | XXX.       |                  |       |       | 1     |                |      |      |      |
| 土地         | 襄环境              | 0公         | 117        |                  |       |       |       | 〈垂車〉〉          | 参)   |      |      |
| 声          | 环境               | •☆ ②       | 5 •☆       | • <b>☆</b>       |       |       | N     | <b>&gt;•</b> ★ |      |      |      |
| 生活         | 态环境              | 1          |            | ○☆               |       |       | (3)   |                |      |      |      |

注: ●影响较大; 〇影响较 > ★: 长期影响; ☆: 短期影响

#### 1.4.2 评价因子的筛选

通过对项目污染物排放特征的分析和环境影响因子识别,确定本次评价现状及影响评价因子见表 1.4-2。

表上4-3~评价因子一览表

| 类别        | 项目                                    | 评价因子                                                                                                                                                                                                                                                                            |
|-----------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| +'=17+\$  | 现状评价                                  | P. A. N. S. S. S. NO <sub>2</sub> 、 TSP、CO、O <sub>3</sub> 、 VOCs、非甲烷总烃、<br>硫酸雾、甲醇、NH <sub>3</sub> 、H <sub>2</sub> S、臭气浓度、二噁英                                                                                                                                                    |
| 气环境       | 影响次外                                  | PM <sub>1</sub> A PM <sub>25</sub> 、CO、SO <sub>2</sub> 、NO <sub>2</sub> 、TSP、NH <sub>3</sub> 、H <sub>2</sub> S、非甲烷总类、<br>甲醇、VOCs、硫酸雾、二噁英                                                                                                                                        |
| 地表水环境     | · · · · · · · · · · · · · · · · · · · | pH、溶解氧、COD、BODs、NHs-N、SS、高指数、总氮、加发、<br>氟化物、氰化物、挥发酚、氯化物、硫酸盐、硝酸盐、亚硝酸盐<br>石油类、硫化物、色度、粪大肠菌群、六价铬、铜、铅、锌、镉<br>砷、汞、全盐量、阴离子表面活性剂、甲醇、                                                                                                                                                     |
|           | 影响评价                                  | 定性分析                                                                                                                                                                                                                                                                            |
| 地下水<br>环境 | 现状评价                                  | 色、嗅和味、浑浊度、肉眼可见物、 H、 总硬度、溶解性总固体硫酸盐、氯化物、挥发性酚类、阴离、 表面活性剂、耗氧量、氨氮硫化物、总大肠菌群、细菌总数、 Z硝酸盐、硝酸盐、氰化物、氧化物、碘化物、铁、锰、铜、锌、钴、锡、汞、砷、硒、镉、铬铅、苯、甲苯、甲醇、总 城镇 医、总部放射性、 K+、 Na+、 Ca²+、 Mg²+、 CO₃²-、 HCO₃·、 X × Xo²-                                                                                       |
|           | 影响评价                                  | COD、汞、砷、铅                                                                                                                                                                                                                                                                       |
| 土壤        | 现状评价                                  | pH、锌、砷、镉、铂 女子伶)、铜、铅、汞、镍、四氯化碳、氯仿、氯甲烷、1/2-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、顺-1,2-二氯乙烷、2-氯乙烷、1,1,1-2-四氯乙烷、四氯乙烷、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯1/2-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯、德基苯、苯胺、2-氯酚、苯并[a]蒽、苯并[a]克、苯并[b]荧蒽、苯并(b)荧蒽、菌、二苯并[a, h]蒽、茚并[1,2,3-cd]芘、萘、甲醇、石油烃(C10-C40) |
|           | 影响评价                                  | 砷、汞、石油烃                                                                                                                                                                                                                                                                         |
| 噪声く       | 现状评价                                  | 等效连续 A声级 Leq(dB(A))                                                                                                                                                                                                                                                             |
|           | 现状评价                                  | 一般固废、危险废                                                                                                                                                                                                                                                                        |
| SILE.     | 影响评价                                  | 一般固废、危险废物                                                                                                                                                                                                                                                                       |
| 不填风险      | 影响评价                                  | 丙烯、丙烷、CO、H <sub>2</sub> 、H <sub>2</sub> S、辛醇、异丁醛、正丁醛、硫酸                                                                                                                                                                                                                         |
|           | 影响评价                                  | \ \/\                                                                                                                                                                                                                                                                           |

## 1.4.3 新污染物识别与分析

1.4.3.1 新污染物识别

根据拟建项目原辅材料及产品分析。项目不涉及《关于加强重点行业涉新污

#### 1.4.3.2 新污染物预测与监测分析

根据拟建项目涉及的新污染物属性、项目情况及环评要素导则要求,本次评价过程中,各要素预测及益流工作中均考虑增加新污染物,具体方案见表 1.4-3。

#### 1.5 评价标准

#### 1.5.1 环境质量 % 企

环境康量标准见表 1.5-1。各标准具体见表 1.5-2~1.5-6。

| 表   | 1.5-1 | 环暗     | 质量 | 标准-  | 一览表 |
|-----|-------|--------|----|------|-----|
| 400 |       | 764.10 | 火里 | 77八年 | シレル |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 衣 1.3-1 环境原重标准一见农                             | -       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------|
| Control of the Contro | 执行标准 "大人"                                     | 标准等级或分类 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 《环境空气质量标准》(GB3095-2012)                       | 一级、二级   |
| AT North-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 《环境影响评价技术导则大气环境》(HN >2018)                    | 附录 D    |
| 170克工气                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 日本环境厅中央环境审议会制定的环境标准                           | /-      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 《大气污染物综合排放标准等》                                | 7       |
| 地表水                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 《地表水环境质量标准》(GD 838-2002)                      | Ⅲ类      |
| 地水小                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 《农田灌溉水质标准》(GB 5084 2021)                      | 1       |
| 地下水                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 《地下水质量标准》(GFT) 4848-2017)                     | Ⅲ类      |
| 噪声                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 《声环境质量》(GB3096-2008)                          | 3类      |
| 上梅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 《土壤环境质量 建设成化产壤污染风险管控标准(试行)》<br>(GEN 500-2018) | 污染风险筛选值 |
| 土壤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 《土壤环境质量 次分地土壤污染风险管控标准(试行)》<br>/ GB15618-2018) | 表1      |

环境空气质量执行标准见表 1.5-2。

表 1.5-2 环境空气质量标准

| th 1242 M     | 级别         | 污染物             | 1     | 示准限值(mg/m |                        |
|---------------|------------|-----------------|-------|-----------|------------------------|
| DAT NOTE      | 5尺力1       | 指标              | 小时    | 日均《       | <b>李均</b>              |
|               |            | SO <sub>2</sub> | 0.15  | 54/12     | 0.02                   |
|               |            | NO <sub>2</sub> | 0.20  | 0.88      | 0.04                   |
|               |            | TSP             | 1     | A 12      | 0.08                   |
| 《环境空气质量标      | 一级<br>标准 - | PM10            | 1.4   | 2.05      | 0.04                   |
| 准》            |            | PM2.5           | 1.10  | 0.035     | 0.015                  |
| (GB3095-2012) |            | CO              | _10   | 4         | /                      |
|               |            | 0;              | 10.16 | 0.1*      | - 1                    |
|               |            | 铅,公             | 5 1   | 1         | 0.5ug/m <sup>3</sup>   |
|               |            | 镜人为             | 1     | 1         | 0.005ug/m <sup>3</sup> |

|                              |     | 汞                 |                          | /                        | 0.05ug/m <sup>3</sup>  |
|------------------------------|-----|-------------------|--------------------------|--------------------------|------------------------|
|                              |     | 砷                 | 1                        | 1                        | 0.006ug/m <sup>3</sup> |
|                              |     | 氟化物               | 0.02                     | 0.007                    | 1                      |
|                              |     | SO <sub>2</sub>   | 0.5                      | 0.15                     | 0.06                   |
|                              |     | NØ.               | 0.20                     | 0.08                     | 0.04                   |
|                              |     | TSP               | 1                        | 0.30                     | 0.20                   |
|                              |     | RM10              | 1                        | 0.15                     | 0.07                   |
|                              |     | PM <sub>2.5</sub> | 1                        | 0.075                    | 0.035                  |
|                              | 二级  | со                | 10                       | 4                        | 15                     |
|                              | 标准  | O <sub>3</sub>    | 0.2                      | 0.16*                    |                        |
|                              | 21, | 铅                 | 1                        | 1                        | Q.3631 3               |
| 11-                          |     | 铜                 | /                        | 1 .                      | 0,005ug/m              |
|                              |     | 汞                 | 1                        | 1                        | 70.05ug/m <sup>3</sup> |
|                              |     | 砷                 | 1                        | 1425                     | 0.006ug/m              |
| (/-)                         |     | 氟化物               | 0.02                     | 10.007                   | 1                      |
| 大气污染物综合排                     | ,   | 非甲烷<br>总烃         | 2.0                      | 1                        | 1                      |
| 放详解≫                         | -   | VOCs              | 2,6                      | 1                        | -1                     |
|                              |     | 氨                 | -0.2                     | -/-                      | -1-                    |
| 《环境影响评价技术                    |     | 锰及其<br>化合物        | 0.03                     | 0.01                     | 1                      |
| 导则大气环境》                      | /   | 甲醇入               | 13                       | 1                        | 1                      |
| (HJ2.2-2018)附录 D             |     | 400               | 0.01                     | 1                        | 1                      |
|                              |     |                   | 300                      | 100                      | 1                      |
| 参照日本环境厅中央<br>环境审议会制定环境<br>标准 |     | 二噁英               | 3.6pg-TEQ/m <sup>3</sup> | 1.2pg-TEQ/m <sup>3</sup> | 0.6pg-TEQ/r            |

注:\*根据《环境影响译仪技术导则大气环境》(HJ2.2-2018)"对于仅有 8h 平均质量仪象 日平均质量浓度限值或年平均质量浓度限值的,可分别按 2 倍、3 倍、6 倍折算为 14 米 质量浓度限值",此浓度仅用于大气评价定级,不做其他评判使用;

地表水环境质量执行标准具体见表 1.5-3。

| 表 1.5-3 地表水环境质量标准 (单位 | I: mg/L | · pro |
|-----------------------|---------|-------|
|-----------------------|---------|-------|

| 為 | 指标               | 标准限值   | <b>沙</b> 维来源  |
|---|------------------|--------|---------------|
|   | pH               | 6~9    |               |
| 2 | 溶解氧              | ≥5     | <b>//</b> >   |
| 3 | 高锰酸盐指数           | 6 1    | <b>\</b> \\   |
| 4 | CODer            | 20     | (GB3838-2002) |
| 5 | BOD <sub>5</sub> | 17     | 表 1 III类标准    |
| 6 | 氨氮               | 20 110 |               |
| 7 | 总磷               | 0.2    |               |
| 8 | 铜                | 1.0    |               |

山东优纳特环境科技有限公司

第 21 页

| 9    | 锌           | 1.0    | <b>~</b> '                   |
|------|-------------|--------|------------------------------|
| 10   | 氟化物         | 1.0    |                              |
| 11   | 硒           | 0.01   | *                            |
| 12   | 砷           | 0.05   |                              |
| 13   | 汞 🗸         | 0.0001 |                              |
| 14   | 镉 ///       | 0.005  |                              |
| 16   | 六价铭         | 0.05   |                              |
| 17   | 名           | 0.05   |                              |
| 18   | 氣化物         | 0.2    | 4/                           |
| 19   | <b>美國</b>   | 0.005  |                              |
| 20   | <b>人</b> 油类 | 0.05   | 1.19                         |
| 21   | 阳离子表面活性剂    | 0.2    | T.                           |
| 22 ( | 硫化物         | 0.2    | 1/2                          |
|      | 粪大肠菌群 (个儿)  | 10000  | , \$35                       |
|      | 硫酸盐         | 250    | 11/2                         |
| 25   | 氯化物         | 250    | IKT                          |
| 26   | 硝酸盐氮        | 10     | (GB3838-2002)<br>表 2 标准      |
| 27   | 铁           | 0.3    | 475 年 1月17日                  |
| 28   | 猛           | 21/2   |                              |
| 29   | 全盐量         | 1 1000 | 《农田灌溉水质标准》<br>(GB 5084-2021) |

地下水环境质量执行标准具体及表 1 4.

表 1.5-4 地下 (III类) 单位: mg/L

|      | **     |         |     | 4                     | ,      |
|------|--------|---------|-----|-----------------------|--------|
| 序号   | 项目     | 标准限值    | 序号  | 项目                    | 标准限值   |
| 1    | 色力     | ≤15     | 21  | 总大肠菌群                 | ≤3.0   |
| 2    | 嗅和味    | 无       | 22  | 菌落总数                  | 200    |
| 3    | 浑浊度    | 3       | 23  | 亚硝酸盐                  | (A)    |
| 4    | 内眼可见物  | 无       | 23  | 硝酸盐                   | ≥20    |
| 5    | pH     | 6.5~8.5 | 25  | 氰化物                   | 7 0.05 |
| 6,75 | 总硬度    | ≤450    | 26  | 氟化物                   | ≤1.0   |
|      | 溶解性总固体 | ≤1000   | 27  | 碘化物                   | ⊴0.08  |
|      | 硫酸盐    | ≤250    | 28  | 录                     | ≤0.001 |
| 9    | 氯化物    | ≤250    | 29  | <b>(</b>              | ⊴0.01  |
| 10   | 铁      | ≤0.3    | 30  | .K. 19                | ⊴0.01  |
| 11   | 锰      | ≤0.1    | 31  | 镉                     | ⊴0.05  |
| 12   | 铜      | ≤1.0    | 32× | 六价铬                   | ⊴0.05  |
| 13   | 锌      | ≤1.0    | 137 | 铅                     | ⊴0.01  |
| 14   | 铝      | ≤0.20 € | 534 | 三氯甲烷 <sub>IB</sub> /L | ≤60    |
| 15   | 挥发性酚类  | MAN Y   | 35  | 四氯化碳 <sub>μg/L</sub>  | ≤2.0   |

山东优纳特环境科技有限公司

第 22 页

#### 兖矿鲁南化工有限公司微反应高效合成精细化学品节能表现,各种量影响报告书

| 16 | 阴离子表面活性剂 | ≤0.3    | 36  | ⊭μg/L         | ≤10  |
|----|----------|---------|-----|---------------|------|
| 17 | 耗氧量      | ≤3.0    | 32  | 甲苯鸠儿          | ≤700 |
| 18 | 氨氮       | ≤0.50   | 188 | 工甲苯 (总量) μg/L | ≤500 |
| 19 | 硫化物      | ≤0.0.02 | 39  | 总α放射性 (Bq/L)  | ≤0.5 |
| 20 | 钠        | 200     | 40  | 总脉射性 (Bq/L)   | ≤1.0 |

项目位于鲁南高科技化工园区内,为 3 类声环境功能区,厂界执行《声环境质量标准》(GB3096-2008)、大运准,具体见表 1.5-5。

## 5.1.5-3 声环境质量标准 (3 类) 单位: dB(A)

|   |          | 类别           |    | 昼间 | 交便    |
|---|----------|--------------|----|----|-------|
| 4 | 声环境质量标准象 | GB3096-2008) | 3类 | 65 | 15/30 |

土壤末用 >土壤环境质量建设用地土壤污染风险管控标准(试行)》

56.5800-2018)、《土壤环境质量农用地土壤污染风险管控标准(试行)》

(15018-2018) 中相应标准进行评价,具体见表 15-6

1.5-6(1)建设用地土壤污染风险筛选值和管制核(基本项目)单位: mg/kg

| ÷므       | 运动物面目        | CAS 编号     | 筛》     | 額               | 管     | 制值    |
|----------|--------------|------------|--------|-----------------|-------|-------|
| 字号 污染物项目 |              | CAS 编写     | 第一类用地  | 企工类用地           | 第一类用地 | 第二类用地 |
|          |              | 重          | 金属和子机物 |                 |       |       |
| 1        | 砷            | 7440-38-2  | . 10 D | 60 <sup>①</sup> | 120   | 140   |
| 2        | 裲            | 7440-43-9  | 25-21  | 65              | 47    | 172   |
| 3        | 铬(六价)        | 18540-2018 | 3.0    | 5.7             | 30    | 78    |
| 4        | 铜            | 7440-50-   | 2000   | 18000           | 8000  | 36000 |
| 5        | 铅            | 1 20 02-1  | 400    | 800             | 800   | 2500  |
| 6        | 汞            | 743 4-97-6 | 8      | 38              | 33    | 82    |
| 7        | 镍人           | 7449-02-0  | 150    | 900             | 600   | 2 000 |
|          | X            | 1          | 军发性有机物 |                 |       | XX    |
| 8        | 四氯化碳         | 56-23-5    | 0.9    | 2.8             | 9 1   | 36    |
| 9        | <b>氯</b> 仿   | 67-66-3    | 0.3    | 0.9             | 5/2   | 20    |
| 1/1      | <b>氯甲烷</b>   | 74-87-3    | 12     | 37              | 1/2   | 120   |
| 1        | 1 上二氯乙烷      | 75-34-3    | 3      | 9               |       | 100   |
| 12       | 1,2-二氯乙烷     | 107-06-2   | 0.52   | 5               | 6     | 21    |
| 13       | 1,1-二氯乙烯     | 75-35-4    | 12     | 16              | 40    | 200   |
| 14       | 顺-1,2-二氯乙烯   | 156-59-2   | 66     | 11/196          | 200   | 2000  |
| 15       | 反-1,2-二氯乙烯   | 156-60-5   | 10     | X \34           | 31    | 163   |
| 16       | 二氯甲烷         | 75-09-2    | 941    | 616             | 300   | 2000  |
| 17       | 1,2-二氯丙烷     | 78-87-5    | WI.V   | 5               | 5     | 47    |
| 18       | 1,1,1,2-四氯乙烷 | 630-20-6   | 12.6   | 10              | 26    | 100   |
| 19       | 1,1,2,2-四氯乙烷 | 79-34-5    | 1.6    | 6.8             | 14    | 50    |

山东优纳特环境科技有限公司

第 23 页

|    |                 |                       |        | -/. Y. |       |       |
|----|-----------------|-----------------------|--------|--------|-------|-------|
| 20 | 四氯乙烯            | 127-18-4              | 11     |        | 34    | 183   |
| 21 | 1,1,1-三氯乙烷      | 71-55-6               | 701    | 1      | 840   | 840   |
| 22 | 1,1,2-三氯乙烷      | 79-00-5               | 0.6    | 2.8    | 5     | 15    |
| 23 | 三氯乙烯            | 79-01-6               | 1.0.7  | 2.8    | 7     | 20    |
| 24 | 1,2,3-三氯丙烷      | 96-18-4               | 0.05   | 0.5    | 0.5   | 5     |
| 25 | 氯乙烯             | 75-01-4, 1            | 0.12   | 0.43   | 1.2   | 4.3   |
| 26 | 苯               | 1-12                  | 1      | 4      | 10    | 40    |
| 27 | 氯苯              | 40s 90 7              | 68     | 270    | 200   | 1000  |
| 8  | 1,2-二氯苯         | J 5-3 J-1             | 560    | 560    | 560   | 560   |
| 9  | 1,4-            | 106-46-7              | 5.6    | 20     | 56    | , 08  |
| 0  | 乙类人             | 100-41-4              | 7.2    | 28     | 72    | 1.300 |
| 1  | 转乙烯             | 100-42-5              | 1290   | 1290   | 1290  | 1290  |
| 12 | <b>公</b> 申罗     | 108-88-3              | 1200   | 1200   | 1200  | 1200  |
|    | 阿二甲苯+<br>对二甲苯   | 108-38-3,<br>106-42-3 | 163    | 570    | 1,500 | 570   |
| 14 | 邻二甲苯            | 95-47-6               | 222    | 640    | 640   | 640   |
| >  |                 | #:                    | 挥发性有机物 | 勿      |       |       |
| 35 | 硝基苯             | 98-95-3               | 34     | 76     | 190   | 760   |
| 6  | 苯胺              | 62-53-3               | 92 7   | 1250   | 211   | 663   |
| 37 | 2-氯酚            | 95-57-8               | 250    | 2256   | 500   | 4500  |
| 8  | 苯并[a]蒽          | 56-55-3               | 155    | 15     | 55    | 151   |
| 19 | 苯并[a]芘          | 50-32-8               | 9.4    | 1.5    | 5.5   | 15    |
| 10 | 苯并[b]荧蒽         | 205-97                | 5.5    | 15     | 55    | 151   |
| 1  | 苯并[k]荧蒽         | 207-08-               | 55     | 151    | 550   | 1500  |
| 12 | 莡               | 16 01.9               | 490    | 1293   | 4900  | 12900 |
| 3  | 二苯并[a, h]蒽、     | 53 70 5               | 0.55   | 1.5    | 5.5   | 15    |
| 14 | 前并[1,2,3-cdttx) | 193-39-5              | 5.5    | 15     | 55    | TAK.  |
| 5  | 菱               | 91-20-3               | 25     | 70     | 255   | 200   |
|    | 117             |                       | 石油烃类   |        | 11    | 3),   |
| 16 | 石油(全5C10-C40)   | +-                    | 826    | 4500   | 5000  | 9000  |

主义是体地块土壤中污染物检测含量超过筛选值,但等于或者低于,连环境背景值(见 2000年的,不纳入污染地块管理。土壤环境背景值可参见附录(2000年)

1.5-6 (2) 农用地土壤污染风险筛选值(基本项目) 2 位: mg/kg

| ÷  | 污染物项目 |      | 风变病疾症  |           |                                                 |        |  |  |
|----|-------|------|--------|-----------|-------------------------------------------------|--------|--|--|
| 75 | 775   | 科列州日 | pH≤5.5 | 5.5 pH 66 | 0.5 <ph≤7.5< th=""><th>pH&gt;7.5</th></ph≤7.5<> | pH>7.5 |  |  |
| ι, | と古    | 水田   | 0.3    | XX /      | 0,6                                             | 0.8    |  |  |
| 1  | 镉其    | 其他   | 0.3    | 0.8       | 0.3                                             | 0.6    |  |  |
|    | -     | 水田   | 0.5    | 0.5       | 0.6                                             | 1.0    |  |  |
| 2  | 汞     | 其他   | 7.3/2  | 1.8       | 2.4                                             | 3.4    |  |  |
| 3  | 砷     | 水田   |        | 30        | 25                                              | 20     |  |  |

山东优纳特环境科技有限公司

第 24 页

|      |      | 其他                                                                  | 40                | 30      | 30       | 25          |
|------|------|---------------------------------------------------------------------|-------------------|---------|----------|-------------|
| 4 铅  | ėn.  | 水田                                                                  | 80                | 1       | 140      | 240         |
|      | tia  | 其他                                                                  | 70                | X 90    | 120      | 170         |
|      | Łb.  | 水田                                                                  | 250               | 250     | 300      | 350         |
| 5    | 铬    | 其他                                                                  | 150               | 150     | 200      | 250         |
|      | èm   | 果园                                                                  | 7/150             | 150     | 200      | 200         |
| 6 \$ | 铜    | 其他                                                                  | 150               | 50      | 100      | 100         |
| 7    |      | 镍                                                                   | 60                | 70      | 100      | 190         |
| 8    |      | 锌人                                                                  | 200               | 200     | 250      | 300         |
|      | 付于水製 | 之。<br>於<br>於<br>於<br>於<br>於<br>於<br>於<br>於<br>於<br>於<br>於<br>於<br>於 | (素总量计。<br>其中较严格的区 | 风险筛选值。  | 112      | HAVE        |
|      | 總物排  | 放标准见表 1                                                             |                   | 加维拉标准一些 | * 7/1/25 |             |
|      |      | 衣1                                                                  | .3-/ /5米书         | 物排放标准一览 | * * *    | 1 1-10 0 1- |

#### 1.5.2 污染

|             | 农工5-7 万米物排放标准 见及                                   |          |
|-------------|----------------------------------------------------|----------|
| 阿目          | 执行标准                                               | 标准分级     |
| 7           | 《挥发性有机物排放标准 第 6 部分:有机械 TぐNU》<br>(DB37/2801.6-2018) | 表 1、2、3  |
|             | 《大气污染物综合排放标准》(000/157-1996)                        | 二级       |
|             | 《石油化学工业污染物排放标准》(68351-2015及修改单)                    | 表 4      |
|             | 《区域性大气污染物综合排放标准》(DB37/2376-2019)                   | 表 1      |
| 废气          | 《锅炉大气污染物排放标准》(DB37/2374-2018)                      | 表 2      |
|             | 《石油炼制工业污》(GB31570-2015)「1                          | 表 3      |
|             | 《挥发性有机物无组》(GB37822-2019)                           | 附录A      |
|             | 《危险度》(12万二 空制标准》(GB18484-2020)                     | 表 3      |
|             | 《总具序》(JP 排放标准》(GB14554-93)                         | 表 1、表 2  |
|             | 《火电气污染》后可行技术指南》(HJ 2301-2017)                      |          |
| 废水          | 鲁化净化水厂进水水质标准(协议标准)                                 | 1 1 N    |
| <b>I</b> 友小 | ~石油化学工业污染物排放标准》(GB 31571-2015)                     | 表 1      |
| 噪声          | ◇ 工业企业厂界环境噪声排放标准》(GB12348-2008)                    | <b>学</b> |
|             | 《建筑施工场界环境噪声限值》(GB12523-2011)                       | 1        |
| 医症          | 《一般工业固体废物贮存和填埋污染控制标准》(GB18(GB18))                  | 1        |
| E           | 《危险废物贮存污染控制标准》(GB18597.2823)                       | 1        |
|             |                                                    |          |

备注,根据环保部 2015年 12月 22日下发的《关于印发《观代》 试行)>的通知》(环办[2015]111号),煤化工酸性气体回收 业工业污染物排放标准》(GB31570-2015)相关要求进行记载

#### 1、废气

山东优纳特环境科技有限公司

第 25 页

| 表 15-8 | 废气污染物排放外方标准                       | - 监表 |
|--------|-----------------------------------|------|
| 74 4.0 | IOS. VI JUNE TO THE MARKET TO THE | 200  |

| 类型   |               | <b>杂物</b>          | 标准值人   | THE STATE OF THE S | 标准来源                         |
|------|---------------|--------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|      | 原煤仓<br>放空 P1  | 颗粒物                | 10     | mg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |
|      | 磨煤干燥          | 颗粒物                | Ø10V   | mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DA37/2376-2019<br>表 1        |
|      | 放空 P2         | NO <sub>2</sub>    | 7900   | mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4× 1                         |
|      |               | 颗粒物人               | 10     | mg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |
|      | 粉煤锁斗<br>放空 P3 | 甲醇                 | 50     | $mg/m^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DB37/2801.6-2018<br>表 1 II时段 |
|      |               | H <sub>2</sub> S   | 9.3    | kg/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |
|      | 捞渣机           | NH <sub>3</sub>    | 4.9    | kg/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (GB14554-933)                |
|      | 放土            | H <sub>2</sub> S   | 0.33   | kg/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X III                        |
| V    | AND THE       | VOCs               | 60     | mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DB3 \ 2801.6-2018            |
|      | 选择器 P5        | 甲醇                 | 50     | mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 表 邮段、表 2                     |
|      | Jacan 13      | H <sub>2</sub> S   | 14     | kg/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | // GB14554-93表 2             |
|      |               | SO <sub>2</sub>    | 50     | mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DA37/2376-2019               |
| ₹ di | <b>他们的</b>    | NO <sub>2</sub>    | 100    | mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 表1                           |
|      | 尾气 P6         | 硫酸雾                | 30     | ng/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GB31570-2015表3               |
|      |               | 氨                  | 2.5    | 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HJ 2301-2017 表 13            |
|      |               | 颗粒物                | 10     | $m_y/m^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D 4 27 22 22 2010            |
| £3E  |               | SO <sub>2</sub>    | 501    | mg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DA37/2376-2019<br>表 1        |
| 点源   |               | NO <sub>2</sub>    | ZIML.  | mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |
|      |               | VOCs               |        | mg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DB37/2801.6-2018<br>表 1 II时段 |
|      |               | 21.                | 100    | mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |
|      |               |                    | 日均值 80 | mg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                            |
|      |               | 11/10              | 日均值2.0 | mg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |
|      |               | //un               | 小时值4.0 | mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |
|      | 辛酸度气          | HCI                | 日均值 50 | mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AX.                          |
| 戌    | <b>沙沙</b>     |                    | 小时值 60 | mg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |
| 1    | (P)           | 汞及其化合物<br>(以 Hg 计) | 0.05   | $mg/m^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12484-2020                   |
| 1    | -             | 铊及其化合物<br>(以 Ti 计) | 0.05   | mg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 表3                           |
|      |               | 镉及其化合物<br>(以Cd计)   | 0.05   | mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |
|      |               | 铅及其化合物<br>(以 Pb 计) | 0.5    | mgm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
|      |               | 砷及其化合物<br>(以 As 计) | 0.5    | mg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |
|      |               | 絡及其化合物<br>(以 Cr 计) | 0.5    | mg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |
|      |               | 二噁英                | 0.5/2  | ng-TEQ'm³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |

山东优纳特环境科技有限公司

H. W.

|    |              | 氨                | 8    | talking.          | HJ 2301-2017 表 14       |
|----|--------------|------------------|------|-------------------|-------------------------|
|    |              | 颗粒物              | 10   | , (1) (dig (1))   |                         |
|    | 蒸汽过热炉        | SO <sub>2</sub>  | 50 🔨 | mg m <sup>3</sup> | DB37/2374-2018          |
|    | P8           | NO <sub>2</sub>  | 100  | mg/m <sup>3</sup> | 表 2 重点控制区               |
|    |              | 烟气黑度             | DIV  | 级                 |                         |
|    |              | voc Z            | 12.0 | mg/m <sup>3</sup> | DB37/2801.6-2018<br>表 3 |
|    | 厂界外          | 颗粒核              | 1.0  | mg/m³             | GB31571-2015表 1         |
|    | 最高浓度限值       | NUA              | 1.5  | mg/m³             |                         |
| 回源 |              | H <sub>2</sub> S | 0.06 | mg/m³             | GB14554-93<br>表 1 二级    |
|    | 1            | 臭物度              | 20   | 无量纲               | **                      |
|    | TTOTAL TOTAL | VOCs小时值          | 6    | mg/m³             | GB37829 2019            |
|    |              | VOCs一次值          | 20   | mg/m³             | 附录,重点控制区                |

备注,原则使制度尾气及焚烧炉尾气中氨排放浓度参照执行《火电厂污染防治可行技术指南》 19917)中SCR、SNCR脱硝技术逃逸氨浓度的相关要求。

#### **b**

→ 拟建项目生产废水同生活污水、冲洗废水、循环冷却排污水、脱盐水装置排污水等接管至鲁南高科技化工园区鲁化净化水区处理,鲁化净化水厂尾水最终外排进入小沂河。拟建项目排水水质执行。在10分子工业污染物排放标准》(GB 31571-2015)间接排放水质以及鲁南高种技术互园区鲁化净化水厂进水水质要求。具体执行标准具体见表 1.5-9。

表 1.5-9 废水大空物排放标准 单位: mg/L

| 污染因子               | 单位   | (B31971-2015 及修改单)<br>表 1 间接排放限值 | 鲁化净化水厂接管 。<br>协议限值要求 🎤 |
|--------------------|------|----------------------------------|------------------------|
| pH                 | mgl  | 6.0~9.0                          | 6-9                    |
| SS                 | mga  | +                                | 60                     |
| CODcr              | mgL  | 144                              | 800                    |
| NH <sub>3</sub> -N | mg/L | +                                | 240                    |
| <b>冷漠、</b>         | mg/L |                                  | <b>1 1 2 0</b>         |
| 7                  | mg/L | +                                | 5                      |
| <b>本</b> 五         | mg/L | + 4                              | 2500                   |
| 硫酸盐                | mg/L | - \                              | 650                    |
| 氟化物                | mg/L | 20                               | 10                     |
| 硫化物                | mg/L | 1.0                              | 1.0                    |
| 挥发酚                | mg/L | 0.5                              | 0.5                    |
| 石油类                | mg/L | ,30                              | 20                     |

3、噪声

施工期噪声执行《建筑施工场界环境噪声标准》(GB12523-2011), 营运期厂界执行《工业企业厂界环境噪声标准》(GB12348-2008)3 类标准;噪 声排放标准具体见表 1.5-10、表 1.5-10。

表 1.5-10 《建筑施工场广条环境噪声排放标准》 单位: dB(A)

| 昼间(dB(A)) | 夜间(dB(A)) |  |
|-----------|-----------|--|
| 70        | 55        |  |

#### 备注: 夜间最声的最大声级超过照值的幅度不得高于15dB(A)。

表 1.5 A L业企业厂界环境噪声排放标准》 单位: dB(A)

| 区域 | 声环境功能区类别 | 昼间 | 夜间  |
|----|----------|----|-----|
| 厂票 | 3        | 65 | 163 |

备注: 夜資源发展声的最大声级超过限值的幅度不得高于10dB(A)。

後國代发噪声的最大声级超过限值的幅度不得高于15dB(A)。

#### 4、周皮

一般固废执行《一般工业固体废物管理台账制定省的 试行)》(生态环境 部公告 2021 年第 82 号)、《中华人民共和国国体废物污染环境防治法》相关要求,危险废物执行《危险废物贮存污染控制标准》(GB18597-2023)。

## 1.6 评价等级

## 1.6.1 环境空气

按《环境影响评价技术导则——《环境》(HJ2.2-2018)的要求,分别计算项目排放主要污染物的最大地面空气质量浓度占标率Pi及第i个污染物所对应的最远距离 D10%。采用 AERSCREEN 模型估算软件进行估算,根据预测结果以及评价等级判别表综合判定评价等级。

根据主要污染物预测结果,Pmax(NOx)=21.89%>10%,拟建城自分化工项包、产电力、钢铁、水泥、化工、平板玻璃、有色等高度的企业的多源项目,因此从建项目大气环境影响评价等级为一级。

根据导则规定,一级评价项目根据建设项目建成方实物的最远影响距离 (D10%)确定大气环境影响评价范围,当 D10% (A. A. Z. Skm 时,评价范围边长取 5km。拟建项目最远影响距离 D10%为 1650m (2.5km,评价范围取为项目区域 为中心,边长为 5km 的矩形区域。

## 1.6.2 地表水

按《环境影响评价技术导则—地表水环境》(HJ2.3-2018)的要求,判断项目地表水评价等级。项目属于水污染影响型建设项目,判别依据见表 1.6-3。

表 1.6-3 水污染型建设项目地表水环境评价等级判别表

| 江人工 /广省540 | X            | 评价工作等级判据                       |
|------------|--------------|--------------------------------|
| 评价工作等级     | NASAL        | 废水排放量 Q/(m²/d); 水污染当量数 W/(无量纲) |
| 一级         | <b>EXAMP</b> | Q≥20000 或 W≥600000             |
| 二级         | 直接排放         | 其他                             |
| 三级 A       | 直接排放         | Q<200 且 W<6000                 |
| 三级净一       | 间接排放         | - 1                            |

顶色度 经园区鲁化净化水厂处理后排放至小沂河,属间接排放,评价等级

为三级 B。

#### 6.3 地下水

根据《环境影响评价技术导则-地下水环境》(H.6N-2016),建设项目地下水环境影响评价工作等级划分应依据建设项名行业分类和地下水环境敏感程度分级进行判定,根据导则地下水评价等级分级原则,确定拟建项目地下水评价等级为一级。拟建项目地下水环境影响评价等级判定情况见表 1.6-4。

表 1.6-4 地区,从表现的证明的等级判定表

| 判定依据     | <b>沙</b> 基项目特征        | 分级  | 评价等级 |
|----------|-----------------------|-----|------|
| 建设项目行业分类 | 85、基本人学原料制造(除单纯混合分装外) | 类1  | 4P   |
|          | 集中或人用水水源地准保护区以外的补给径流区 | 较敏感 | -5h  |

## 1.6.4 声环境

根据《环境影响评价技术导则 声环境》(HJ2.4-2021),项目就在区域属于《声环境质量标准》(GB3096-2008)中3类区域;项目建筑或局部外范围内或感回标噪声级增加小于3dB(A),受影响人口数量变化。《大概据导则规定,确定本次声环境影响评价为三级评价。

表 1.6-5 声环境评价工作等数学 表

|   | 等级划分依据      | 情况描述      | 评价等级确定 |
|---|-------------|-----------|--------|
| 1 | 声环境功能区      | , 类区域     |        |
| 2 | 声敏感目标噪声级增高量 | 7<3dB (A) | 三级     |
| 3 | 受影响人口数量变化   | ジ   变化不大  | 1      |

#### 1.6.5 土壤环境

拟建项目占地 28.2hm², 全部位于鲁南高科技化工园区起步区范围内,厂区现有工程永久占地约 262km²、50hm², 占地规模为大型; 拟建项目为辛醇生产项目,属于石油化工、化学原长和化学制品制造,项目类别为 I 类,项目厂区周边分布有耕地、居民区类土壤环境敏感目标,敏感程度为敏感。根据导则污染影响型评价工作等级划分表 1.6-6,判定拟建项目土壤环境评价等级为一级、调查评价范围为项目广界外扩 1km 范围。

| 表 1.6-6 | 污染影响型评价工作等级划分 |
|---------|---------------|
|---------|---------------|

| 占地规模评价工 | 类 1 |    |    | 11类 |     |    | ○ Ⅲ类 |    |      |
|---------|-----|----|----|-----|-----|----|------|----|------|
| 作等级不敏感  | 大   | 中  | 小  | 大   | 中   |    | 大    | 中  | 小    |
| 敏感      | 一级  | 一级 | 一级 | 二级  | 二级  | 74 | 三级   | 三级 | 三级   |
| 较敏感     | 一级  | 一级 | 二组 | 二级  |     | 三级 | 三级   | 三级 |      |
| 不敏感     | 一级  | 二级 | 二级 | 二级人 | 。金级 | 三级 | 三级   |    | 1000 |

# 1.6.6 生态环境

根据《环境影响评价技术等》(HJ19-2022)中"6.1.8 符合生态 环境分区管控要求且位于区批准规划环评的产业园区内且符合规划环评要求、不 涉及生态敏感区的污染影响类建设项目,可不确定评价等级,直接进行生态影响 简单分析。"拟建项目属于新建项目,占地全部位于鲁南高科技化工园区超发区 范围内,且项目占地不涉及生态敏感区,本次评价不再确定生态环境影响评价等 级,仅进行生态影响简单分析。

# 16. 环境风险

根据《建设项目环境风险评价技术导则》(HJ16→10-8)进行评价等级的确定。综合拟建项目危险物质及工艺系统危险性及环境效率程度,确定项目环境风险潜势为 IV、确定拟建项目环境风险评价工作等级为一级。判定依据见表 1.6-7,拟建项目环境风险评价等级见表 1.6-8。 \\Z

表 1.6-7』 风险评价工作级别判定表

| 环境风险潜势 | IV, IV | The state of the s | П | I |
|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|

评价工作等级 一级 二级 三级 简单分析。

#### 表 1.4-7 环境风险外分类级结果表

| 环境要素   | 大气环境风险 | 地表水环境风险 | 地下水环境风险 | 综合环境风险 |
|--------|--------|---------|---------|--------|
| 环境风险潜势 | IV*    | 1 IF    | IV      | IV+    |
| 评价工作等级 | -      | V35 -   | _       | _      |

# 1.7 评价范围和重点保护目标

#### 1.7.1 评价范围

根据评价文件等级要求,结合当地气象、水文地质条件和建设项目工度"排放情况,确定本次评价各环境要素的评价范围。评价范围见表认过。

表 1.7-1 拟建项目评价范围一览表

|     | 1/22      | W 1.7-1 | 18年9日叶川尼国 光松                                        |
|-----|-----------|---------|-----------------------------------------------------|
| 37/ | 评价专题      |         | 评价范围                                                |
| X   | 大气环境      |         | 以厂址为中心,边长 5km 的矩形区域                                 |
| 2   | 地表水       | 鲁化      | 净化水厂排口上游 500m 至 1 5 6 3000m 处                       |
| 3   | 地下水       | \$      | 整个官桥断块水文地质单元/ 面视约 180km²                            |
| 4   | 声环境       |         | 厂界/ 按 Om 范围                                         |
|     |           | 大气风险    | 外扩 5km 范围                                           |
| .5  | 环境风险      | 地下水风险   | 整个官桥断块水文地质单元                                        |
|     | 21-96/mp2 | 地表水风险   | 风险事。次永排入小沂河排放口上游 500m 至下游<br>《水沂》出境断面(官庄断面)约 6km 范围 |
| 6   | 土壤环境      |         | 区与地及厂界范围外 1000m 范围                                  |
| 7   | 生态环境      |         | 厂址占地范围                                              |

# 1.7.2 环境保护目标

项目评价范围及敏感目标分布情况见图 1.7-1, 近距离敏感目标分布体系

图 1.7-2, 评价范围内敏感目标情况见表 1.7-2。

| 类别      | 敏感目标名称   | 环境功人 | 坐板          | r/UTM       | 相对   | 距拟建装置  | 距     | 属性   | 1      |
|---------|----------|------|-------------|-------------|------|--------|-------|------|--------|
| 尖加      | 规念日标石标   | 能区划  | X           | Y           | 方位   | 最近距离m  | 距离油   | /禹1生 | 人口数    |
|         | 木石社区     | ,大类7 | 226176.035  | 3871435.056 | NE   | 700    | 120   | 居住区  | 1540   |
|         | 鲁化生活区    | (美)  | 525936.879  | 3871214,112 | E    | 8.80   | 130   | 居住区  | 4578   |
|         | 尖山村      | 英    | 524292.154  | 3873272.694 | W    | 7/1560 | 140   | 居住区  | 1359   |
|         | 鲁化职工医院   | 二类   | 526069,062  | 3871347.597 | NE   | 890    | 140   | 医院   | 床位 100 |
|         | WE THE   | 二类   | 525691.659  | 3870490,616 | SX   | 1975   | 190   | 居住区  | 1960   |
|         | 11/41D医院 | 二类   | 524312.938  | 3871489.984 | SW   | 950    | 220   | 医院   | 床位数 🥱  |
| /       | 木石镇政府驻地  | 二类   | 524289.926  | 3871214.782 |      | 1068   | 375   | 办公区  | 办公     |
| 大气环境\17 | 南涝泼村     | 二类   | 526444.622  | 3872941.524 | E    | 460    | 460   | 居住区  | 1484   |
| 评价范围    | 东荒村      | 二类   | 524849.506  | 3873927,843 | N    | 650    | 600   | 居住区  | X480   |
| 1/2     | 兴鲁村      | 二类   | 526694.713  | 387095 096  | E    | 1650   | 880   | 居住区  | 230    |
|         | 木石中学     | 二类   | 526801.237  | 375 571     | NE   | 1185   | 915   | 学校 🔷 | 600    |
|         | 落凤山村     | 二类   | 526533.453  | 3536160.304 | SE   | 2400   | 1080  | 居住区人 | 1998   |
| 14      | 凤翔小镇     | 二类   | 523358.839  | 3872273.649 | W    | 1765   | 1150  | 医食瓜  | 1100   |
|         | 大峪庙村     | 二类   | 52753- 480  | 3871980.683 | NE   | 1895   | 1580  | 民和   | 267    |
|         | 化石沟      | 二类   | 5270537048  | 3874443.950 | NE   | 1580   | 158   | 居住区  | 1125   |
|         | 西荒村      | 二类   | \$23384.419 | 3874348.130 | NW   | 1960   | 1600  | 居住区  | 980    |
|         | 墨子森林公园   | 一类   | 526977.608  | 3871157,492 | E    | 1100   | 200   | 森林公园 | t      |
| 环境风险-大气 |          | 100  | V           | 含以上环境空气等    | )感目标 |        | 7     |      |        |
| 风险评价范围  | 王杭村      | 大二英  | 528411.588  | 3870526.586 | E    | 37065  | 7.550 | 居住区  | 965    |
|         | 上屯村      | 类一类  | 528708.358  | 3871334.107 | E    |        | 2690  | 居住区  | 235    |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 蒋杭村      | 二类      | 52,299,092  | 3870948.110 | E  | 3500  | 3130   | FLX         | 1104 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|-------------|-------------|----|-------|--------|-------------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 西台村      | 二类      | 380 925     | 3867806.945 | S  | 3560  | 2) (0) | 居住区         | 578  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 东台村      | 二类人     | 323090.161  | 3867848,183 | S  | 3480  | (2508) | 居住区         | 1170 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 羊庄镇驻地    | 15      | 528642.455  | 3867995.324 | SE | 3945  | 2950   | 居住区         | 5698 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 连水村      | 沙类      | 525914.026  | 3874645.286 | N  | 1425  | 1425   | 居住区         | 1850 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 沈井村      | 类       | 528966.513  | 3872988.750 | E  | 29465 | 2940   | 居住区         | 1299 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 西山村      | 2类      | 524781.633  | 3874767.659 | N  | 24.75 | 1460   | 居住区         | 460  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | that the | 二类      | 529589.009  | 3868968.622 | SE | 4390  | 3900   | 居住区         | 629  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 人的在      | 二类      | 529177.941  | 3869176.703 | SE | 4300  | 3950   | 居住区         | 398  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 以東京      | 二类      | 523622.956  | 3866337,264 |    | 5185  | 3890   | 居住区         | 1134 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 大韩村      | 二类      | 522822.130  | 3866875.392 | WE | 4910  | 4470   | 居住区         | 179  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 道西小区     | 二类      | 523087.197  | 37627,409   | SW | 4230  | 3700   | 居住区         | 160  |
| A THE STATE OF THE | 河汇村      | 二类      | 521568.561  | 3872695 730 | W  | 3495  | 3220   | 居住区         | 968  |
| 7/11/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 北古石村     | 二类      | 521265.536  | 35745555    | NW | 3905  | 3500   | 居住区,人       | 998  |
| 11/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 南古石村     | 二类      | 521321.968  | 601.664     | W  | 3600  | 3170   | 居住区         | 951  |
| M,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 古石社区     | 二类      | 520983.058  | 38N848.469  | W  | 4000  | 3560   | 居住区         | 450  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 卓庄村      | 二类      | 524690.886  | 3875188.014 | N  | 3280  | 2350   | )居在         | 1510 |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 东魏村      | 二类      | 5222(3)366  | 3875066.220 | NW | 3880  | 3150   | <b>金林</b> 图 | 852  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 东朱庄      | 二类      | 521319.689  | 3875286.576 | NW | 4330  | 32.0%  | 居住区         | 636  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 陡铺村      | 二类。     | 521186.253  | 3875424.282 | NW | 4800  | 40%    | 居住区         | 314  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 上营村      | 二类      | 7521559.063 | 3875882.041 | NW | 4780  | 3900   | 居住区         | 1235 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 南王铺村     | 138     | 520784.411  | 3875232.988 | NW | 4969  | 47.80  | 居住区         | 452  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 白塔村      | <b></b> | 526350.465  | 3876045.750 | N  | 1900  | 2890   | 居住区         | 780  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 后安村      | 类       | 526627.347  | 3876747,352 | N  |       | 3750   | 居住区         | 1060 |

|       | 前安村    | 二类         | 52,987.053  | 3876232.034 | N    | 4280  | 3250   | 居住区        | 360   |
|-------|--------|------------|-------------|-------------|------|-------|--------|------------|-------|
|       | 王庄小区   | 二类         | 2 2 002     | 3868058.482 | SE   | 5060  | 4 0    | 居住区        | 232   |
|       | 亚庄村    | 二类人        | 328 (36.716 | 3875700,100 | NE   | 4820  | (38(8) | 居住区        | 540   |
|       | 庞庄村    | 一种         | 529828.214  | 3869952,771 | E    | 4480  | 3980   | 居住区        | 1030  |
|       | 自庄村    | 次类         | 530598.599  | 3870359.854 | E    | 5018  | 4540   | 居住区        | 460   |
|       | 后石湾村   | 类          | 531053.983  | 3870649.325 | E    | 51505 | 4900   | 居住区        | 873   |
|       | 黄屯村    | 2类         | 530643.397  | 3868976.265 | SE   | \$290 | 4750   | 居住区        | 527   |
|       | 李德村    | 二类         | 529996.019  | 3868660.008 | SE   | 5285  | 4680   | 居住区        | 158   |
|       | 东南王安村  | 二类         | 529927.686  | 3867991.117 | SE   | 5000  | 4490   | 居住区        | 855   |
|       | 人人物山头村 | 二类         | 525515.791  | 3866533.316 | 16.5 | 4740  | 3900   | 居住区        | 564   |
| 1     | 北官庄村   | 二类         | 520745.245  | 3870076.324 | WE   | 4530  | 4010   | 居住区        | 1 856 |
| 113   | 后善庄村   | 二类         | 520385.991  | 3869123.082 | SW   | 4600  | 4440   | 居住区        | M25   |
| A THE | 杨杭村    | 二类         | 520181.441  | 387126 2 7  | W    | 4635  | 3780   | 居住区        | 1218  |
| 17/11 | 西古石村   | 二类         | 520703.389  | 35 1413500  | W    | 4220  | 3830   | 居住区,人      | 268   |
| 111   | 新营村    | 二类         | 520117.992  | 33.238      | W    | 5000  | 4660   | 居住区        | 563   |
| M     | 于泉村    | 二类         | 520439.403  | 381N5/0.226 | NW   | 5100  | 4450   | 居住区入       | 299   |
| •     | 北王铺村   | 二类         | 520634.884  | 3876436.727 | NW   | 5765  | 5000   | 居主         | 560   |
|       | 关路口村   | 二类         | 520103 315  | 3876667.550 | NW   | 6300  | 3810   | <b>EVE</b> | 345   |
|       | 北山头村   | 二类         | 32A240.514  | 3877039.342 | NW   | 4745  | 37.0   | 居住区        | 529   |
|       | 独后村    | 二类。        | 524701.419  | 3877454.618 | N    | 4850  | 406    | 居住区        | 680   |
|       | 独前村    | 类          | 7524728.264 | 3876938.314 | N    | 4740  | 3630   | 居住区        | 510   |
|       | 粮峪村    | J. 385     | 523853.216  | 3877000.229 | N    | 4809  | 37.40  | 居住区        | 178   |
|       | 上邱庄村、八 | <b>工</b> 类 | 529988.113  | 3875528.726 | NE   | 14/2  | 5000   | 居住区        | 85    |
|       | 西南庄村   | 英          | 531145.273  | 3872593.779 | E    |       | 4700   | 居住区        | 455   |

|             | 尤山子村     | 二类        | 52) \$27.163 | 3874591.576 | NE    | 5800   | 4960   | 居住区     | 230    |
|-------------|----------|-----------|--------------|-------------|-------|--------|--------|---------|--------|
|             | 木石社区     | 2类        | 70.035       | 3871435.056 | NE    | 700    | 1/0/   | 居住区     | 1540   |
|             | 鲁化生活区    | 2类人       | \$23036.879  | 3871214,112 | E     | 880    | (1)    | 居住区     | 4578   |
| 声环境<br>评价范围 | 尖山村      | 茶         | 524292.154   | 3873272.694 | W     | 560    | N40    | 居住区     | 1359   |
| FUSCE       | 鲁化职工医院   | <b>沙莱</b> | 526069.062   | 3871347.597 | NE    | 890    | 140    | 医院      | 床位 100 |
|             | 桥口村      | 义类        | 525691.659   | 3870490.616 | SE    | 13735  | 190    | 居住区     | 1960   |
| 备注:由于大部     | 分村庄内均含有线 | 。小学、      | 卫生院等环境等      | 感目标,因此,本    | 次评价不再 | 逐一列举村庄 | 内包含的学校 | 及医院等环境等 | 放感目标。  |

#### 表 1.7-2 (2) 环境保护目标 - 览表

|           | 36 T. C. T.     |                                          |                                         |
|-----------|-----------------------------------------------------|------------------------------------------|-----------------------------------------|
| 环境要素      | 评价范围                                                | 保护目标                                     | 环境功能区划                                  |
| 地表水环境     | 鲁化净化水厂排口上游 500m 至排口下游 3000m 处。                      | 小沂河                                      | GB3838-2002中III类末准                      |
| 地表水环境风险   | 风险事故废水排入小沂河排放口上游 500m 至下游人<br>小沂河出境断面(官庄断面)约 6km 范围 | 小沂河                                      | GB3838-2002中田类标准                        |
| 地下水环境(风险) | 整个官桥断块水文地质单元,面积约1800年                               | 流介范围内地下岩溶水水质,下游村、镇、<br>城市供水水源地、金河水源地保护区等 | GB/T14848-2017中III类标准                   |
| 土壤环境      | 厂区及厂区范围外 1km 花园                                     | 评价范围内耕地、居民区、学校、医院等                       | (GB366052018) 筛选值<br>(GB35618-2018) 筛选值 |
| 生态环境      | 厂区占地范围                                              | 无                                        |                                         |

山东优纳特环境科技有限公司

第 35 页

## 1.8 规划及相关政策符合性

## 1.8.1 产业政策符合性分析

1.8.1.1 产业结构调整指导目录(公文+年本)

根据《产业结构调整指导包录(2024年本)》,拟建项目不属于其中鼓励 类、限制类、淘汰类之外,属于允许建设项目。

#### 1.8.1.2 项目备案情况

拟建项目(37 2024年7月8日取得山东省建设项目备案证明,项目代码 2407-370 00-89 01-675052。山东省发展和改革委员会于2025年8月39日出具了关系矿鲁南化工有限公司微反应高效合成精细化学品节能元范项目节能报告、查意见,批复文号,鲁发改项审[2025]336号。

## 1.3 自然资源要素支撑产业高质量发展指导目录 (20) 7 年本)

为落实国务院有关促进产业结构调整和节系集约的要求,通过推动产业结构调整和优化升级,提高自然资源要素配置与规划效率。自然资源部、国家发展和改革委员会、国家林业和草原局结合《产业结构调整指导目录(2024年本)》和国家有关产业政策、自然资源开发利用政策,制定了《自然资源要素支撑产业高质量发展指导目录(2024年本)》(以下简称《目录》),经查询《目录》,项目不属于其中限制和类型类项目,属于允许类。

# 1.8.1.4 市场准入负面(1) (2/25 年版)

国家发展改革委、商务部、市场监管总局于 2025 年 4 月 16 日联合发布,从市场准入负面清单 (2025 年版)》,经对照"负面清单",拟建项目本在市场准入负面清单 (2025 年本)内。

## 18.1 规划符合性分析

## 1.8.2.1 滕州市国土空间总体规划(2021~2035 年)符合性分析

《滕州市国土空间总体规划》(2021~2035年)于 24年2月通过山东省人民政府批复同意,于 2024年2月2日发布、拟建项目占地涉及厂区现有用地及新增地块,现有厂区用地均为工业用地,均已取得土地证,不占用永久基本农田及生态红线,新增用地及现有厂区范围全部位于《滕州市国土空间总体规划》

(2021~2035年)-- 市域国土空间规划分区区(大块) 发边界范围内,符合滕州市国土空间规划。

拟建项目与《滕州市国土空间总体规划》(2021~2035年)关系图见图 1.8-1。 1.8.2.2 滕州市木石镇国土空间规划(2021~2035年)符合性分析

木石镇位于滕州市东南部、距市驻地 15.36km。东接羊庄镇,南靠官桥镇,西邻南沙河镇,北连东沙河镇,山亭区桑村镇,全镇总面积 64km²。

根据《滕州传文》(镇国土空间规划(2021-2035 年)》国土空间用地市局规划图,拟建项包用地属于工业用地,符合国土空间规划。木石镇国土空间规划。 局规划图见图15-2。

1977、富南高科技化工园区总体规划符合性分析

根据《关于进一步加强产业园区规划环境影响评价工作的意见》,产业园区 规划环评是入园建设项目环评工作的重要依据。入园建设项目开展环评工作时, 应以产业园区规划环评为依据,重点分析项目及逐为规划环评结论及审查意见的 符合性,产业园区招商引资、入园建设项目探护,扩批等应将规划环评结论及审查 意见作为重要依据。

鲁南高科技化工园区(又称少本鲁南高科技化工基地)为地处我国规划的七大煤化工基地的苏鲁豫皖煤化(XXX地)鲁南高科技化工园区于2000年4月由山东省政府以鲁政字[2000] 从 景文批复,将该园区列入省级高新技术产业开发区

因此,本次评价仍按照原规划环评进行符合 (大)

#### 1、化工园区认定情况

2018年山东省对化工园区进行了重新审核和认定,鲁南高科技化工园区被山东省人民政府确定为第一批化文园区,并确定鲁南高科技化工园区起步区的四至范围为,东至安南路,西文木西路,南至中垒、南苑路,北至大荒路,起步区面积13.02平方公里。

#### 2、与园区长划、审查意见符合性

## (1) 园区产业定位符合性

园区主导产业定位为煤化工及其下游精细化工产业,并适当发展与主导产业有多级抵抗加工业。其中煤化工及其下游精细化工产业将着重发展煤气化、甲醇后加工产业链、醋酸深加工产业链、MTO(甲醇制烯烃),产业链、甲醛深加工产业链、精细化工六大产业链。

拟建项目以气化装置产出的合成气为原料工产年酮产品,同时结合企业产业规划,打造"气化岛"平台,气化装置富余各级气为鲁化近期规划项目提供原料气,符合园区产业定位。

## (2) 园区总体布局规划

园区布局规划分五个大片区、即现有煤气化产业区、化工精深加工区、机械加工区、金融商业区、金统区、其中现有煤气化产业区位于园区中部,依托现有鲁南化工和新能凤凰等煤气化企业,形成以煤气化及其下游产品为主的工业区。

拟建项目选址地块属于园区规划中现有煤气化产业区(鲁南高科技化工度区现有产业分布图见图 1.8-3),对照《鲁南高科技化工园区总体规划(2009~2015)》——用他规划图(图 1.8-4),拟建项目部分用地不符合园区用地规划,涉及公共绿地及产品用地。因园区规划现已超出规划期限,根据《限制设计石镇国土空间规划(2021-2035年)》国土空间用地布局规划图,项层原地全部属于工业用地,符合木石镇国土空间规划。同时根据省政府认定化工园区范围及起步区范围,拟建项目用地全部位于鲁南高科技化工园区起发区范围内(拟建项目与省政府认定起步区范围位置关系见图 1.8-5)。

因此拟建项目用地符合园区规划。且根据鲁南高科技化工园区管理委员会出

具的项目入园建设的意见,项目符合《鲁南宫外技化工园区总体发展规划 (2016-2030)》和《鲁南高科技化工园区产业发展规划》要求。

(3) 与鲁南高科技化工园环境准入条件符合性

根据《鲁南高科技化工园区环境影响跟踪评价报告书》,环境准入条件如下:

#### 1、准入原则

符合园区的产业定位与用地规划,禁止严重危及生产安全、环境污染严重、产品质量不符合图象标准、原材料和能源消耗高及国家法律法规规定的禁止分分的项目入区; 股制产能产重过剩、新上项目对产业结构没有改善、工艺技术营发(已有先进、成熟工艺技术替代的除外)、不利于节约资源和保护生态环境及法律法规规定的限制投资的项目入区。

#### 20 准入条件

(1) 入园企业应为《产业结构调整指导目录》(国家发展和改革委员会第 20号令)中鼓励类产业和允许类产业;(2) 符合中华人民共和国公布的《国家重点行业清洁生产技术导向目录》(第一批、党总社)清洁生产技术要求的行业企业,清洁生产水平至少为同行业国内选进水平 (3)用水应符合《节水型城市目标导则》和《节水型企业(单位》目标序则》要求;(4)符合"循环经济"理念,有助于形成园区内部循环系统产业链;(5)以拟建园区内各企业的产品或中间产品为主要原料有利于园区环律产业链的项目;(6)为园区内各企业配套服务的能源利用率高、发入、产出高的项目。

拟建项目利用就建汽水平台产出的合成气及氢气,同时外购丙烯生产产的 以实现产业链延伸,提高产品附加值。同时打造鲁南高科技化工园区"大化岛" 平台,产品富条合成气作为规划项目原料气。

这项宫属于允许建设类项目,符合"循环经济"理念,有助于形成园区内部循环经济产业链,有利于园区延伸产业链,构建平台化原料集集生产 下游产品多头并进的发展模式,因此符合园区准入条件。

## 3、禁入条件

(1) 原料、产品或生产过程中涉及的污染物种类多、数量大或毒性大、难以在环境中降解: (2) 可能造成生态系统结构重大变化、重要生态功能改变或生物多样性明显减少; (3) 与主导产业强关联性不强的重化工企业; (4) 生产工艺、生产能力落后; (5) 能量、产品大量、全种大量、(6) 鉴于园区大气、

水环境容量有限且地下水敏感,建设范围内还及第1人进下列各行业的建设项目 ①工业固废或危险废物产生量大,且不能有效综合利用或安全处理的项目;②万元工业增加值耗水量大于规划指标,废水污染物难以处理,且无法通过园区内总量平衡解决的项目;

4、环境准入条件

鲁南高科技化工图文域主人条件见表 1.8-1。

表 1.8-1 仪龙项目与鲁南高科技化工园环境准入条件符合性分析

|             | 分类   | 内容                                                            | 依据 🕦                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------|------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 行业幕  | (京林) 、采掘、核能、冶炼、装备制造、<br>至工、纺织印染、石油化工、盐化工、<br>建材、垃圾焚烧          | 不符合园区产业定位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | 芝浦单  | 光气及光气化工艺、电解工艺、氯化工艺、氟化工艺、电石生产工艺、喷漆工艺、电损工艺、中药提取艺、鬼镀工艺、焦化工艺、中药提取 | <b>不符合环保要求</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>&gt;</b> |      | 颜料、染料、原药、农药中间体、农副<br>产品、轮胎、电池、水泥、玻璃、石墨、<br>剧毒品、黄磷、电子产品        | ★ 土地映策指导目录》、 水上型中央 水上型 水 水上型 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 水 |
| <b>全人</b>   |      | 氟氯烃                                                           | 关于严格控制新建、改建、扩建<br>含氢氯氟烃生产项目的通知》环办<br>[2008]104号                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | 产品清单 | 1,1,1-三氯乙烷(全)                                                 | 《关于禁止生产和使用 1,1,1—三蒙<br>乙烷 (TCA) 的公告》 (环境保护<br>部公告 2009 年第 39 号)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |      | 四氯代苯                                                          | 《关于严格限制四氯化碳生产、则<br>买和使用的公告》(环境保护部公<br>告 2009 年第 68 号)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             |      | 高水类。高水境风险产品                                                   | 《环境保护综合名录》(2014年版                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 限制          | 行业清单 | 机械加工(不會喷漆)、无机化工、涂料、香料、危废处置                                    | 不符合园区产业定位和环境等                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 住入          | 工艺清单 | 偶氮化工艺、重氮化工艺                                                   | 不符合环保要求                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | 产品清单 | 含重金属催化剂                                                       | 不符合环候要求                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

根据拟建项目建设内容及产品方案,拟建项目涉及行业分类201煤制合成生产、C2614有机化学原料制造,均不涉及鲁南高科技化的原义不境准入条件 条人和限制准入的行业,项目建设可行。

1.8.2.4 环境保护规划符合性分析

1、山东省"十四五"生态环境保护规划

拟建项目符合《山东省"十四五"生态环境保护规划》,详见表 1.8-2。

表 1.8-2 拟建项目与《山文省"十四五"生态环境保护规划》符合性

| 《山东省十四五"生态环境保护规划》 本项目情况 坚决淘汰落后动能。严格落实《产人特文师《建项目不涉及"淘汰整指导目录》,加快推动"淘汰类"生产工艺及产和产品退出。精准聚焦钢钱、地源、焦化、品,符合《产业结构调煤电、水泥、轮胎、煤炭》(化工等8个重点整指导目录(2024年行业,加快淘汰低效落后动能。 严把准入关口。坚持环境质量"只能更好,不能变坏"的质数。严格落实污染物排放总型和产能强强。其例性要求。实施"四上四压",坚持不强和国上大压小"上高压",使两高"项目管理,拟建项目严格落实污染型,使两三严格落实污染型,使两三严格落实污染型,使两三严格落实污染型,使两三严格落实污染型,使两三严格落实污染型,使两三严格落实污染型,是项目更减量适宜,以发现,是一种成为物排放"五个减量替代"要求,新(改、主要污染物排放均已,不可以发现,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为产生与处置,不可以及污染物产生与处置等,对使用的增加,是一种成为产生与处置,对使用的增加,是一种成为产生与处置,对使用的增加,是一种成为产生与处置,对使用的增加,是一种成为产生与处置,对使用的增加,是一种成为产生与处置,对使用的增加,是一种成为,是一种成为产生与处置,对使用的增加,是一种成为,是一种成为产生与处置,对使用的增加,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种,是一种成为,是一种成为,是一种成为,是一种成为,是一种成为,是一种,是一种成为,是一种,是一种成为,是一种,是一种成为,是一种,是一种,是一种成为,是一种,是一种,是一种,是一种,是一种,是一种,是一种,是一种,是一种,是一种                                                                                                                                                                                                                                                                                                                                           | 坚决高汰落后动能。严格落实《产品、"概律项目不涉及"海汰整指导目录》,加快推动"淘汰类"生产工产品,符合《产业结构调解。 其他、水泥、轮胎、煤炭、化工等8个重点整指导目录(2024年存业,加快淘汰低效落后动能。严护在入关口。坚持环境质量"只能更好,不能变坏"的原数,严格落实污染物排放总量和产能逐渐多数,增加上五压、"坚持"之影响。 一种 "四人" "一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 坚决淘汰落后动能。严格落实《产品,根本建项目不涉及"淘汰整指导目录》,加快推动"制效率",是,符合《产业结构调集电、水泥、轮胎、煤炭》(化工等 8 个重点,符合《产业结构调整。有企业,加快淘汰低效落后动能。严把在入关口。坚持环境质量"只能更好,不能变坏"的是数。严格落实污染物排放总是和产能强量。从是有一个人工,从建项目不涉及等部门、从定,拟建项目不够及等部门、从定,拟建项目不够及等部门、从定,拟建项目不够入资格落实污染物排放总是一个人工,以建项目不够入资格落实污染物排放减量,但是一个人工,是多压能。一种高一项目确有必要建设,加快产的,多格落实产能、煤耗、能耗、碳排放减量替代要求,新(次),主要污染物排放均已,多多。格等,产产能、煤耗、能耗、碳排放减量,主要污染物排放均已,为。如果是一个人工,已是一个人工,是一个人工,一个人工,一个人还输了了,原籍料使用,一次次,不可目环评分,并通过,不可用环评分,并通过,不可用环评分,并通过,不可用环评分,并通过,不可用环评分,并通过,不可用,一个人对,通过,不可用,不可以,不可用,不可以,不可用,不可以,不可用,不可以,不可以,不可以,不可以,不可以,不可以,不可以,不可以,不可以,不可以                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 整指导目录》,加快推动"淘汰类"生产了类"限制类"工艺及产和产品退出。精准聚焦钢铁、地除、焦化、品,符合《产业结构调煤电、水泥、轮胎、煤炭》(在工等8个重点整指导目录(2024年行业,加快淘汰低效落后动能。 本)》,符合产业政策。 在一个企业,以定,拟建项目不纳入压,坚持了,现由一个上高压 "两高"项目管理,拟建项目严格落实污染加快产业。 然后,项目确有必要建设 建项目严格落实污染加快产业。 然后,项目确有必要建设 建项目严格落实污染加快产业。 为一个企业,从定,拟建项目产格落实污染加快产业。 为一个企业,从定,以发动产生等求,新(改),主要污染物排放均已,不可以设定,以发现,是一个人,企业,不可以及污染物产生与处置等,对使用的精大,企业,是一个人,企业,不可以及污染物产生与处置等,对使用的精大,企业,是一个人的企业,不可以及污染物产生与处置等,对使用的精大,企业,是一个人的企业,不可以及污染物产生与处置等,对使用的精大,对使用的清洁生产技术、工艺和设备进行说明,根关情、企业,是一个人的企业,并可以及为企业,并可以及污染物产生与处置等,对使用的精大。如产用的清洁生产技术、工艺和设备进行说明,根关情、企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人的企业,是一个人,是一个人,是一个人,是一个人,是一个人,是一个人,是一个人,是一个人 | 整指导目录》,加快推动"淘汰夹"生产工艺及产和产品退出。精准聚焦钢铁、海凉、焦化、品、符合《产业结构调集电、水泥、轮胎、煤壶》、任工等8个重点整指导目录(2004年本)》,符合产业政策。严严准入关口。坚持环境质量"只能更好,不能变坏"的建筑。严严准入关口。坚持环境质量"只能更好,不能变坏"的建筑。严严在为了。坚持环境质量"只能更好,不能变坏"的建筑。严肃,以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"大型",以为"产生与大型",大型",以为"产生与处图",大型",对为"产生与处图,方式以及"大",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",一",对于"人",对于"人",一",对于"人",对于"人",一",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",可以"人",对于"人",对于"人",对于"人",对于"人",对于"人",对于"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人","人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人",可以"人","人",可以"人",可以"人",可以"人",可以 | 整指导目录》,加快推动"淘汰失"至严重,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                                                                                                                                                                                                  | the region of the contract of |   |
| 不能变坏"的底线。严格落实污染物排放总是和产能强度。其例性要求。实施"四上四四"和产能强度。两高项目确有必要建设。对于有一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 不能变坏"的成数。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 不能变坏"的原生。严格落实污染物排放总 经零庄市发改等部门 从定,规建项目不纳入                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 整指导目录》,加快推动了制法类。生产工艺类。限制和产品退出。精准聚焦钢铁、地脉、焦化、品,符制煤电、水泥、轮胎、煤炭、化工等8个重点整指导的企业,加快淘汰低效落后动能。                                                                                                             | 制类"工艺及产<br>合《产业结构调 符合<br>目录(2024年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 |
| 计阶段清洁生产。新(改、扩)建项目进行源消耗少资源综合利<br>环境影响评价时,应分析论证原辅料使用、原消耗少资源综合利<br>资源能源消耗、资源综合利用、厂内外运输及<br>方式以及污染物产生与处置等,对使用的看<br>洁生产技术、工艺和设备进行说明,相关情态。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "四减 角四增"加快推 山动绿色 | 不能变坏"的反线。严格落实污染物排放总 经零庄<br>量和产能总量使生物性要求。实施"四上四<br>压",坚持了就无用"上大压小"上高压 "两高"<br>二节低 发整压散。两高 项目确有必要建设 建项目<br>时决产的 级 各落实产能、煤耗、能耗、碳排放物排放源<br>比结构 和定义物排放"五个减量替代"要求,新(改、主要污<br>调整 的 建项目要减量替代,已建项目要减量运 落实 | 以建项目不纳入<br>项目管理,拟<br>严格落实污染<br>或量替代要求,<br>染物排放均已<br>倍量替代。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 包装印刷、工业涂装等重点行业建立完善源<br>头替代、过程管控和末端治理的学员。全过<br>玩具建立完善源头替<br>程控制体系。开展原油、减品油、有机化学<br>品等涉 VOCs 物质值的 多。除因安全生产<br>理的 VOCs 全过程控制<br>符合<br>深化协<br>同控制<br>改善环<br>持续推<br>进涉气<br>过表,包装印刷等企业企业要的 VOCs 废气排放系<br>境空气<br>治理                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 包装印刷、工业涂装等重点行业建立完善源 头替代、过程管控和末端治理的关系。全过 项目建立完善源 头替程控制体系。开展原油、碳晶油、有机化学代、过程管控和末端治岛等涉 VOCs 物质的影响量 除因安全生产理的 VOCs全过程控制 存舍等原因必须保留的 从一、基步、减少,从工、工业涂装、超速,以上、基势、减少,从工、工业涂装、超速,从工、工业涂装、超速,从工、工业涂装、超速,从工、工业涂装、超速,从工、工业涂装、超速,从工、工业涂装、超速,从工业企业,从上,从一个工业,从上,从一个工业,从上,从一个工业,从上,有多年,从一个工业,从上,有多年,从一个工业,从上,有多年,从一个工业,从上,有多年,从一个工业,从上,有多年,从一个工业,有多年,从一个工业,从上,有多年,从一个工业,从上,有多年,从一个工业,从上,有多年,从一个工业,从上,有多年,从一个工程,从上,有多年,从一个工程,从一个工程,从一个工程,从一个工程,并不可以推广,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,工程,从一个工程,从一个工程,从一个工程,从一个工程,工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,从一个工程,工程,从一个工程,工程,工程,工程,工程,工程,工程,工程,工程,工程,工程,工程,工程,工 |                  | 计阶段清洁生产。加强项目建设和广晶设了原辅制<br>计阶段清洁生产。新(改、扩)建项目进行源消耗<br>环境影响评价时,应分析论证原辅料使用、用<br>资源能源消耗、资源综合利用、厂内外运输<br>方式以及污染物产生与处置等,对使用的精<br>洁生产技术、工艺和设备进行说明,相关情                                                    | 4使用、资源能<br>分资源综合利<br>效产生与处置<br>使用的清洁生                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |

| _   |          |                               |     |
|-----|----------|-------------------------------|-----|
|     |          | <b>肉类及水产品加工、印染等企业清洁水</b> 为    |     |
|     |          | 造。推进石油炼制、化工、焦化等、外还区           |     |
|     |          | 雨污分流改造和初期雨水收集处理、加大观           |     |
|     |          | 有工业园区整治力度,全面推进工业园区污           |     |
|     |          | 水处理设施建设和污水管网排查整治。鼓励           |     |
|     |          | 有条件的园区实施化工企业废水"一企一            |     |
|     |          | 管、明管输送、实时监测了。推动开展有毒           |     |
|     |          | 有害及难降解废水治理试点。                 |     |
|     |          | 防范工矿企《新疆土壤污染。结合重点行业           |     |
|     |          | 企业用地设置和他一水污染状况调查成果,           |     |
| 推进系 |          | 完善人 壤污染 重点监管单位名录,并在排污         | 1   |
| 统防治 | 强化土      |                               |     |
| 加强土 | 壤和地      | 施丁、重点污染源清单。鼓励土壤污染重点展土壤及地下水环境  |     |
| 壤、地 | 下水运      | 监查单位实施提标改造。加强土壤及地下水自行监测,本次环评针 | 195 |
| 下水和 |          | 环境监管,定期对土壤污染重点监管单位和对本项目提出土壤及  | 1.  |
| 农村环 | Sec. 10. | 地下水重点污染源周边土壤、地下水开展监地下水自行监测要求。 |     |
| 信任  | 25       | 》,督促企业定期开展土壤及地下水环境自           |     |
| 100 | Y        | 行监测。落实土壤污染隐患排查制度,2025         |     |
| 1   |          | 年年底前,至少完成一轮排查整改。              |     |
|     |          | L-LWYHIL TO JOW 401LETENY     |     |

2、山东省化工产业"十四五"发展规划

拟建项目符合《山东省化工产业"十四五"发展规划》,符合性分析内容详见表 1.8-3。

表 1.8-3 拟建项目与《山东省 \一西五"生态环境保护规划》符合性

|                 | Ш      | 东省化工产业"十四五"发展规划                                                                                                                                                                    | 本项目情况                                                                                                                                                                      | 符合性  |
|-----------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 三发重             |        | 布局建设鲁南现代煤化工产业集聚区,充分发挥煤化工产进产业优势,压缩传统煤化工产能,利用煤制合成气、煤焦油等为原料,加快推进产业煤墨精细化工产品的研发和生产。  本格生态环境准入。落实"三线一单"生态环境分区管控要求,做好园区规划环评跟设项目环境保护"三同时"制度、污染物排放总量和产能总量控制刚性要求,"两高"项目严格执行产能、煤耗、能耗、碳排放和污染物排 | 本项目位于鲁南高科技<br>化工园区,利用气化等<br>用气化等,<br>用气化等。<br>是生产煤制合成气,<br>种产业链生产等。<br>是一个人。<br>是一个人。<br>种项目位于鲁南高兴。<br>本项目位于鲁南高兴。<br>化工园区,符合一一线。<br>中工生态环境分别等。<br>中工生态环境分别等。<br>中工生态环境分别等。 | 符合符合 |
| <b>保护</b><br>专篇 | 境保护措施。 | 放"五个减量替代"的要求。  3.加强污染系统防治。严格执行 VOCs 行业标准和产品标准,大力推进化工行业 VOCs 治理,建立完善全过程控制体系。重点针对有机液体储罐、装卸、敞开液面、泄漏检测与修复(LDAR)等无角织排放突出的环节,加强密闭或密封伏者、原头控制 VOCs 排                                       | 裝卸、敞开液面、泄漏<br>检测与修复等环节,均<br>进行密闭或密封,并采<br>取油气回收、燃烧法等                                                                                                                       | 符合   |

放,并提高 VOCs 的收集效率,采取波 收、燃烧法等高效的方法进行处

#### 1.8.2.5 生态环境分区管控符合性分析

1、项目与生态保护红线、环境质幔底线、资源利用上线符合性分析 拟建项目与环境保护部《关予以改善环境质量为核心加强环境影响评价管理 的通知》(环环评[2016](50 天)的符合性分析见表 1.8-4。

环环评[2016]150 号文符合性分析一览表

拟建项目情况

(一)"三线": 生态保护红线、环境质量底线、资源利用上线

1、生态保护工业是生产空间范围内具有特殊重 要生态功能必须实行强制性严格保护的区域。 相关规划和评立的生态空间管控作为重要内 **沙区域** 及生态保护红线的,在规划环 和南 查意见中应落实生态保护红线的管 提出相应对第24章 确实无法避让的铁路、公路、航道、防洪、 一、干渠、通讯、输变电等重要基础设施项 **百外,在生态保护红线范围内,严控各类开发** 建设活动,依法不予审批新建工业项目和矿产 开发项目的环评文件。

拟建项目位于山东省滕州市鲁南高 科技化工园北部,根据多滕州市国 土空间总体规划(2021-2035)年》 中市域国土空间均割线规划图,项目位于城镇 (1) 中市,不占用永 大生态保护红线范 久基本农田、

符合

2、环境质量底线是国家和地方设置的大气 和土壤环境质量目标,也是改善环境质量的基础可求现达标排放;项目生产废水 准线。有关规划环评应落实区域环境压量各标 管理要求,提出区域或者行业污染。 管控建议以及优化区域或行业发展。 和规模的对策措施。项目环环次对照区域不境 质量目标,深入分析预测域目录 的影响,强化污染防治措施和资 要求。

水规律项目生产过程中废气经处理后 2. 鲁化净化水厂处理后,外排至小 **沂河**; 经采取相应污染物治理措施 后,拟建项目对周围环境质量影响 较小。 主要污染物颗粒物、SO<sub>2</sub>、NO<sub>2</sub>、 VOCs 均落实倍量替代要求,满足 环境质量改善目标要求。

符合

3、资源是环境的载候,资源利用上线是各地区 能源、水、土地等资源消耗不得突破的"天花板"。 相关规划环评应依据有关资源利用上线,对规 划实施以及规划内项目的资源开发利用,区分 不同行业,从能源资源开发等量或减量替代。 分和规模控制、利用效率和保护措施等 面提出建议,为规划编制和审批决策提供重

拟建项目符合资源利用上线要求 山东省发展和改革委员会于 年8月29日出具了关于兖矿鲁南让 工有限公司微反应高效合成情報化 学品节能示范项目节点 告的由 意见,批复文号、 [2025]336号

#### -单":环境准入条件

环境准入员面清单是基于生态保护红线、环境 质量底线和资源利用上线,以清单方式列出的 禁止、限制等差别化环境准入条件和要求。要 在规划环评清单式管理试点的基础上,从布局、 选址、资源利用效率、资源配置方式等方面公 手,制定环境准入员面清单,充分发挥负面清; 单对产业发展和项目准入的指导和约束发用。

符合對前国家产业政策。项目建设 符合枣庄市生态环境分区管控以及 鲁南高科技化工园区环境准入条件 要求,因此拟建项目不在当地环境 准入条件禁止、限制的行业范围内。

符合



由上表可知,项目的建设符合环境保护部分,以改善环境质量为核心加强环境影响评价管理的通知》(环环评[2016/150 号)要求。

## 2、与枣庄市生态环境分区管控积合性分析

根据《枣庄市人民政府关于印发枣庄市"三线一单"生态环境分区管控方案的通知》(枣政字[2021]16号) (東庄市"三线一单"生态环境分区管控方案》(2023年动态更新版),枣庄产环境管控单元分为优先保护单元、重点管控单元和一般管控单元。

拟建项目位长M州经济开发区--鲁南高科技化工园(ZH37048120016) 于重点管性单元 项目与其管控要求符合性分析见表 1.8-5、表 1.8-6。廖庄市环境看仅单元图见图 1.8-6。

表 1.8-5 拟建项目与枣庄市生态环境分区 经方条符合性分析

| 影    | 管控要求                                                                                         | <b>火</b> 達项目建设情况                                                                  | 是否符合 |
|------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------|
|      |                                                                                              | 《日》》 鲁南高科技化工园准入条件更大,严格落实污染物达标排放、思量擅制、环保设施"三同时"、在一线监测、排污许可等环保制度。                   | 符合   |
|      | 2、避免大规模排放大气污染,恢复有<br>局建设。                                                                    | 拟建项目不属于大规模排放<br>大气污染物的项目。                                                         | 符合   |
| 空间   | 3、禁止在江河、湖泊、运河、是道、水<br>库最高水位线以下的海边和岸坡堆放、存<br>贮固体废弃机和其他污染物。                                    | 不涉及在滩地和岸坡堆放、<br>存贮固体废弃物和其他污染物。                                                    | 符合   |
| 布局管控 | 4、电力、建林、油土 煤炭、印染、造纸、制革、条料、焦化、氮肥、农副食品加工、原料药制造、农药等行业中,环保、能耗、安全等不达标或生产、使用制汰类产品的企业和产能,要依法依规有序退出。 | 不属于环保、能耗、安全等<br>不达标或生产、使用淘汰<br>产品的企业和产能                                           | 待會   |
|      | 严格控制在优先保护类耕地集中区域<br>新建有色金属冶炼、石油加工、化工、医<br>方、焦化、电镀、制革、铅蓄电池制造等<br>排放重金属、持久性有机物和挥发性有机<br>物的项目。  | 不涉及优先疾行之<br>排进第7区境内。                                                              | 符合   |
| 污染物排 | 1、深化重点行业污染治理;严格控制区域内火电、化工、建材等高耗能行业产能规模。新、改、扩建项目实行区域大气污染物定量或减量替代置换。                           | 主要污染物颗粒物、SO <sub>2</sub> 、NO <sub>2</sub> 、VOCs<br>排落实污染物总量倍量替代,满足<br>环境质量改善目标要求。 | 符合   |
| 放管控  | 2、禁止新建 35 蒸吨 小时以下的燃烧之重<br>油等使用高污染燃料的锅块。                                                      | 拟建项目不涉及新建燃煤、重油等<br>使用高污染燃料的锅炉。                                                    | 符合   |
|      | 3、对现有涉废气排放工业(                                                                                | 企业现有工程已严格按照环保管理                                                                   | 符合   |

|                        |                                                                                                                               | J. V.                                                                       |    |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----|
|                        | 管理和执法检查,加强机动车排气污染治理和"散乱污"企业清理整治。城市文明施工,严格落实"六个百分百",严格控制场尘污染。加强餐饮服务业燃料烟气及油烟防治。                                                 | 要大量之一度"处置设施,各污染物"实现达标排放。                                                    |    |
|                        | 4、禁止向水体排放、倾倒工业废渣V城<br>镇垃圾和其他废弃物。                                                                                              | 不涉及向水体排放、倾倒行为。                                                              | 符音 |
|                        | 5、强化煤化工、电力等亚业生产过程中的污染排放,减少硫化分类分类物进入土壤,并加强土壤重金属,杂色则与治理;加强煤矿石的水果,清理。                                                            | 煤气化酸性气采用硫回收制酸装置<br>回收利用,副产硫酸,资源化利用。                                         | 符言 |
|                        | 6、化工、医药、铅蓄电池制造等行业企业拆除生产设施设备。构筑物和污染治理设施前、应以具排查拆除过程中可能引发突发改造事件的风险源和风险因素,防范拆破活动污染土壤。推广节水、节料等清清养殖。左和干清粪、微生物发酵等实用技术,实现源头减量。        | 企业在项目占地上的现有生产设施、构筑物和污染治理设施拆除过程中,严格按照《企业拆除活动污染防治技术规定(试行)(》进行,将对周边环境影响程度降到最低。 | 符言 |
|                        | <ul><li>人 虽化工业固体废弃物综合利用与处理,<br/>对危险废弃物的收集、储运和处理进行全<br/>过程安全管理。</li></ul>                                                      | 拟建项目固定体得到合理处置,                                                              | 行言 |
|                        | 1、编制区域内大气污染应急减排项目清单。                                                                                                          | 发展区域计划启动应急减排。                                                               | 行記 |
|                        | 2、根据重污染天气预警,按级别启动应<br>急响应措施。实施辖区内应急减排与错解<br>生产。                                                                               | 按照区域计划进行<br>减排与错峰生产                                                         | 符記 |
|                        | 3、新建地下工程设施或者进行地不断。<br>采矿等活动,应当采取防护发生,不防<br>地下水污染。                                                                             | 项目根据工艺及平面布置方案,<br>进行分区防渗措施。                                                 | 符言 |
| 防控                     | 4、人工回灌补给地下水。<br>不得恶化地产产质。                                                                                                     | 项目不涉及人工回灌。                                                                  | 符  |
|                        | 5、全面整治固体医物产维孕场所,完善<br>防扬散、防流失、序》流等设施,制定整<br>治方案并有序实施。                                                                         | 项目不涉及未进行防渗、<br>露天固体废物的堆存场所。                                                 |    |
|                        | 6、设置土壤环境质量监测点位,开展土<br>壤环境质量监测网络建设。                                                                                            | 项目运行后,按照排污许可要求 对厂区土壤进行例行监测。                                                 | A  |
| P                      | 1、鼓励发展集中供热。                                                                                                                   | 拟建项目蒸汽由配套余热锅户提供,不足部分依托现有供款请贷<br>提供                                          | 行  |
|                        | <ol> <li>强化水资源消耗总量和强度双控行动,<br/>实行最严格的水资源管理制度。</li> </ol>                                                                      | 项目采用关键                                                                      | 符記 |
| 资源<br>利<br>強<br>和<br>本 | 3、推动能源结构优化,提高能源利用效率。严格控制新上耗煤工业和高耗能项目。新建高耗能项目能耗总量和单耗符合全区控制指标要求。既有工业耗煤项目和居民生活用煤,推广使用清洁煤,推进煤改气,煤改电,鼓励利用可再生能源、积然气等优质能源使用。管控单元内能耗强 | 人展和改革委员会审查意见;<br>拟建项目新增煤炭消耗已取得零庄<br>市发展和改革委员会关于煤炭消费                         | 符音 |
|                        | 度降低率满足全区控制指标要求。<br>4、加强节水措施落实,提高文义,用水效                                                                                        | 生产田水水源李白岩马水房和南水                                                             | 符  |

山东优纳特环境科技有限公司

第 45 页

率,新建、改建、扩建建设项目须制订节水 北 生活用水来自厂区生 措施方案,未经许可不得开采地下水。

3、兴建地下工程设施或者进行地下勘探、

等活动,应当采取防护性措施,防止地下水、水水、原自之厂区设置土壤环境质量监测4、人工回灌补给地下水,不得恶化地不水湖、点近,并按规范频次及因子要求定 5、全面整治固体废物的堆存场所,完善防扬、朗开展土壤环境质量监测。

散、防流失、防渗漏等设施,制定整治方案 并有序实施。

6、设置土壤环境质量监测点位,开展土壤环 境质量监测网络建设。

1、鼓励发展集中传统

2、强化水资源均光总量,强度双控行动,实

行最严格的水资源的

低率满足全区控制指标要求。

格控制新、地域、业和高耗能项目。新建高耗能烧炉余热回收自产的蒸汽, 项目能够是和单耗符合全区控制指标要求。既 有了业料煤项目和居民生活用煤,推广使用清洁和南水北调地表水,生活用水水源 街井架改气,煤改电,鼓励利用可再生能源、 等优质能源使用。管控单元内能转强度降

、加强节水措施落实,提高农业灌溉用水效许可证,取水规模满足用水需求。 率,新建、改建、扩建建设项目须制订节水 措施方案,未经许可不得开采地下水。

3、推动交通。4优化,提高能源利用效率。严项目用热主要来源于生产装置 分依托现有工程锅炉提供。 项目生产用水水源来自含马水库水 来自园区后石湾水源地地下水供水 系统,现有工程记取得地下水取水

.8.3 环保政策符合性分析

资源开发

1.8.3.1 建设项目环境保护管理条例

预防和控制生态破坏; (四) 改建、扩建和技术改

造项目,未针对项目原有环

境污染和生态破坏提出有

根据《建设项目环境保护管理条例 はス国务院令第682号) 文件的规定, 拟 建项目与该条例符合性分析见

**液**度项目环境保护管理条例》符合情况 表 1.8-7 拟建项目与

#### 要求 拟建项目符合性 《建项目类型、规模、布局等符合《产业结构调整指导图录 (一)建设项目类型区 (2024年本)》《自然资源要素支撑产业高质量发展。 址、布局、规模等本符合环 录(2024年本)》,符合《滕州市木石镇国土会 境保护法律法规和相关法 (2021-2035年)》,符合《鲁南高科技化工园区总 定规划; 规划(2016-2030)》《鲁南高科技化工园区产业发展规划 拟建项目生产过程中不使用煤等污染燃料,在广过程中废气经处理后均实现达标排放;项内关系及广活废水经 父師在区域环境质量未 例国家或者地方环境质 分排至小沂河; 经 污水管网排入鲁化净化水厂处理。 6准,且建设项目拟采取 采取相应治理措施后,拟建项目的对对国国环境质量影 付措施不能满足区域环境 响较小。且拟建项目通过,新带老、新增污染物排放, 满足区域环境质量改善区域,使要求。 质量改善目标管理要求; (三)建设项目采取的污染 根据分析,拟建项目、各种扩放浓度满足相应国家和地 防治措施无法确保污染物 方排放标准要求、民采取废气、废水、噪声、固废、土 排放达到国家和地方排放

拟建项目属于新建项目,本次评价已针对厂区现有项目 **泛**人境污染和生态破坏提出有效防治措施。

山东优纳特环境科技有限公司

标准,或者未采取必要措施壤、生态破坏预防及控制措施。

效防治措施;

由上表可知,拟建项目的建设可满足《建设项目环境保护管理条例》要求。

1.8.3.2 山东省环境保护条例

项目与《山东省环境保护条例》符合性分析见1.8-8。

表 1.8-8 项目与业东省环境保护条例符合性分析表

| 项目           | 具体要求                                                                                                                                                                | 项目情况                |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 第8条          | 企业事业单位和文化人产经营者应当落实环境保护主体责任,防止、减少环境产效和生态破坏,对所造成的损害依法承担责任。                                                                                                            | 按要求                 |
| 第15条         | 禁止建设、人民国家和省产业政策的小型造纸、制革、印染、染料、炼焦、熔流、炼砷、炼汞、炼油、电镀、农药、石棉、水泥、玻璃、钢铁、火电、及其他严重污染环境的生产项目。已经建设的,由所在心里级,上人民政府责令拆除或关闭。                                                         | <b>文</b>            |
|              | 实行推污许可管理制度。纳入排污许可管理目录的排污单位。应当依<br>结申请领取排污许可证。未取得排污许可证的,不得排放污染物。                                                                                                     | 依法申请<br>领取排污<br>许可证 |
| <b>第 8</b> 条 | 新建、改建、扩建建设项目,应当依法进行环境影响; 价、建设项目可能对相邻地区造成重大环境影响的,生态环境主管的"水南州其环境影响评价文件时,应当征求相邻地区同级生态环境主管部"的意见;意见不一致的,由共同的上一级人民政府生态环境主管部门作出处理。                                         | 按要求<br>执行           |
| 第 45 条       | 排污单位应当采取措施,防治在生产建设。各其他活动中产生的废气、废水、废渣、医疗废物、粉尘、恶臭、体 放射性物质以及噪声、振动、光辐射、电磁辐射等对环境的污染和危害,其污染排放不得超过排放标准和重点污染物排放总量控制污渍。实行排污许可管理的排污单效、经按影准污许可证规定的污染物种类、浓度、排放去向和流光,发发等要求排放污染物。 | 按要求执行               |
| 第46条         | 新建、改建、扩建建设项格、直急根据环境影响评价文件以及生态环境主管部门审批为党的要求建设环境保护设施、落实环境保护措施。<br>环境保护设施及当年大众工程同时设计、同时施工、同时投产使用。                                                                      | 按要求<br>执行           |
| 第47条         | 排污单位应当按照环境保护设施的设计要求和排污许可证规定的排放要求,制定免费环境保护管理制度和操作规程,并保障环境保护设施正常透行。<br>排污单位应当根据生产经营和污染防治的需要,建设应急环境保护设施。或助排污单位建设污染防治备用设施,在必要时投入使用。                                     |                     |
|              | 推污单位应当按照国家和省有关规定建立环境管理台账,记录污染台理设施运行管理、危险废物产生与处置情况、监测记录以及多处环境管理等信息,并对台账的真实性和完整性负责。台账的保护设置是少于三年,法律法规另有规定的除外。                                                          | 按要求<br>执行           |
| 第62条         | 对依法应当编制环境影响评价报告书的建设项目,建设单位应当按照规定在报批前向社会公开环境影响评价文件,很大公司第一。生态环境主管部门受理环境影响评价文件后,除涉及国家必须 商业秘密或者个人隐私的内容外,应当向社会公开。了,建设单位应当在项目建设过程中向社会公子采取的环境保护措施。                         | 已按规定<br>开展公众<br>参与  |

1.8.3.4 石化建设项目环境影响评价文件审批原则

根据《石化建设建设项目环境影响评价文件审批原则》,拟建项目符合性分

析见表 1.8-10。

|    | 表 1.8-10 《石化建设项目环                                                                                                                                                        | -                                                                                                |                                                                                                                                                                                                                                                                                                                                              | 符合 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 序号 | 第一条 本审批原则适用于以原为原料生产汽油馏分、柴油馏分<br>石油蜡、石油沥青、润滑油和石油<br>以及以石油馏分、天然等、原料生<br>学品或者以有机化学品为原料生<br>机化学品、合物树脂、含成纤维、<br>等执行《石油传》工业污染物材<br>(GB 315000000000000000000000000000000000000 | 於<br>於<br>於<br>此<br>上<br>主<br>主<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一 | 拟建项目情况<br>根据拟建项目生产方案,辛醇产品<br>涉及 C2614 有机化学原料制造成<br>目,涉及石油化学工业建设项目。                                                                                                                                                                                                                                                                           | 付性 |
| 2  | 等二条 项目应符合生态环境保<br>第二条 项目应符合生态环境保<br>法规、法定规划以及相关产<br>域及行业碳达峰碳中和目标、<br>控制、重点污染物排放之量控制<br>求。新建、改扩建原油化等建工                                                                    | 成战功<br>成设<br>成设<br>成功<br>成功<br>成功<br>成功<br>成功<br>成功<br>成功<br>成功<br>成功<br>成功                      | 而目类型、规模 布局等符合《产业名权调整指导目录(2024年本)》《超水色源要素支撑产业高质量发展指导目录(2024年本)》等环境累护法律法规。<br>图4年目录(2024年本)》等环境累护法律法规。<br>图4年目录(2024年本)》等环境累护法律法规。<br>图4年目录(2024年本)》等环境现为高升。<br>(2021-2035年)》国土空间用地,后规划图,项目占地属于工业理委问用地,会见到的高利技化工园区管理化工品管理委员和的人员的人员区总体发展规划。要求。<br>10次1年间区总体发展规划(2024-2035)》和《鲁南高科技化系统区总体发展规划》要求。<br>图2024-2035)》和《鲁南高科技化系统区域,项目建成后,新兴主要污染规划》要求。 | 符合 |
| 3  | 第三条 项目选址应符合生态环境要求。新建、扩建建设项目应布设规设立的产业园区,并符合园区共环境影响评价要求。项目选址不得干支流岸线一公里范围内、黄河管控范围内等法律法规明令禁止避开生态保护红线,尽可能远离区、医院、学校等环境敏感区、                                                     | 竟分在及对于的国际的国际。<br>一种                                                                              | 音量替代,满足区域、鏡馬量改善目标管理要求<br>根据《枣坯木/水一单"生态环境<br>形区管弦、素《项目位于滕州经<br>所开发区槽南高科技化工园,属于<br>基础以及风险防控措施后,项目各<br>污染物均实现达标排放,环境风险<br>可控,符合区域生态环境分区管控<br>要求。<br>项目选址位于鲁南高科技化工园                                                                                                                                                                              |    |

为山东省政府认定的第 伊区,为依法设立的合规 ▼。根据《滕州市国土空间 总体规划(2021-2035)年》中市域 国土空间控制线规划图,项目位于 城镇开发边界内,不占用永久基本 农田,不在生态保护红线范围内。

第四条 新建、扩建项目应采用先进适用的 工艺技术和装备,单位产品的耗、能耗、水耗、污染物排放量和分额。 古利用等应达到行业先进水平 炼油、 对二甲苯项目 对二甲苯项目 行业先进水平。陈油、

筹利用园区内上下游资源。

苏、措施,减少新鲜水用量。具备条件 地区,优先使用再生水、海水淡化水,采 海水作为循环冷却水;缺水地区优先采用 20、闭式循环等节水技术。

第五条 项目优先采用园区集中供热供汽, 鼓励使用可再生能源,原则上不得配备燃煤 自备电厂,不设或少设自备锅炉。确需建设 自备电厂的,应符合国家及地方的相关规划 和排放控制要求。加热炉、转化炉、裂解炉项 等应使用脱硫干气等清洁燃料,采取低氯燃气碳激焚烧炉余热回收自产的蒸 烧等氮氧化物控制措施;催化裂化装置和动态 力站锅炉等应采取必要的脱硫、脱硝基烯、丝火,不新增燃煤锅炉。辛醇装置设 措施;其他有组织工艺废气应了设备较治量置1台废气废液焚烧炉用于高效有 措施,减少污染物排放,原则,持有气寒的一种,

量计等自动监测设备 上下游装置间直通过直角接轨送,减少中间内浮顶罐和压力球罐用于挥发性有储罐,通过优化设备。储罐类型,加强源头、机物料的贮存,并采用底部装载方 过程、末端全流程管控,减少污染物无组织排式用于产品装载。储罐呼吸废气 放;挥发性有机被体装载优先采用底部装载,引入废气废液焚烧炉进行焚烧处 采用顶部浸没式装载的应采用高效密封方式;置,并回收余热副产蒸汽 废水预处理、污泥储存处置等环节密闭化;有成后严格按照相关技术规范要 机废瓷应收尽收,鼓励污水均质罐、污油罐、期开展泄漏检测与修改久量; 《查罐及酸性水罐有机废气收集处理;依据废 降低挥发性有机废气 **益征、挥发性有机物组分及浓度、生产工况、根据环境空气进** 這理选择治理技术,高、低浓度有机废气分价范围内 PM10、P 质收集处理,高浓度有机废气宜单独收集治(CO、VOC)、 理,优先回收利用,无法回收利用的采用预处浓度最大值少了移过相应标准限值理+催化氧化、焚烧等高效处理工艺,除单一要求。火火火火起标区域,无需设 恶臭异味治理外,一般不单独使用低温等离置太气环境防护距离。 子、光催化、光氧化等技术;明确设备泄漏检 测与修复(LDAR)制度。 合理设置大气环境防护距离,环境防护距离范围

内不应有居民区、学校、图完等环境频应目标。

能效应达到次业分子水平。 项目辛醇装置采用先进的生产装备 鼓励使用绿色、科、工艺及产品,使用清洁和工艺技术,生产过程,物耗、制 燃料、绿色、绿面。鼓励实施循环经济,统 耗、水耗、污染物排放量和资源综 合利用等应达到行业先进水平

> ,不足部分依托现有工程锅炉提 展置废机废气治理,以减少污染物排放量。 表装流顺目上下游装置物料全部通过管道

> > 山东优纳特环境科技有限公司

第六条 将温室气体排放纳入建设 国环境 本次评价已对项目温室气体排放情 符合

| 展响评价,核算建设项目温室气体排放量,<br>推进减污降链协同增效,推动减限技术创新<br>示范应用,鼓励有条件的地区、企业采取风<br>爱,二氧化碳合成甲醇、烯尼、万线、可解<br>解型料、线路二甲醇、紫醇、二甲醚等化工<br>产品,二氧化碳高效和低成本排模。输送、<br>长期稳定封存等减碳技术。<br>第七条 做好雨污分流<br>流水分类收集。为分流、污污分<br>流。废水分类收集。为处理是是大限原则,<br>合油废水。含磺液水类或是品是大限原则<br>自治废水的进步。大型是系统。<br>项属制力的废水与类型或击最大限原则<br>为净化水厂接管处理,循环冷却排放<br>水、服盐水差置排污水经理系统<br>项属制力的废水与类和排放标准》(GB 31570)。<br>运材附工业污染物排放标准》(GB 31570)。<br>运域附加工业污染物排放标准》(GB 31571)。<br>含碱树脂工业污染物排放标准》(GB 31571)。<br>含碱树脂工业污染物排放标准》(GB 31571)。<br>含碱树脂工业污染物排放标准》(GB 31571)。<br>含碱树脂工业污染物排放标准》(GB 31571)。<br>含碱树脂工业污染物排放标准》(GB 31571)。<br>含碱粉脂工业污染物排放标准》(GB 31571)。<br>含素的增加工业污染物排放标准》(GB 31571)。<br>含素的增加工业污染物排放标准》(GB 31571)。<br>含素的增加工业污染的治疗应坚持源头<br>控制,分区防控、限踪监测和应急响应的的<br>控原,分区防控、限踪监测和应急响应的的<br>短视,对于及有毒有害物质的生产关键<br>设备设施及场所,需提出防腐蚀、防渗漏、<br>处理厂接触外通验。 所止和降<br>文型、多重求。<br>第八条 土壤和地下水污染的治疗。<br>使用的则对于及有毒有等物质的的的。<br>是一种,如果是一种,如果是一种,如果是一种,如果一种,如果一种,如果一种的<br>使用,对于可能变量的。是一种,如果一种,可能发生污水或物料<br>增保护目标的刺感程度,项目平别在一种,以上在一种,不用的<br>发生,并根据各生产区设置地<br>是一种,可能可能可能,是一种,是一种,是一种,是一种,是一种,是一种,是一种,是一种,是一种,是一种 |        |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                          |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----|
| 第七条 做好雨污分添<br>流。废水分类收集、添加量、优先回用,<br>青油废水、含黄海水多处是品壳大限度回<br>用,含盐废、送水多处是品壳大限度回<br>用,含盐废、送水多处是或未有效<br>种集处理。严急的产、水来经处理或未有效<br>为化水上接管处理,污染物排放标准》(GB 31570)、《石<br>强化学量水污染物排放标准》(GB 31570)、《石<br>强化学量水污染物排放标准》(GB 31571)<br>含或树脂工厂杂染物排放标准》(GB 31571)<br>含或树脂工厂杂染物排放标准》(GB 31571)<br>含或树脂工厂杂染物排放标准》(GB 31571)<br>含或树脂工厂杂染物排放标准》(GB 31571)<br>含或树脂工厂杂杂物排放标准》(GB 31571)<br>含或树脂工厂杂杂物排放标准》(GB 31571)<br>含或树脂工厂杂杂物排放标准》(GB 31571)<br>发展、分区防控、跟踪监测和应急响应的防<br>控制、分区防控、跟踪监测和应急响应的防<br>控制、分区防控、跟踪监测和应急响应的防<br>控制、分区防控、跟踪监测和应急响应的防<br>控制、分区防控、跟踪监测和应急响应的防<br>控制、分区防控、跟踪监测和应急响应的防<br>控制、分区防控、跟踪监测和应急响应的防<br>增加工厂水的影响,项<br>如理厂接管协议要求。<br>第八条 工壤和地下水的影响,项<br>如理厂接管协议要求。<br>第八条 工壤和地下水的影响,项<br>如理厂接管协议更求。<br>第二个 1000 1000 1000 1000 1000 1000 1000 10                                                                                                                                                                                                                                                                                        |        | 推进减污降碳协同增效,推动减碳技术包示范应用。鼓励有条件的地区、企业采取光水电、非粮生物质等可再生能源资源复,二氧化碳合成甲醇、烯烃、芳烃、异醛等的 解塑料、碳酸二甲酯、聚酯、二甲醛等的产品,二氧化碳高效和低成本排集之输                                                                                                                                                                                                                                 | 制新 (基) 建设 (基) 建议。 建议。 (基)                                                                            |    |
| 控制、分区防控、跟踪监测和应急响应的防<br>控原则。对涉及有毒有害物质的生产装置、<br>设备设施及场所,需提出防腐蚀、防渗漏、<br>及少数差置、物料泄漏区域的防渗<br>防肠散等土壤污染防治具体措施,并根据环<br>境保护目标的敏感程度、项目平面布局、企业漏的区域要经常巡查,防止和降<br>文地质条件等采取防渗措施,提出有款的土 低污染物跑、冒、滴、漏等事故的<br>壤、地下水监控和应急方案,符合企业批准,并根据各生产区域污染控制<br>工工程防渗技术规范》(GBZ)等 难易程度和污染物特性,采用分区<br>相关要求。对于可能受影响的发发重境敏<br>感目标,应提出保护措施、涉及发展水功能<br>的,强化地下水环境保护措施、涉及发展水功能<br>的,强化地下水环境保护措施,调解饮用水<br>度自行监测,以监控项目运行对土<br>安全。可能造成地,水深等的建设项目不得<br>境和地下水的污染程度,以便及时<br>位于泉域保护范围设置,资强发育、存在较采用相应控制措施。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 第七条 做好雨污分流 海水分流、污污流。废水分类收集、炭处理、优先回合油废水、合液废水类处理后最大限度用,含盐废水进产。当满度处理,污染和收集处理。严禁的产度水未经处理或未存处理直接投入城值污水处理系统。项目推放的废水污染物应符合。石油炼制业污染物排放标准》(GB 31570)、《海经学工业污染物排放标准》(GB 31570)、《海经学工业污染物排放标准》(GB 31570)、《海经学工业污染物排放标准》(GB 31570)。                                                                                                                        | 用,清污分流制,辛醇装置工艺废水等全部进入废水汽提单元进行处理,全部进入废水汽提单元进行处理,流提废水同其他低浓废水进入鲁州水、净化水厂接管处理,循环冷却排对水、脱盐水装置排污水经管风排放水、脱盐水装置排污水经管风排放下度水水质满足《石油化学工业污染水处理厂接管协议要求。 |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Frith. | 第八条 土壤和地下水污染防治应坚持测控制、分区防控、跟踪监测和应急响应的控制、分区防控、跟踪监测和应急响应的控原则。对涉及有毒有害物质的生产装设备设施及场所,需提出防腐蚀、防渗防肠散等土壤污染防治具体措施,并根据境保护目标的敏感程度、项目平面布局交地质条件等采取防渗措施,提出有效的爆、地下水监控和应急方案,符合多种发展,应提出保护措施、涉及企用水均的,强化地下水环境保护措施、涉及企用水均的,强化地下水环境保护措施、涉及企用水均的,强化地下水环境保护措施。涉及使用水均均量以及多种,通常使用不可能造成地下水环境保护,通过发展,有各种发展,可能造成地下水环境保护,通过发展,通常使用水环境保护,通过发展,通常使用水环境保护,通过发展,通常使用水环境保护,通过发展,通常 | 为防止对之境水地下水的影响,项目从源头进行控制,做好污水处理、物料泄漏区域的防溃漏、又炒食类置、物料泄漏区域的防溃漏环。如此一种一种一种一种一种一种一种一种一种一种一种一种一种一种一种一种一种一种一种                                     | 符合 |
| 险废物处理污染控制标准》要求。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N.     | 第十条 优化厂区平面布置,优先选用低声设备和工艺,采取减振、隔声、消声等施有效控制噪声污染,厂界噪声满足《日企业厂界环境噪声排放标准》(GB 13%) 要求。位于噪声敏感建筑物集中区域的建、扩建项目,应强化噪声污染的光谱的                                                                                                                                                                                                                                | 環 项色通过优化厂区平面布置,优先措 选用低噪声设备和工艺,采取减振、隔声、消声等措施有效控制噪声污染,厂界噪声均满足《工业企业厂                                                                        | 符合 |

| -  | let a get en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                               |    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----|
|    | 防止噪声污染。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                 |    |
| 11 | 7)。环境风险的总和过去活肠与理之情效。明保具备事故废水有效收集和受害处理的能力。<br>针对项目可能产生的突发灭境事件制定有效的风险防范和应急措施。 第15年日及区域、园区环境风险防范和应急管理体系,提出运行期突发环境事件必须灭染域制要求。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 及名重点风险源均采取视频监控及及为 控制系统,并建立完善人员原统,并建立完善的人员主义。 这一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个            | 符合 |
| 12 | 第十工条。改一扩建项目全面梳理涉及的现<br>有工程存在的环保问题或减排潜力,应提出<br>有效整改或改进措施。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 本次评价全面梳理了现有工程存在的环保问题,提出了相应的整改措施及建议。                                                             | 符合 |
| 13 | NOx、颗粒物和挥发性有机模。 整示的,对应削减氮氧化物、挥发性有机模。 这前间减措施原则上应与建设现置这一同一地级市或市级行政区域内同一总域。 超流行政区域内削减量不足时,可未漏开省级行政区域或省级行政区域内的同一流域。配套区域削减措施应为评价基准年后拟采取的措施,且纳入区域重点减排工程的措施不能作为区域削减措施。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 拟建项目建成后,新增主要污染物<br>颗粒物、SO <sub>2</sub> 、NO <sub>8</sub> 、VOCs 均实现<br>倍量替代,满足区域环境质量改善<br>目标管理要求。 | 符合 |
|    | 第十四条 明确项目实施后的环境管理要求和环境监测计划。根据行业自行监测技术指令要求,制定废水、废气污染物排放及厂界环境噪声监测计划并开展监测,排污口或监控置应符合技术规范要求。重点排污单位污染物排放自动监测设备应依法依规与生态环境主管部门的监控设备联网。涉及水、大气有毒有害污染物名录中污染物排放的,还应依法依规制定周边环境监测计划。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 行监测技术指南 《推写工业》<br>(HJ947-2018)《排入设可证申请<br>与核发技术规定。石化工业》(HJ<br>853-207)要为开展自行监测。                 | 符合 |
| 15 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 项目已按照《环境影响评价公众参<br>与办法》(生态环境部令 第4号)<br>要求开展信息公开和公众参与。                                           | 符合 |
| 16 | The state of the s | 项目已按照环境影响评价相关技术<br>导则开展环境影响评价,基础资料                                                              | 符合 |

确,环境影响评价结论明确、合理,符合环数境影响评价技术导则或建设项目环境影响 报告表编制技术指南要求。

为第一次所情况,内容完整、准 区域景响评价结论明确、合理。

#### 1.8.3.5 与化工项目管理相关政策符合性分析

1、山东省化工行业投资项目管理规定符合性分析

根据《山东省化工行业投资项目管理规定》(鲁工信发[2022]5号),项目 与该政策符合性分析风景

表 1.8-1// 《山东省化工行业投资项目管理规定》符合性分析

| 《 神學文                                                                                                                     | 拟建项目情况                                                                      | NE 12 |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------|
| 第五条 坚持高度高效原则。严格执行国家产业政策,支持建设国家《产业结构调整指导目录》<br>鼓励类项目,严禁新建、扩建限制类项目,严禁<br>建设,大类项目。                                           | 根据《产业结构调整指导目录(3034<br>年本)》,拟建项目不属于淘汰和<br>限制类项目,为允许类建设项目。                    | 符合    |
| 全事安全发展原则。化工投资项目应按照 *** *** *** *** *** *** *** *** *** *                                                                  | 拟建项目已同时开展环境影响评价和安全生产评价之份、项目建设过程中严格交叉,深一同时制度。                                | 符合    |
| 第七条 坚持绿色低碳原则。贯彻落实国家双碳战略,加强技术创新,提升工艺装备技术水平,加强能源消耗综合评价,推动工业领域绿色转型和新环烁器发展                                                    | 根据从建项目分散报告结论,项目能从供证有保障;项目工艺具有工艺安全性高、生产设备利用率高、产品收率高、工艺能耗低等特点,为国内通用的成熟稳定生产工艺。 | 符合    |
| 第八条 坚持集聚集约原则。积极推进化本。到<br>进区入园,鼓励企业建链补链强链、推动、了游协调、耦合发展。                                                                    | #/建项目位于鲁南高科技化工园区<br>内,符合园区产业规划。                                             | 符合    |
| 第十条 化工投资项目原则上区在省域商 定的<br>化工园区、专业化工园区和重点总控点内实施,<br>沿黄重点地区"十四五"时期似象化。项目,除满<br>足上述条件外,还应在各规工业园区实施。                           | 项目位于鲁南高科技化工园区,属<br>于省政府认定的化工园区,项目所<br>在地滕州市不属于沿黄重点地区。                       | 符合    |
| 第十一条 新建生产危险化学品的化工项目(危险化学品详见最新版《危险化学品目录》),固定资产投资额原则上不低于 3 亿元(不含土地费用);列入国家《产业结构调整指导目录》和《外商投资产业指导目录》鼓励类以及搬迁入园项目、 2 3 亿元投资额限制 | 工项目,项目总投资为50亿元。                                                             | 符言    |
| 名字 加克斯拉姆斯斯拉图斯拉曼巴德巴 安加                                                                                                     | 拟建项目不涉及剧本发展上产。                                                              | 符合    |
| 第十五条 设区的市政府核准、备案机关负责核<br>人或备案省级权限以外的新建、扩建和新增产能<br>的改建及技术改造危险化学品项目。                                                        |                                                                             | 符合    |

由上表可见,拟建项目满足《山东省化工行业投资项目管理规定》的要求。

2、山东省化工园区管理办法符合类分析

根据《山东省化工园区管理》、《鲁工信化工[2023]266号),项目与该



政策符合性分析见表 1.8-12。

表 1.8-12 项目与山东省化工园区管理办法符合性一览表

|                |                                                                  | 文件要求                                                           | 100                                                           | 项目情况                                                                                                                                           | 符合性 |
|----------------|------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 20二岩           | 律法规,符合国家<br>行业投资项目管理<br>鼓励发展科技含量<br>染物排放低、安全<br>制类项目,严禁          | 京产业政策,更<br>里规定《不鲁工<br>量高、产品效益<br>以外公式的项目<br>建设的大型项目            | 「信发(2022)5号<br>(高、能源消耗低、<br>1,严禁新建、扩殖                         | 去<br>比工拟建项目符合《山东省<br>),化工行业投资项目管<br>污理规定》,不属于限制<br>建限类、淘汰类项目,不属<br>于剧毒化学品项目                                                                    | 符合  |
| 入              |                                                                  | 《得新上与化】                                                        | [产业非紧密关联的<br>[异产业关联项目占                                        |                                                                                                                                                | N.  |
|                | 第十4条 区管<br>实际的 记检化学!<br>法制度,对人园                                  | 品"禁限控"目                                                        | 西应区域特点和地加<br>目录,建立入园项目<br>百产效益评价有关规<br>园。                     | 1 项目已取得管理委员                                                                                                                                    | 符合  |
|                | 第二十四条园区的<br>物,建设细颗粒物区的地表水、土地<br>区的地表水、土地<br>监测频次。园区的<br>噪声自动监测设计 | 应根据产业结构<br>例和臭氧协同的<br>图、地下水监测<br>应推动噪声重点<br>图,优化设备和<br>设备和运输工具 | 知和排放的主要污染制监测网络,布试网络,明确监测 须<br>有排污单位安全<br>后局和物流运动。在<br>,依法和最高对 | 同<br>目<br>東国所在园区已设置<br>自行监测方案                                                                                                                  | 符合  |
| 五章<br>不境保<br>护 | 设施,园区内废水放。接纳化工废水<br>COD、氯氮、总额水处理厂污染物排放浓度不得高。                     | 水的集中 水<br>点、总或排水<br>排放布 6 ———————————————————————————————————  | 建工主要污染物<br>表,得高于《城镇<br>、标准;其他污染<br>排放标准》<br>是严于国家污染物排         | 理 项目所在园区已设置<br>排集中污水处理厂,主要<br>污染物 COD、氨氮、<br>酒污总氮、总磷排放浓度执<br>物行《流域水污染物综合<br>排放标准 第 1 部分:<br>排放标准 第 1 部分:<br>排放标准 第 1 部分:<br>(DB37 3416.1-2023) |     |
| Ī              | 第二十七条四区的                                                         | 内入土壤污染重<br>亏染物管理制度                                             | 重点监管单位的企<br>复和土壤污染隐患<br>5排放,按照监测规                             | 业,企业已制定土壤、地下<br>非 水环境监测计划,能通<br>观范 足每年至少监测一次。                                                                                                  | 符言  |
|                | the state of the second state of                                 | 整治、环境污                                                         | 俭防控机制,园区多环境事件的,1年内<br>杂治理、智能升级战<br>战术改造项目相关手                  | 对造 更为或 第二                                                                                                                                      | 符合  |

3、与山东省关于加强安全环保节能管理加快全省化工产业转型升级符合性根据《山东省人民政府办公厅关于加强安全环保节能管理加快全省化工产业转型升级的意见》(鲁政办字[2015]231号)\,为全面提高山东省化工产业发展水平,有效遏制安全生产与环境污染事故,实现由化工大省到化工强省的转变,省政府确定,利用三年左右时间,集中不量化工企业"打非治违"专项整治,提高化工产

业准入门槛,实施综合评级评价,加快"进区人产"发,持续推动以提升安全生产条件、环境治理和节能降耗水平为主要内容的大工产业转型升级。认真学习借鉴先进省市做法,省政府办公厅提出了关于加强安全环保节能管理加快全省化工产业转型升级的意见,项目与重点整治任务的符合性分析见表 1.8-14。

表 1.8-14 项目为多数分字[2015]231 号相关规定符合性一览表

| AX 1.0-14 AX    | 日刊五次外土[2017]271 与相关旅程付                 | DI XXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 鲁政协             | 字2007 号文相关规定                           | 项目情况                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | 。多数以府和有关部门要认真履职尽责切实                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 把好审批关口,严格协      | 页目准入门槛,从源头控制新增高风险化工项的                  | 目指导目录(2)4.4本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 。严禁投资新上海达       | 限制类化工项目;鼓励发展产品档次高、工                    | 艺)》,拟建筑国际属                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 技术表备具有          | 国际或国内领先水平的化工项目。                        | 于淘汰和限制类项                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 提高危险(其品为日准)     | 门槛,严格审查新上项目的条件和手续。约                    | 京目,为允许类建设项                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 合着,安全保管水平、五     | 下境容量、能源资源消耗和排放标准、投入产                   | 上,且,且似建项目已取                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>《</b> 各地原则上不 | 再核准(备案)固定资产投资额低于1亿元的                   | 新海山东省建设项目                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 建、扩重危险化学品项目     | (不含土地费用)。新建、扩建危险化学品质                   | 自备案证明,项目代码                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 的核准(备案),一律由设[   | 区的市以上投资管理部门负责。新建设                      | 学 2407-370400-89-01-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 吕企业安全生产许可证,     | 一律由省安监局负责核发,不再委托太理。                    | 675052。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | 建工程项目的安全、环保、企业设施 必须                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 与主体工程同时设计、同     | 时施工、同时投用;已核食,素的项目,                     | 必 项目按照三同时                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | 和水资源论证、节能评估为可开工建设;                     | 生原地行                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 项目建成后,安全、环保     | R、取水工程设施、消防等未经验收合格的,                   | 加力支加门                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 一省              | 不得投入生产和使用                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | 司"。坚持"大学"对、言理布局、总量控制"                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | 园区集中发生扩全面清理整顿,由各市政                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 重新审核公布。积极引导     | <del>异分似的</del> 化工企业逐步集中到符合规划要求的       | 的 高科技化工园区内。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | (工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 依法落实化工企业环境的     | RATA 发任,实施更加严格的污染物排放扩                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 制标准。推进化工行业      | OCs(挥发性有机物)、重金属等特征污染物的                 | 的 本项目对 Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | [、煤化工等企业的二氧化硫和氮氧化物治理                   | T SHARE THE THREE THE COMMON TO SHARE THE COMM |
| ,石化企业按要成开展工     | DAR(泄漏检测与修复)技术改造,开展石化                  | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 有机化工等企业的VOCs    | 、工业异味治理,有效控制生产、输送和存                    | 储入                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 过程              | 挥发性有机污染物排放。                            | 105 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

了《关于严禁投资建设"两低三高"化工建设项目(集集通知》(鲁办

发电(2019)117号)符合性

表 1.8-15 项目与(鲁办发电[2019]以来) 此符合性分析

| 关于严禁投资建设"两低三高"化工项目的紧急通知       | 项目情况          |
|-------------------------------|---------------|
| 严把化工项目准入关,严禁"两低三高"新建、扩建项目,持续推 | 根据《产业结构调整指导   |
| 进化工产业高质量发展                    | 目录(2024年本)》,项 |
| 从即日起,各地通过招商引资拟新建,扩建的化工项目,由各市  | 目不属于淘汰和限制类项   |
| 化工专项行动办初亩后报省化工专项行动办。省化工专项行动办  |               |

牵头组织省发展改革、工业和信息化、科技、自然资源、全态环境、应急管理等部门进行联审,按照各自职能履职。基本在立项、规划、环评、安评、能评等方面严格把关。联审通过的项目,按管理权限办理相关手续;未通过联审的、各级各部门一律不得办理项目手续、不得开工建设。

且拟建项目已取得山东省 建设项目备案证明,项目 代码 2407-370400-89 -01-675052。

5、与《关于进一步加强化工企业环境安全管理工作的通知》(鲁环办函 [2015]149 号)符合性

表 1.8-16 项周与鲁环办函[2015]149 号文件符合性分析

| 序号 | 鲁环办函[2000] 2号要求                                                                                                        | 项目情况                                                                                   |    |
|----|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----|
|    | 格落实 方案未落实的"不不通过建设项目的                                                                                                   | 深源化学有限<br>花,暂设管理的<br>一学面目<br>一学面目<br>一学面目<br>一学面目<br>一学面目<br>一学面目<br>一学面目<br>一学面目      | 符合 |
| 1  |                                                                                                                        | 境事件预警能<br>全省环境安全<br>境安全预警水<br>园区和化工企<br>实各项预警监<br>定配齐应急监<br>况制和"快速溯<br>锁定污染源<br>警网络建设, | 符合 |
|    | (三)规范危险废物和化学品管理,努力<br>环境监管。要进一步规范危险废物产<br>单位管理,确定重点监管的危险废物<br>禁危险废物非法转移。开展危化品环<br>完善有毒化学品进出口和新化学物质<br>制度,实现危险化学品处源头到末端 | 大文學之 1                                                                                 | 符合 |

| 管理。实施信息公开和信息共享制度,如大政府和<br>企业环境信息公开力度,完善举报机会、 70 饭引导<br>社会监督。                                                                                                                                                                                                                                                                                                                                                         | 位,严格执<br>行危废转移<br>联单制度。         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 三、严格落实化工企业环境安全主体责任。各级环保部厂要监督化工企业严格落实环境安全主体责任,依据《突发环境事件应急管理办法》(环境保护部令第3本等)和《企业突发环境事件风险评估指南(试行)》(环办、2014)、对号),认真开展突发环境事件风险评估和环境安全隐患。对于能够立即治理的环境安全隐患,要督促企业立即采取措施,坚决整改。对于情况复杂、发展的内难认完成治理,可能产生较大环境危害的环境安全隐患,企业要制定隐患治理方案,落实整对措施、责任、资金、时限和现场应急预案,及时消除隐患。要按照《企业事业单位英度环境事件应急预案备案管理办法(试行)》(环发(2015)、多,超兴企业开展突发环境事件应急预案修编,于2015年底和完成全省化工企业突发环境事件应急预案修编,于2015年底和完成全省化工企业突发环境事件应急预案备案工作。要督促各人化工企业加强环境风险管理,做好环境应急物资的储备,定期还展环境应急演练。 | 已制定应急<br>预案,并定<br>期开展环境<br>应急演练 |

拟建项目与《山东省深入打好蓝 (2021~2025年)、《山 东省生态环境厅关于开展传统产业实 气污染防治水平提升的通知》(鲁环发 [2025]1号)符合性分析见表 1.8

污染防治相关政策符合性分析

| 文件       | 具体表示                                                                                                     | 本项目情况                                                       | 符合性 |
|----------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----|
| 《 / 存為深X | 聚焦钢铁、地质、点化、煤电、水泥、轮胎、煤炭、化工、有量点行业,加快淘汰低效落后产能。严格抵抗质量、环保、能耗、安全等法规标准、按照《产业结构调整指导目录》,对为法类"落后生产工艺装备和落后产品全部淘汰出清。 | 指导目录(2024年<br>本)》,拟建项目为                                     |     |
|          | 大力推进集中供热和余热利用,淘汰集中供热<br>范围内的燃煤锅炉和散煤,到 2025年,工业<br>余热利用量新增 1.65 亿平方米。                                     | 本项目利用金、圆 年<br>基内 7000000000000000000000000000000000000      | 符合  |
|          | 按照"先立后破"的原则,持续推进清洁取暖改造,扩大集中供热范围,因地制宜推行气代煤<br>电代煤、热代煤、集中生物质等清洁采暖方式。                                       | 之。<br>使用文调采暖,<br>原子表洁采暖方式。                                  | 符合  |
|          | PM25和 O5未达标的城市,新、改、水建项目<br>涉及大宗物料运输的,应采用清洁运输方式。                                                          | 京、集通过铁路专用<br>线运输;原料丙烯采<br>用专用罐车运输。<br>厂区内生产原料及产<br>品均利用管道输送 | 符合  |
|          | 推动企业持续、规范开展地漏检测与修复<br>(LDAR),提升LDAR 希望,鼓励石化、有                                                            | 本项目将根据要求开<br>展泄漏检测与修复                                       | 符合  |

| 机化工等大型企业自行开展 LDA (LDAR)  一、治理范围 (1) 重点行业:人造板、彩涂板、玻璃调 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (1) 重点行业:人造板、彩涂板、玻璃钢、                                |           | 机化工等大型企业自行开展 LDAX (LDAR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 重点任务 (四)提升污染治理水平。按照低效失效大气                            |           | (1) 重点行业:人造板、彩涂板、玻璃钢、<br>炭素、橡胶、砖瓦窑、铸造、金属表面处理及<br>热处理、家具制造、化工制药、玻璃、陶瓷、<br>耐火材料、铝冶炼、金属压延、水泥制品、印<br>刷、石灰及其他行业。<br>(2) 集群范围、1经省、市、县(市、区)政<br>府批准设立的工程企业中包含重点行业的各<br>类集群;2x1周次至1质量影响较大、由多家<br>重点污业企业 设不少于10家)组成的集<br>聚区、2006 设置水平低,环境污染问题多发、                                                                                                                                                                                                                                                                                                                                                                                                             | 符合 |
| √下运输,采用管廊、新能源转运等形式,形成                                | 選手が 変[202 | 重風任务<br>(四)提升污染治理水平。按照低效失效大气<br>污染治理设施排查整治部署,对照《国家污染<br>防治技术指导目录(2024年,限制类和和淘汰<br>类)。等相关技术要求,依法淘汰机理不清、<br>处理效率低下、运行稳定任整、二次污染不可<br>控等治理工艺,提升治理设施运行维护水平、<br>提升的环境,建立重点无组织排放源清单,在保障安全<br>提升的环源,建立重点无组织排放源清单,在保障安全<br>性产的前提下,严格落实封闭、密闭等存入管风险评估组织开展安全<br>生产的前提下,严格落实封闭、密闭等存入管风险评估和隐患排产的,确保无可见烟粉尘外逸,不及逐浩无治程。<br>经措施,确保无可见烟粉尘外逸,不及逐浩无治程。<br>使进施和项目组织开展安全解除评估和隐患<br>排查治理。<br>(五)加强移动源监查,保证《重点行业移等要等<br>原料煤采用铁路运<br>输,厂区物料采用铁路运<br>输,厂区物料采用铁路运<br>输,厂区物料采用铁路运<br>输,厂区物料采用铁路运<br>有。<br>发达运输,等物料逐步落实新能<br>求,引导重点行业企业和再度日均载货车辆进源车辆运输。<br>出20辆次及一步归递输量 150 吨以上的重<br>点用车单位建设,等问整及视频监控系统。强<br>化移动源污染增高,对冒黑烟、超标排放、不<br>符合管控要求等问题实出的车辆和机械,按职<br>表规定加强管理。鼓励原辅材料集中采购、统 | 符合 |

1.8人人与水污染防治相关政策符合性分析

拟建项目与《山东省深入打好碧水保卫战行动计划》(\$674 ≥025年)、《山东省重点流域水生态环境保护规划》《山东省人民政府关于贯彻"四水四定"原则若干措施的通知》(鲁政字[2023]239号)符合类为析见表 1.8-18。

表 1.8-18 拟建项目与水污染防治相关政策符合性分析

| 文件   | 要求                                                                                  | 本项目情况            | 符合性 |
|------|-------------------------------------------------------------------------------------|------------------|-----|
| 深入打好 | 继续推进化工、有色金属、农副餐品加工、印染、制革、<br>原料药制造、电镀、冶金等方处退城入园,提高工业园区<br>集聚水平。指导工业园区、大学施科学收集、分类处理, | <b>喜科特化工园区</b> 。 | 符合  |

| 划》                                      | 梯级循环利用工业废水。逐步推进园区纯管企业废水 一 送至鲁化净化水<br>企一管、明管输送、实时监控,统一通度。<br>加强工业节水,2025年年底前,全省高彩水工协企业节<br>水型企业达标率达到"级"。                                                                                                                                                                                                                      |    |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 重点流域<br>水生态环                            | 六、加强其他流域水生态环境保护(四)小清河流域十四五期间,强化城镇生活污水处理设施建设,补齐流域内城镇生活污水处理设施建设,补齐流域内城镇生活污水收集处理设施短板。以涉氟、涉硫工业企本项目现有工程业为重点,提升工业企业污染监管能力,确保工业企业废废水经处理后能水达标排放。深化大支流生态保护与修复,逐步提升流域移稳定达标排放。水生态系统功能,是不清河流域入河排污口监测监控试点。强化通航前后长发保障,确保干流水质稳定达标。                                                                                                          | 符合 |
|                                         | 项目生产用水水源来自岩马水库<br>水量、水位控制指标,实行双控管理。除应急取水和南水北调地水等特殊情况外,对不满足地下水总量控制、地表水,生活用水水水位控制要求的地区,要暂停审批新增取用地源来自分石湾水下水,限期开展区域地下水取水工程布局分析评源地地下水供水品及优化调整,制定取用地下水压减方案,逐步系统公园取得地下水水资间减地下水取水量,维持合理地下水位。地下水水取水许可证,取源刚性位持续下降的地区要及时划为地下水超采区、水规模满足项目约束                                                                                              | 符合 |
| 《山东省<br>人民政府<br>关于贯彻<br>"四水四            | (八) 严格规划管控约束。国民经济和社会专展相关工业、农业、能源等需要进入水分原配置的专项规划,城市国土空间总体规划,重大产业布局和各类开发区(新区)规划,以及涉及大规模用水或者实施后对水资源水产产造成重大影响的其他规划,应当进行规划水子源论证。                                                                                                                                                                                                  | 符合 |
| 定"原则若干措施的通知》<br>(鲁政字<br>[2023]239<br>号) | 四、强 (十)推进工业节人成党/推动高耗水行业节水四、强 增效,推广使用发发。由等水技术装备,实施节 企业积极实施中化水资 水改造,推进用水、发展成优化,实现串联用水、水回用,净化水厂源节约 公馬田水                                                                                                                                                                                                                         | 符合 |
|                                         | 《十六》严格地下水开发利用。认真落实《地下水管理条例》(国务院令第748号)、《山东省人民政府关于加强地下水管理的意见》(鲁政字五、强(2023)174号),加强地下水开发利用管理。<br>代沙生完成新一轮地下水超采区和禁止开采区、限制开态环境采区划定,推进地下水超采综合治理,促进地下海,加强地下水超采综合治理,促进地下海,加强之后流水,等统治水平衡。到2025年,全面完成浅层地下水超、海流流流,是一次得地下水和水平可证,取水治理阶段性目标任务,深层承压水超采量基本水和水平可证,取水治理阶段性目标任务,深层承压水超采量基本水和水平可证,取水治理利用地下水的体制机制,基本消除地不水超采水和水平可证,取水规模等是项目,用水需求。 | 符合 |

1.8.3.8 与土壤污染防治相关政策符合性分析

拟建项目与《关于印发山东省土壤污染防治工作方案的通知》(鲁政发 [2016]37号)、《山东省土壤污染防治系例》《土壤污染源头防控行动计划》《山 东省深入打好净土保卫战行动计划》 符合性分析见表 1.8-19。

| 文件名称  | 文件相关规定内容                                                                                                                                                    | 本项目情况                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 符合性                                     |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 文件名称  | 所范建设用地新增污染。有色金属、皮革石油化工、煤炭、矿化开采、危险原产、大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大                                                                                    | 制品、医外面 (1) 项目环评进行了土土 (1) 项目环评进行设置环评进行设置 (1) 项目环评进行设置 (1) 项目 (1) | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) |
| 位金加斯亚 | 防止污染土壤和地下<br>严格落实污染防治措施<br>《五》是《更知》是一种。<br>加强以排污的可以不的环境管理。<br>加强以排污的可以不的环境管理,<br>污染重点或可制度。<br>推想的一种,<br>心思,<br>心思,<br>心思,<br>心思,<br>心思,<br>心思,<br>心思,<br>心思 | 和标 (4) 拟建项目已制定土壤污染隐患排查制度,污染隐患排查制度,污染隐患排查制度,污染所和明开展自行监测。 (5) 目前企业污水已经,所参与,一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |

土壤污染重点监管单位应制定、实施良力, 方案,将监测数据公开并报生态环境部分。 山东省深入打格控制有毒有害物质排放,并按年度产生态效本项目运营后定期对地下 好净土保卫战境部门报告排放情况,法定义务在排污许可证 水和土壤进行跟踪监测 发放和变更时应予以载明。生态环境部门每年 选取不低于10%的土壤污染重点监管单位开 展周边土壤环境监测。

1.8.3.10 与山东省空气质量技术改善暨第三轮"四减四增"行动实施方案符合性根据山东省人民政府《山东省空气质量持续改善暨第三轮"四减四增"行动实施方案》的通知等设字[2024]102 号,项目与该政策符合性分析见表 1.8.2.3。

表 1.8-21 山东省空气质量持续改善暨第三轮"四减四增"行动实施方案符合性

|                          | 相关要求                                                                                                                                                                                                               | 项目实际情况                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 符合性 |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 上 特                      | 一)严格环境准入。坚决遏制高耗能、高<br>的放、低水平项目盲目上马,新、改、扩强<br>项目严格落实国家和省产业规划、产业政策<br>生态环境分区管控方案、规划环评、项目环<br>评、规划水土保持审查、节能审查、产能置<br>换、重点污染物总量控制、污染物排放区域<br>削减、碳排放达峰目标等相关要求,原则<br>采用清洁运输方式。涉及产能置换的项目、<br>被置换产能及其配套设施关停后,新建项性<br>方可投产。 | 不到人 两高级白篇理,项目已严格了实现或消费替代,并已取得更多是见批复。 项目逐步改计事南高科技化 太园内,许古园区产业规划以及是创环体要求。符合所在区                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 三源清碳发动                   |                                                                                                                                                                                                                    | 格<br>政<br>国<br>国<br>国<br>国<br>国<br>国<br>国<br>国<br>国<br>国<br>国<br>会<br>主<br>要<br>来<br>源<br>市<br>の<br>本<br>は<br>、<br>表<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>に<br>の<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に | 符合  |
| 六、多<br>污染物<br>协同治<br>理行动 | (一)强化 VOCs 全流程、全环节综合流程<br>以石油炼制、石油化工、有机化工等行业以<br>及储油库、港口码头为重点<br>,开展 VOCs 济<br>体储罐专项治理。做好石化                                                                                                                        | 从接入废气废液焚烧炉处理,物<br>数料全部采用密闭管道传输;项                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 符合  |

的工业园区泄漏检测与修复《LDAR》信息管方开展泄漏检测与修复。 理平台日常运维监管。

#### 1.8.3.11 与挥发性有机物等污染治理相关政策符合性

1、与《重点行业挥发性有机物综合治理方案》符合性分析

本项目与《重点行业挥发性有机物综合治理方案》中有关化工行业的 VOCs 治理要求的符合性分析见表 (\$\frac{1}{2}\).

表 1.8-20 项目 ( ) 点行业挥发性有机物综合治理方案》的符合性

| 《灵感》业挥发性有机物综合治理方案》                                                                                                                                                     | 项目情况                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 加强制药、农药、水体、油墨、胶粘剂、橡胶和塑料制品等行业 VOCs<br>治理力度。重点概高为 VOCs 排放主要工序密闭化水平,加强无组织排放收集,加大含 VOCs 物料储存和装卸治理力度。废水储存、曝气池及其之补偿为处理资施应按要求加盖封闭,实施废气收集与处理。密封点、大于等于 2000 个的,要开展 LDAR 工作。     | 项目生产过去 核料加入到产品输出均在密闭的生产系统内                 |
| 加多速产设备密闭化改造。对进出料、物料输送、搅拌、固液分离。不<br>燥、瞿装等过程,采取密闭化措施,提升工艺装备水平。加快的流动口<br>式、明流式设施。重点区域含 VOCs 物料输送原则上采用重力流或果送<br>方式,逐步淘汰真空方式;有机液体进料鼓励采用底部、浸入管室料方<br>式,淘汰喷溅式给料;固体物料投加逐步推进采用。 | 项目生产过程从物<br>料加入到产品输出<br>均在密闭的生产系<br>统内     |
| 实施废气分类收集处理。优先选用冷凝、吸附电子等回收技术,难以回收的,直选用燃烧、吸附农富-燃烧等高效治理技术。才等性、酸碱 VOCs 废气直选用多级化学吸收等处理技术。恶失发度,证应进一步加强除臭处理                                                                   | 项目挥发性有机物<br>治理措施均为行业<br>可行技术,污染物<br>均可达标排放 |
| 加强非正常工况废气排放控制。这个人发生、清洗等过程应加强含 VOCs<br>物料回收工作,产生的 VOC。废气要加大权集处理力度。开车阶段产生<br>的易挥发性不合格产品应收集了少词储罐等装置。重点区域化工企业应<br>制定开停车、检维、等实工常工况 VOCs 治理操作规程。                             | 加强非正常工况废<br>气排放控制 ◆                        |

# 2、鲁环发[2015]149 号文符合性

项目与《中东省工业企业无组织排放分行业管控指导意见》(鲁瑟袋)(2010) 30号)(符合性分析见表1.8-23。

表 1.8-23 项目与鲁环发[2020]30 号文件符号 4.6

| •                        | 序号                                           | 环发[2020]30号要求                                    | 拟建项目情况             | 符合性 |
|--------------------------|----------------------------------------------|--------------------------------------------------|--------------------|-----|
| X                        | X                                            | (一)加强物料运输、装卸环节管控。                                | 严格管控               | 符合  |
| 三<br>管控<br>要求<br>二<br>行业 | (三)加强生产环节管控。通过提高工艺自动化和设备密闭化水平,减少生产过程中的无组织排放。 | 生产装置自动<br>化,设备密闭,<br>制定 LDAR 制度                  | 符合                 |     |
|                          | (四)加强精细化管控。针对各无组织积成环节,制 计划制                  | 计划制定<br>一厂一策方案                                   | 符合                 |     |
|                          | 二、<br>行业                                     | (七)石化行业。挥发性有机液体采用压力罐、低温罐、高效密封的浮顶罐或安装。 实 联通置换油气回收 | 严格按照《石化<br>企业泄漏检测与 | 符合  |

山东优纳特环境科技有限公司

至 62 页

| 指导意见 | 装置的固定顶罐存储,鼓励浮顶罐设置油气回收存置。废液废渣(如蒸馏精馏残渣、釜残等)密闭样存。探发性有机液体装卸、分装密闭并设置 VOCS 收集 回收或处理装置。严格按照《石化企业泄漏检测与修复、LDAR)工作。               | 修复工作指南≫<br>规定,开展泄漏<br>检测与修复<br>(LDAR) |      |
|------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|
|      | 鼓励延迟焦化装置实施密闭除集构造,鼓励合成橡胶、<br>合成树脂、合成纤维等使用密闭脱水、脱气、掺混等<br>工艺和设备,配套建设高效治理设施,其他生产环节<br>参考(八)化工行业。<br>(八)化工行业。粉状、块状物料密闭或封闭储存。 |                                       |      |
|      | 挥发性有机、体储存、装卸环节参考(七)石化行业。<br>挥发性有机。体原料、中间产品、成品等转料优先利用高位差或采用无泄漏物料泵,避免采用真空转料,<br>因为需要必须采用真空设备或采用氮气、压缩空气                    |                                       |      |
|      | 是方式 M 送液体物料的,真空尾气、输送排气有效收集。废气治理设施。排放 VOCs 的蒸馏、分离、提取、<br>制、干燥等生产环节在密闭设备中进行,非密闭设备在密闭空间内操作或进行局部气体收集,并配备废                   | 拟建项目定期开<br>展 地漏检测与修                   | 符合   |
|      | 气净化处理装置,常压带温反应釜上配备冷凝或深冷<br>回流装置,减少反应过程中挥发性有机物料的损失,<br>不凝性废气有效收集至废气治理设施。反应急减空罩                                           | (LDAR)                                | 1311 |
|      | 气、带压反应泄压排放废气及其他置换与有效收集至废气治理设施。涉 VOCs 和产尘固体产品包装配备有效集气处理设施。企业中载有复态。液态 VOCs 物料的设备与管线组件密封点力 2000 个的,按要求开展泄漏检测与修复(LDAX、产价)。  |                                       |      |

1.8.3.12 与山东省"十四五" 吴声污染防治行动计划符合性

拟建项目与《山东省"十四五"噪声污染防治行动计划》(鲁环发[20] 118

号)符合性分析

▽表 1.8-24 拟建项目与鲁环发[2023]18 号符合性

| 鲁环发〔20         | <b>分</b> 18 号要求                                                             | 本项目情况                                   | 符合性 |
|----------------|-----------------------------------------------------------------------------|-----------------------------------------|-----|
| 业域产污染<br>防治,依法 | (一)加强工业企业噪声治理。鼓励企业采用先进治理技术和低噪声设备、运输工具,打造行业噪声污染治理示范典型。噪声扰民问题突出的工业企业要开展针对性治理。 | 本项目通过采用的设备设备、减                          | 符合  |
| 的人排污许<br>可管理   | (三)将工业噪声纳入排污许可管理。<br>依法将工业噪声相关管理要求纳入排<br>污许可证。                              | 本项目报 运前,须重新申请取得排发评可证,将工业噪声纳入排<br>污许可管理。 | 符合  |

山东优纳特环境科技有限公司

第65页

| T +n39 28                         | (一)落实建筑施工噪声管控要求。<br>建设单位应将噪声污染防治费<br>用列入工程造价,施工单位应编制容<br>实噪声污染防治工作方案。加强与商<br>边居民沟通,减少反复、持续投诉。 | 符合 |
|-----------------------------------|-----------------------------------------------------------------------------------------------|----|
| 五、加强建<br>加强操<br>防<br>流<br>、<br>加强 | (二) 严格施工管理。鼓励使用低噪<br>声施工设备,限制或禁用易产生噪声<br>运染的变质施工 <b>发</b> 艺/设备,在噪声划速项目厂界处200m 结图内有            | 符合 |

# 1.8.4 、制污染物"相关政策符合性分析

**项目与关于加强重点行业涉新污染物建设项目环境影响评价工作的意见** 

符合性分析

项目与《关于加强重点行业涉新污染物建设项目环境影响评价工作的意见》 (环环评[2025]28号)符合性分析见表1.8-25

#### 表 1.8-25 与山东省新污染物治亚工作方案符合性分析

|                               | 文件要求                                                                                                                                                                                                                                             | 项目情况               | 符合性 |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|
| ( ) 突重管 ( ) 完加 ( ) 完加 ( ) 完重管 | 点关注重点管控新污染物清单、有事有害方染物名。<br>优先控制化学品名录以及 关于势少性有机污染的斯德哥尔摩公约》(简单 好德哥尔摩公约》(简单 好德哥尔摩公约》)<br>一种中已发布环境质量标准、为果物排放标准、环境<br>范测方法标准或其他 等污染清理技术的污染物。重<br>或关注石化、涂料 新规证券 橡胶、农药、医药等<br>直点行业建设项目、在建设项目环评工作中做好上述<br>所污染物识别,类及上述新污染物的,执行本意见要<br>之,不涉及新污染物的,无需开展相关工作 | 拟建项目涉及重点管<br>控新污染物 | 符合  |
| (禁軍不合 物控求建) 各項を管理的设           | 多级环评审批部门在受理和审批建设项目环评文件、应落实重点管控新污染物清单、产业结构调整指目录、《斯德哥尔摩公约》、生态环境分区管控方的项目所在园区规划环评等有关管控要求。对照不审批环评的项目类别(见附表),严格审核建设项目原辅材料和产品,对于以禁止生产、加工使用的数点物作为原辅料或产品的建设项目,依法不予重换                                                                                      | 拟建筑是大厅不子           | 符合  |
| 加强 染重点 无                      | 物产生。建设项目应尽可能开发,使用低毒低害和                                                                                                                                                                                                                           | 理力度,减轻新污染物         | 450 |

| 涉污物设目评                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 削減新污染物产生。强化治理措施,已有污染的治线术的新污染物,应采取可行污染的治技术,放大定理力度,减轻新污染物排放对环境的影响。或助建设项目开展有毒有害化学物质绿色替代、新观染物减排以及污水污泥、废液废渣中新污染物治理等技术示范。<br>(三)核算新污染物产排污情况、环译文件应给出所有列入重点管控新污染物清单、有毒污染物名录和优先控制化学品名录的化学物质生产或使用的数量、品种、用途,涉及化学反应的,分析主副反应中,放建项目已进行新污染物的迁移转化清水、特涉及的新污染物纳入评价因子,核算多环节流冷燥物的产生和排放情况。改物产排污情况核算,价因子,核算多环节流冷燥物的产生和排放情况。改物产排污情况核算,价量、扩建项及逐渐强则有工程新污染物排放情况。<br>鼓励采用氧何、作器向检测技术对废水、废气及废渣 | 符合 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| THE PARTY OF THE P | 中的新写字被进行筛查。  ( 文 对已发布污染物排放标准的新污染物严格排放 法种类。新建项目产生并排放已有排放标准新污染物的 人名 取措施确保排放达标。涉及新污染物排放 一种 建项 国 涉及 新污染物 排放情况进行监测,对排放不能达标的,应 被 为 实现了可行措施,                                                                                                                                                                                                                             |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 和地下水污染防治措施。<br>(四)对环境质量标准规定处例,                                                                                                                                                                                                                                                                                                                                    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 五)强化新污染物排放情况跟踪监测。应在涉及新污染物的建设项目环评文件中,明确提出将相应的新污染物纳入监测计划要求;对既未发布污染物排放标题建项自己明确将相准,也无污染防治技术,但已有环境监测方法标准的人的新污染物纳入监新污染物,应加强日常监控和监测,掌握新污染物排测计划。放情况。将周边环境的相应新污染物监测纳及环境监测计划,做好跟踪监测。                                                                                                                                                                                        | 符合 |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (六)提出新化学物质环境管理登记要求》对照《中拟建项目原辅材料及<br>国现有化学物质名录》,原辅材料或产品属于新化学产品均不涉及新化学<br>物质的,或将实施新用途环境资金的现有化学物质,物质                                                                                                                                                                                                                                                                 | 符合 |

| _                   |                                                                                                                                                                         |    |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                     | 用于允许用途以外的其他工业用途的,应在环境发生<br>中提出按相关规定办理新化学物质环境管理 (1)                                                                                                                      |    |
| (将污物理求入污可理四新染管要纳排许管 | 生态环境部门依法核发排污许可证时、石化、涂料、纺织印染、橡胶、农药、医药等分业应按照排污许可证申请与核发技术规范,裁明排放标准中规定的新污拟建项目建成投产前,染物排放限值和自行监测要求,按照环评文件及批复,将新污染物纳入排污载明新污染物控制措施要求。生态环境部门应当按排许可管理。污许可证规定,对新污染物量控要求落实情况开展执法监管。 | 符合 |

#### 2、项目与山东省新污染物治理工作方案符合性分析

项目与数字省人民政府办公厅《关于印发山东省新污染物治理工作方案的通 是政办发[2023]1号)符合性分析见表1.8-26。

表 1.8-26 与山东省新污染物治理工作文学 会性分析

| <b>&gt;</b>  | 文件要求                                                                                                                                                                                                                                  | 符合性 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (四) 严格       | 1.加强新化学物质环境管理。严格执行《新化学物质环境管理登记办法》,督促企业落实新化学物质环境 项目不涉及新化学物 风险防控主体责任,加强新化学物质环境管理查记监 质的使用、产生督检查,将新化学物质环境管理纳入"双随机"一么开"及排放。监管                                                                                                              | 符合  |
| 源置於清物生物,新染产。 | 2.严格实施禁限措施。强化环境影响事价管理,落实 项目不涉及重点管控<br>涉新污染物建设项目准入管理 经器国家要求,禁止、新污染物的生产、加工限制重点管控新污染物的生态。加工使用、销售和进使用、销售和进出口,<br>出口。落实国家产业结合调整要求 对纳入《产业结不涉及《产业结构调整构调整指导目录》淘汰类的工业化学品、农药、兽药、指导目录》淘汰类的工药品、化妆品等,从主实施限期淘汰;未按期淘汰的,业化学品、农药、兽药、依法停止其产品者记录生产许可证核发。 | 符合  |
| 五化程之人等       | 1.加强清洁生产和绿色制造。对使用或排放有毒有害化学物质的企业依法实施强制性清洁生产审核,大力推进清洁生产改造,对已纳入排放标准的新污染物严格管控。督促企业按国家规定公开有关信息。(省生态环境厅牵头,省工业和信息化厅配合)按照国家部产,加强过程控制各个推动将有毒有害化学物质的替代和排放控制要求的人缘色产品、绿色园区、绿色工厂和绿色供应链等各色制造标准体系。                                                   | 符合  |
| 污染物排放。       | 2.规范抗生素类药品使用管理。加强抗菌药物临床应用管理,严格落实零售药店凭处方销售处方药类抗固<br>药物。                                                                                                                                                                                | 符合  |
| 深末治里,降       | 1.加强新污染物多介质协同治理。落实国家相关污染<br>控制技术规范要求,加强有毒有害大气、本污染物多<br>已设置定期监测计划<br>环境介质协同治理。推动将重点管控新清势物的企事和定期土壤隐患排查<br>业单位纳入重点排污单位管理。督促维放重点管控新制度,并已进行应急形污染物企事业和其他生产经营者发期升展环境监测,<br>实备案<br>按照《企业事业单位实发环境等、实立急预案备案管理                                   | 符合  |

| 污染<br>物环 | 办法》做好应急预案备案,严格落实排污许可。<br>6.8。<br>公开、土壤污染隐患排查制度。                                                                                                                                                   |                                                                                 |    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----|
| 境风。      | 2强化新污染物废物的收集利用处置。加强危效表物收集利用处置单位监管,严格危险废物经营许可审批,将产生废药品、废农药的生产企业以及抗生素生产企业等产废单位和危险废物经营单位纳火危险废物规范化环境管理评估范围。督促企业严格落实废药品、废农药以及抗生素生产过程中产生的废母液、废反应基和废培养基等含特定新污染物废物收集利用处置要求。开展含特定新污染物废物的利用处置污染控制技术规范的前期现实。 | 通过查询《重点管控新<br>污染物清单(2023年<br>版)》,拟建项目不涉<br>版新污染物的使用,不<br>属于废药品、废农药、<br>抗生素生产企业。 | 符合 |
|          | (七)开展旅游、物治理试点工程。聚焦省辖黄河流域、饮用水水、地等重点区域和制药、石化、农药、基础化学原本制造、纺织印染、氟化工等重点行业,以重点园区、企业及优先评估化学物质为重点,按照"洗品"和《华向发力、以点带面、多方共创"的原则,环展新济杂物"等、评、控"试点。                                                             | 企业配合各级环保部<br>门和园区的相关要求<br>开展工作                                                  | 符  |

### · \*\*\* 可目选址合理性分析

拟建项目位于山东省滕州市鲁南高科技化工园以第 完神鲁南化工有限公司 现有厂区及北部新增地块内,项目整体全部位于 (2020年2010年) 2020年 (2021年2035年) 2020年 (2020年 (2020

项目建设满足《建设项层环境保护管理条例》《山东省深入打好碧水保及战行动计划(2021岁025年)》《山东省空气质量持续改善暨第三轮"四减四数"行动实施方案》《山东省化工行业投资项目管理规定》等相关政策、文件的要求。项目建设符合枣庄市生态环境分区管控以及鲁南高科技化工园《环境准入条件要求》,项目选址位于城镇开发边界内,不占用永久基本农民、发行走态保护红线范围内,符合区域生态环境分区管控方案相关要求。

综上所述,拟建项目的建设符合相应产业政策和行业规划,项目选址符合园区规划及所在地国土空间规划,项目选址是名理、可行的。

# 第2章 现有工程的协分析

#### 2.1. 企业概况

#### 2.1.1. 概述

究矿鲁南化工有限公司成本于 2007年7月11日,位于山东省滕州市鲁南高科技化工园北部,注册资本营指捌亿柒仟玖佰陆拾贰万元整,法定代表人张岭,是原究矿集团为发发快同效应和资源优势,整合园区内原兖矿鲁南化肥厂、东京鲁南化工有限公司、兖矿国泰乙酰化工有限公司等组建的大型高科技化工企业、是国有技术型企业—山东能源集团所属子公司。

版、原素、甲醇、醋酐、聚甲醛、醋酸乙酯、醋酸丁醛、丁醇、复合肥、己内酰胺、环己酮、硫酸铵、硫酸、双氧水 20 余种等。总产能 大468 万吨,其中醋酸产能居全国第一,聚甲醛产能全国第二,多以指标 被认定为国家标准。

公司拥有"山东省煤基化工技术创新"和高端煤基化工新材料山东省工程研究中心"两个省级技术研发平台和对嚣武务或嘴水煤浆气化、甲醇低压羰基合成醋酸等多项具有自主知识产权资源。技术,被誉为中国煤化工的"摇篮"和新型煤化工发展的"旗帜"。依据《加建有山东省危险化学品鲁南安全生产应急救援中心公司持续保持全国安全生产标准化一级企业称号,先后荣获全国科技进步一等奖国家优质工程金数。加东省"十强"产业集群高端化工领军企业、全省煤基和级化工产业链链工企业和第八届"山东省省长质量奖"等荣誉 200 余项。200年获得山东省"十强"产业集群领军企业称号,2023年入选国资委"科政系基本业和"山东省"产业集群领军企业称号,2023年入选国资委"科政系基本业和"山东省"产业集群领军企业称号,2023年入选国资委"科政系基本业和"山东省"产业集群领军企业称号,2023年入选国资委"科政系基本业和"山东省"产业集群领军企业称号,2023年入选国资委"科政系基本业和"山东省"计量"产业集群领军企业称号,2023年入选国资委"科政系基本业和"山东省"共政"产业集群领军企业称号,2023年入选国资委"科政系基本业和"山东省"共政"产业集群领军企业称号,2023年入选国资委"科政系基本业"和"山东省",1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,

#### 2.12. 企业环保"三同时"执行情况

A LANGE OF THE REAL PROPERTY OF THE PARTY OF 

# 第3章 拟建工程分析

- 3.1 项目概况
- 3.2 项目产品方案

及物料储运 产工艺分析 。自施工期污染物排放及采取的环保 5.11 污染物量排放核算 3.12 清洁生产分析

THE REAL PROPERTY OF THE PARTY 

# 第4章 环境现状调查与评价

#### 4.1 自然环境现状调查与评价

#### 4.1.1 地理位置

拟建项目位于山东省滕州市鲁南高科技化工园北部兖矿鲁南化工有限公司 厂区内,厂地理坐标为 (7、14 983918°, E: 117.271112°。区内地形平坦,位置 优越,交通运输长分析便。

滕州市位于山东省南部,鲁中南山地最南缘,处于铁路大动脉-京户级的中段,在苏鲁城院、界处的淮海经济区内。滕州市东依沂蒙山,与枣庄市山亭区相连,60%南四湖,和济宁市微山县交界,南与薛城区比邻,北与济宁邹城市接壤。

多m,西北紧邻木石镇机关驻地,东南 5km 为羊庄镇机关驻地。

#### 4.1.2 地形地貌

项目所在地区属鲁中南山区的西南麓延停地带,西邻南四湖,地形较为复杂,地貌类型较多。本地区地貌类型大致有.

- (1) 剥蚀低山丘陵区,分为大大区的北部和东北部,标高 72~250m,主要由寒武系、奥陶系灰岩组成。
- (2) 剥蚀残丘区、主要方本在本区西部至官桥一带,标高 50~150m,由上 寒武系、奥陶系灰岩组成。
- (3) 山涧冲洪积平原,分布在木石以南,羊庄盆地内,地势平坦东河,标 高 50~70分之间,地表岩性主要由粘质沙砾土组成。
- 从山前倾斜冲洪积平原,分布在官桥、柴胡店以南地区、地势▼坦开阔,林亭、加左右,地表岩性主要为冲洪积物。

工程所在地木石盆地内,靠落凤山,系龙山山脉最大流。东北为龙山,北面 9km 外依次是桃山、独座山、狐山,西面 5~6km 有大山、笃山,总的地势趋势 是东北高西南低,呈簸箕状。拟建工程地处山前为坡地,由东北向西南倾斜,坡度约 3.9‰左右,冲沟不发育,地面标高约 63.4~63.7m。

拟建项目所在地区域地貌图见图,4Y-1。



#### 4.1.3 土壤

工程所在地区为剥蚀丘陵区,地势较高、岩石的化学组成对风化和成土作用影响显著,钙质岩洪冲积物形成褐土类,酸性岩洪冲积物形成棕壤。本地区土壤的成土母质多为洪冲积物,主要发育成褐土、淋溶褐土和棕壤,土层较深厚,土地肥沃,全已垦殖耕种。 地間围除西面及涝坡、南山头的局部区域分布有少部分棕壤外,大部分地域入东水遇土和淋溶性褐土。

滕州属暖湿等之 10.23%,其中丘陵区森林覆盖率为 5.95%。本地区大部分植被为 林木覆盖率为 20.23%,其中丘陵区森林覆盖率为 5.95%。本地区大部分植被为 栽培作物、粮食作物有小麦、玉米、地瓜、高粱及其他杂粮经济作物有棉花、花 学 60年,果木有苹果、梨、枣、山楂、柿子等,东部和北部和还有种植和野生 的被花 黄芪、枸杞子、酸枣仁等中药材资源;丘陵荒山经绿化改造,多栽植刺 像 侧柏、马尾松、花椒以及部分果木林。

#### 4.1.4 气候气象

(水)市境内的河流属于淮河流域、京杭大运河水系,(水)水东、北部的山区、由京北流向西南,最后注入微山湖。

评价区内主要的河流有两条,沂河和新薛河。

沂河发源于木石镇东俏村,上游受虎山水库控制, 医桥镇大韩村以下河段又称小位河。该河途经木石、官桥、柴胡店、张注 4 个乡镇,于微山县的王庄附近汇入新薛河,流向自东北向西南,全长约 33km,流域面积 148.5km²。该河系季节性坡水河道,除了汛期,平时,流光水量,主要接纳沿途厂矿生产、生活污水,

TAR IN

为排洪纳污河道。沂河穿越兖矿鲁南化工有限之方,该厂总排污水的受纳水体, 沂河在鲁化厂总排水口下游约 4km 的孤山建有水闸截流,当地农民取蓄积污水 用于农灌,孤山下游又接纳八一煤矿和枣庄煤矿第二机械厂的污水。沂河河床浅, 河道顺直,河道上游宽约 50m, 水、下游较窄。

薛河,又名十字河,为此洪河道,主要排洪除涝。上游两支,一名西江,源于山亭区水泉乡柴山前。一名东江,源于山亭区徐庄乡米山顶,两支在海子村东南汇合后,于西江泉东入滕州境内,流经羊庄、官桥、柴胡店、张汪 4个乡镇,于圈里村排入微山湖,流向自东北向西南,全长 81km,流域面积 960km,连径流量 2.23 亿亩,河道宽 80~120m。1957 年冬~1958 年春,从官桥至虎口开挖新河、各颗段又叫新薛河。薛河上游分洪道有引水养鱼功能,执行地表水Ⅲ类标准。

(大) 项目混合废水与厂区现有工程废水一道经污水管道排放至园区鲁化净 (大) 深度处理后,外排至小沂河。小沂河作为新麓河的支流,属于南四湖流域 一般保护区域。

拟建项目所在区域地表水系图见图 4.14.24

#### 4.1.6 水文地质

根据地形地貌、地质构造 《大岩组结构等,可将枣庄市划分成 5 个水文地质区、13 个水文地质亚区 拟建筑已位于滕州山前平原水文地质区东侧的官桥断块亚区之中,官桥断块西侧、峄山断裂为界紧邻滕州山前平原水文地质区的滕西平原亚区;东侧以宫桥断裂为界,紧靠羊庄盆地水文地质区羊庄断块亚区的西平原亚区;东侧以宫桥断裂为界,紧靠羊庄盆地水文地质区羊庄断块亚区的西边界;东南侧则紧邻陶庄盆地水文地质区的陶庄盆地亚区。

官桥断块亚区以奥陶系岩溶含水岩组为主体,单井涌水量>1000m为4mm,上覆第四系含水岩组,厚度 17~40m,单井涌水量一般 100~300m 4mm,上下含水 岩组运为一体,北部补给区为寒武系含水岩组,单井涌水量300 2000m³/d·m, 水化学类型以 HCO<sub>5</sub>、SO<sub>4</sub>-Ca 为主,矿化度一般在 3.4.20mg L 之间。

4.1.6.1 项目区周围地下水类型及水文地质特征, 🔾

依据地下水的赋存条件,水理性质及其水动力特征,并结合枣庄市的具体水文地质条件,将项目区周围地下水类型划分,为三大类型,松散岩类孔隙水、碎屑岩类孔隙,型、碳酸盐岩类型,是海水等。其中松散岩类孔隙水及碳酸盐岩类

i

裂隙岩溶水是本项目区周围的主要地下水类型。存据各含水岩组特征及实际抽水情况,将各单井涌水量统一换算为单位共深的浦水量,对各类型的地下水富水性进行了分级。各类型地下水的水文地质特征分述如下:

#### 1、松散岩类孔隙水

项目区所在的滕州区域域散岩类孔隙水多分布于地堑,断陷盆地内及山前、山间地带。含水层岩性发中细砂、粗砂、砾石及粘质砂土夹碎石。地下水多属潜水或微承压水。其中加洪积含水砂层厚度大,富水性强,具有一定供水意义,皮于松散岩类的成圆类型、岩性结构、分布部位及埋藏条件的不同,其水文地震移征也有明建管异。项目区位于官桥断块之内,东部紧邻羊庄盆地,松散岩类孔隙水水等。不在除了木石以东的龙山山丘、柴胡店镇东北的老君院,龙山头一带的南龙山飞丘、官桥镇北部的薄山山丘之外的山间盆地、残丘、丘陵山麓,主要为冰坡积、冲洪积层孔隙潜水,本区第四系不发育。第四条原,15m,局部超过15m,如本项目区,通过岩土工程勘察资料可收,最大勘探深度在15m时候,没有揭穿第四系松散层。其他山间、山麓地带原度不超过10m。

含水层岩性多为粉质粘土、粘质砂块类砂砾石及中细砂、粗砂等,厚度 0.5~6.0m,一般 2~3m;含水层顶板埋涂。3~80m,一般 3~6m。地下水位埋深 0.83~6.3m, 一般 3~5m, 地下水位 3~4幅度 3~10m, 一般为 5~7m。

#### 2、碎屑岩孔隙裂隙水

该类型地下水隐伏于包括本项目在内的木石镇西南侧的第四系之下及二迭系之下的石炭系地层分布范围。在平面的具体范围为:东以官桥大断裂为界、北侧东起鲁南化肥厂旁的张秦庄、向西约 11cm,至沂王庄村东随即向南,经过孤山前、后莱村~轩辕庄~前管庄等。至并争矿(图外)后拐向东南,至薛城的张桥

村和官桥大断裂汇合,形成一梭子状的区域

该含水层主要岩性为二迭系、中上石炭系砂岩、砾岩和少量薄层石灰岩,富水性较弱。 该类型地下水的含水岩组由二迭系山西、南定组组成。地下水赋存于石英砂岩、粘土页岩及砂砾岩裂隙孔隙之中。该含水岩组隐伏于第四系之下。由于岩石孔隙裂隙不发育。 高水性较弱,单井涌水量小于 100 m³/d•m。但如遇有断层时,局部水量可增大到 200~400 m³/d•m,该类型地下水矿化度一般 1~2g1,在 300m 以下矿火度火增高至 3 g/L 以上。水化学类型为硫酸钠或硫酸钠钙型火由于煤田开采煤水,本层已被疏干,目前该层已经成为基本无重力水的地层

其含水岩组顶板埋深 75~319 m。石炭系地层从上至下有 14 层灰岩,其中第 3层次层 第十层灰岩、第十四层灰岩及煤层顶部砂岩为其主要含水段。由于上、下 3 看砂 页岩岩层相隔,水力联系较差,埋藏较深。岩熔砂像不发育。地下水补给来源不足,富水性较弱。矿化度小于 1g/L,水化类类型为重碳酸盐型水。但随深度增加矿化度增高,出现硫酸、重碳酸型水、

#### 3、碳酸盐岩类裂隙岩溶水

# 

该类型地下水的含化岩域由裂隙、岩溶发育的奥陶系及上寒武系凤山组度层灰岩、白云质灰岩及泥质灰岩组成。在项目区周围的官桥断块水文地质亚区之外,本含水岩组主要出露在中韩村——三零八宿舍——东风宿舍——杨春等以西的薄以一一强山——孤山山体之上,和隐伏山体周围、碎屑岩孔解裂隙水分布区以西的第四系松散层之下。在项目区以东的羊庄盆地水文地度还是之内,则主要出露于木石以东的龙山山丘、柴胡店镇东北的老君院——龙山头—带的南龙山山体及其隐伏在官庄断裂以东的第四系松散层之下。、

因构造、岩性、地貌等条件的严格控制,使岩溶裂隙的发育在水平方向上和垂直方向上存在着明显的差异,因而其富水性也不均一。低山丘陵区裂隙岩溶不发育地下水埋藏较深。富水性较强,一般单井涌水量小于100 m³/d•m,多形成大

面积的灰岩缺水区;项目区周围的官桥断块水及地质亚区之内出露和隐伏的灰岩地区,均为富水性较差的地段。

而在项目东侧、跨过官桥大断裂以东的羊庄盆地水文地质亚区的残丘丘陵及隐伏灰岩区,裂隙岩溶较发育,地不水埋藏较浅,富水性明显增强,单井涌水量多在100—500m³/d•m。在构造条件有利的地段,往往地下水受阻而富集,如在位庄——落凤山——北水庄——西高山——东台等围成的区域内,富水性能超过1000m³/d•m,曾经发现了涌出地面形成大水量的上升泉——位庄泉群,但各断块之间或在一个断块之内,由于灰岩所处的构造、地貌条件不同,岩性不一观象隙岩溶水的减衰条件和富水性等都具有很大差异。

一个有样大断裂的阻水作用,官桥断块水文地质亚区和羊角盆地水文地质亚区之间的岩溶水之间基本没有水力联系,但是浅部第四条数数含水岩组之间的地水是存在水力联系的。

②寒武系碳酸盐岩夹碎屑岩岩溶裂隙水

在项目东侧、跨过官桥大断发头条的羊庄盆地水文地质亚区,该含水岩组主要出露于木石以东的龙山山东。老君院——龙山头一带的南龙山山体的奥陶系之下和隐伏在官庄断裂以弃的太谷的松散层之下。

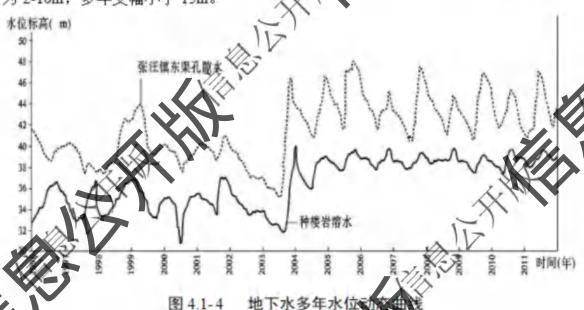
由于灰岩所处的构造、地貌条件不同,岩性不一,则裂隙岩溶水的赋存条件和富水性等都具有很大差异,裂隙发育一般,透水性较好,由于地块较高、储水条份较差。——般单井涌水量小于 100 m<sup>3</sup>/d•m。

及项目所在区域水文地质图见图 4.1-3。

4.1.6.2 项目区周围地下水补给、径流、排泄特征

本区水文地质条件及地下水运动规律均受地构造 地层岩性、地形地貌及水 文气象等多种因素控制,尤其裂隙岩溶水受构造控制明显,其地下水运动具有以 下基本特征:

地下水补给来源主要是大气降水垂直入渗补给,其次是上游地下水侧向径流。


碳酸盐岩类裂隙岩溶水含水岩组、碳酸盐岩类体质含岩溶裂隙水含水岩组、基岩裂隙水含水岩组补给来自大气降水。地下水水位、水量等变化皆受大气降水控制,雨季地下水位普遍上升,水量增加。胃季地下水位将普遍下降,水量减少;区域地表水与地下水关系密切,山区地不水转化为泉水补给河水、山前倾斜平原区的河水又补给附近地下水。各水层之间也有互补关系。隐伏于第四系之下的奥陶系裂隙岩溶水,多为承压水,局部无好的隔水层时,第四系孔隙水往往得到裂隙岩溶水的顶托补给、烧器地层下水,也可通过裂隙或断层与奥陶系石灰岩勾强的产生密切水为联系而得到补水量增大。地表分水岭与地下分水岭基本大致。

岩沼水协志与大气降水关系密切,每年1月~6月,水位缓慢下降。6月20~25日,全年最低水位。6月下旬雨季开始后,地下水位开始回升。6月下旬至9月上水; 2010年1月~20日出现全年最高水位,每次暴雨、大雨后都出水小高峰:因此水位曲线呈锯齿状变化。

区域地下水的排泄方式为多数一个工开采和向下游侧向径流,对于本区而言,煤矿的采掘、矿坑排水等。也是本区含水岩组-特别是碎屑岩类孔隙裂隙水的重要排泄方式,目前该含水岩组已经被疏干,不存在重力地下水。

#### 4.1.6.3 地下水动态特征

# 1、孔隙水水位动态特征

#### 2、岩溶水水位动态特征

区域上岩溶地下水水位主要受人工开采品、现象响,此外还受降水量的影响,岩溶水水位动态在年内和年际间表现出。 司的变化特征。

岩溶水年内变化可分为三个阶段。每年的 3-6 月份是春灌季节,地下水开采量相对较大,而大气降水补给更多微,地下水位表现为明显的下降;而 7-10 月份开采量相对减少,大气降水集中补给,水位迅速上升,一般在 9 月份达到最高峰;10 月份到次年 1 月份为水位相对稳定阶段,补给量和开采量相对较小,岩溶水水位缓慢下降。从补给区到排泄区,岩溶水的水位动态变化规律大致的分只是变幅和速度略有区别,水位年变幅 3-5m。自 2003 年金河水源地大部分供水井停采居、岩溶水水位有所抬升。其后多年水位动态基本保持在同一水平上下波动、水水系统处于多年自然均衡状态。水位埋深 10-18.0m。海水路一般为 2-3m,多年效幅小于 4m。

#### 1.6.4 地下水化学特征

地下水水化学特征主要受含水层岩性、地下水的补入排条件及赋存情况制约。

#### 1、孔隙水水化学特征

区内孔隙水水质属较差—极差,地下水中化学组分中总硬度超标。北部的鲁南化肥厂—木石一带,孔隙水的总域度 500-660mg/L, pH 值 7.1-7.5, 水化学类

山东优纳特环境科技有限公司

拟建项目所在区域内孔隙水化学精石见图 4.1-5。

2、岩溶水水化学特征

在魏庄煤矿北部投官桥一带,小沂河以西,岩溶水水化学类型《属HCO3·SO4-Ca型》矿化度 0.61-1.04g/L,SO4<sup>2</sup>离子含量 111-138mg/L,沿河城设,受小沂河河水掺漏影响,矿化度有明显升高的趋势。柴胡店至泉头一带,岩溶水水化学类型为 HCO3-Ca型,SO4<sup>2</sup>离子含量 83-113mg/L,矿化度值在 12-0.7g/L 之间、进區段新薛河水中的 SO4<sup>2</sup>离子含量 78mg/L,矿化度分泌工,西泥沟泉水原地周围自然环境条件较差,大沙河回灌沟渗漏补给对岩溶水的水质存在一定程度的影响,岩溶水总硬度、SO4<sup>2</sup>等组分超标,矿化度 1.5g/L,水质较差。

总体来说,断块内相同位置的岩溶水化学组分含量略低于在孔隙水中含量,如官桥镇孔隙水水化学类型为 HCO<sub>3</sub>-SO<sub>4</sub>-C<sub>3</sub>-型,SO<sub>4</sub>-2离子含量为 187mg/L;岩溶水化学类型为 HCO<sub>3</sub>-SO<sub>4</sub>-C<sub>3</sub>-W<sub>2</sub>-型,SO<sub>4</sub>-2离子含量为 111mg/L。说明相对于孔

隙水,岩溶水受地表水污染的影响程度较轻,第四条覆盖层对岩溶地下水有一定的保护作用。

#### 4.1.6.5 水文地质边界条件

工作区的水文地质边界条件为名桥断块水文地质单元的边界条件,包括第四系含水层的边界条件和裂缝,落含水层的边界条件。

# 1、第四系含水层的办界条件

第四系孔隙水分配在官桥镇以南、小沂河以东地区,第四系含水层由直接着盖在灰岩顶板之上的砂层、砂砾石层组成,在平面上无限延伸。孔隙水接受人流地下水侧的径流、大气降水入渗、地表水渗漏等补给后,除向下游径流和开采排泄水、部分则沿黏性土裂隙下渗补给下部含水砂层,然后于含水砂层与灰岩接触部发裂隙岩溶及"天窗"补给岩溶水。在泉头供水地投南侧,由于泉头断裂的陷水作用,除少量通过部分导水通道仍然向南部径流水、大部分岩溶水通过覆盖在灰岩顶板之上的砂砾石层向上顶托排泄,而接水为孔隙水,形成多个第四系上升泉,目前由于受泉头地段长期开采地下水、杂色不能喷涌。

2、裂隙岩溶含水层的边界条件

#### ①西部边界

裂隙岩溶含水层以峄山断裂为第5西部的侏罗系砂岩、砂砾岩呈断层接触, 侏罗系裂隙不发育,富水光极美,因此峄山断裂可视作该类含水层西部阻水边界。

#### ②东部边界

东部以化石沟断裂为界,木石以北断裂两侧均为寒武系,木石以南断裂杂侧为寒武系,西侧为石炭—二叠系,奥陶系灰岩隐伏于石炭—二叠系的煤系地层之下,地不水的补给条件差,岩溶不发育,富水性较差。而上覆的石炭——工叠系泥动岩。为岩、岩等灰岩岩层裂隙、岩溶不发育,富水性极差,水炭等水层的影响意义不大,因此东部边界可视作透水—弱透水边界。

#### ③北部边界

位于高庄—独座山—安上一带,该地带形成地表分水岭,灰岩裂隙、岩溶发育较好,导水、富水性较强,接受大气降水补给后向南径流,因此北部边界可看作含水层的补给边界。

#### ④南部边界

金河断裂以南分布的寒武系灰岩,埋藏浅、光路条件差,同时又有岩浆岩的穿插切割,岩溶发育较差,富水性较弱,因此可以把金河断裂视为含水层的南部阻水断裂。

#### 4.1.6.5 小沂河与地下水的补关系

据 2009 年滕州中盛化工有限公司 10 万吨/年醋酸乙烷和26 万吨/年乙醇胺项 四水文地质调查对小沂河河水流量观测结果分析得数。在广沂斯块范围内的河段 全程接受地下水的补给,成为地下水的排泄通道。在小沂河由北向南径流的过程 中,呈现单位河长渗漏量逐渐减少的趋势。从广河流排泄地下水原因主要是由于 2007 年与 2008 年连续两年的降水量较大,加之下游大部分水源地停采、官桥以 北地段岩溶水受到污染有很多次分处停止开采,而导致整个水文地质单元地下水 的开采量减少,地下水位处于被高的水平所致。

本次调查期间,场址区附近小沂河河段地表水主要来自上游污废水排放,水 沂河周边村庄地下水水区低了地表水水位,至谷山村附近河水水量明显减少,说明小沂河对地下水有渗漏补给作用。

经多次勘查工作的动态观测资料表明,区内地下水与地表水之间水力联系较为密切。在大部分时间里,尤其是枯水年或偏枯年份的枯水期。这两河的中上游 可段为 是出现河水渗漏补给地下水的情况,而在丰水年或类发发则,在往又会出现 地下水通过河流进行排泄的现象,随着不同年份或季浓的河水位与地下水位的高低变化关系表现出补、排相互转换的特征。

#### 4.1.7 地质概况

#### 4.1.7.1 地层岩性

区内出露地层(见图 4.1-6) 成老到新依次描述为:

1 81 万

#### 1、寒武系长清群

长清群为寒武系底部不整合面之上,又龙群头夏组灰岩之下,滨海及潮坪相以陆源碎屑为主的岩石地层单位。岩柱以紫、砖红色页岩、砂岩、云泥岩为主,次为黄灰色白云岩及黄灰、青灰色灰岩,底部偶见砾岩。评价范围内主要有长清群中部的朱砂洞组(碳酸盐)、和上部的馒头组(页岩)。

#### 2、寒武纪九龙群

指长清群碎覆条。上体远间断面之下,以海相碳酸盐岩为主要特征的岩石地层单位。属寒武龙、早奥陶世。区内九龙群较为发育,主要有张夏组、黄山组、炒米店组、运由矛组,分布于滕州市东部及东南部地区。

#### 4、 冥陶纪马家沟组

应购纪马家沟组是继九龙群之后又一套巨厚的海机碳酸盐岩沉积,与九龙群 △山子组呈假整合接触,以白云岩和灰岩交替出现效特征,假局部地段有出露。 如南山头、罗汉山、宋屯、陶山、格山、范林等地,出露地层以东黄山段为主, 北庵庄段次之。

#### 4、石炭-二叠纪月门沟群

该地区属济宁——临沂地层 人名 在境内西部未见露头,仅在滕南滕北煤田和官桥煤田的钻孔中见到。东南城南 以头有人工揭露点,为一不整合于奥陶系马家沟组之上、上古生界 了新的海陆交互相——陆相的含煤岩系。底以马家沟组古风化面为界,顶以上覆白盒 为组最下部的灰绿色砂岩底面为界,与下伏马家外组假整合接触,与上覆石盒子组整合接触。境内分布有本溪组、太原组、山水组。

#### 5、二叠铂石盒子组

为月内沟群之上、石千峰群之下的一套碎屑岩。由灰绿、黄绿、紫红、灰紫色、石英砂岩、粉砂质泥岩、页岩及黑色页岩、煤线组成、紫下、大山西组整合接触。 与上覆石千峰群平行不整合接触。该系除滕北海西剥蚀路尽外,滕南和官桥二煤田均有残留。

#### 6、侏罗纪三台组

三台组为广布于第四系之下,石炭一十一条之上的内陆湖相沉积。由紫红色、灰色、灰绿色粉砂岩、含砾砂岩,砾岩组成。

#### 7、新近纪上新统白彦组

零星分布在境内东南部碳酸盐岩低山、白溪的最高部位或肩坡地带(80~540m 标高灰岩之上),呈透镜状、不规则状,长数米至数十米,宽数厘米至几米贴伏于下伏基岩表面的裂隙中,为黏烛残留体。岩性为灰黄色—黄褐色砾岩、砂砾岩。砾石成分以豆状石英、燧石和磁铁矿为主,燧石砾石多在80%以上。砾石表面多具光洁蜡状表膜、砾 全一般在0.5~3cm。区内多处砾岩点曾获取金则石微粒。

#### 8、第四系

滕州市第四系可粗略划分为,山前组、临沂组、沂河组,另外,局部地区有 黑土水组出露。第四系的厚度由东北至西南逐渐增大,由几米,百余米不等。通 过之遗产料分析,结合项目区的岩土工程勘察资料,本项目区地表地层为第四系, 总厚度较小,岩性以粉质粘土为主,区域分布由东西的深度,下伏寒武系石灰岩、 泥灰岩地层,厚度较大,区内普遍分布。

拟建项目所在区域地层层序见表 4.1-1

表 4.1-1 拟建项目所在区域地层层序表

|    | 地层系统 |          | <b>主要岩性特征</b>                                                              |
|----|------|----------|----------------------------------------------------------------------------|
|    | 第四系  |          | 黄褐、棕、大龙龙龙龙土,砂质粘土,粘质砂土,砂、砾石层等。<br>厚度 0~218m×龙布子全区,东北薄,西南厚。                  |
|    | 下第   | 三系       | 上部分分析士岩、粉砂岩夹泥灰岩和石膏层。下部红色粘土质粉砂岩、细胞的含化的新岩,普遍含石膏层,厚度大于447m。                   |
| 侏  | 罗系上  | 统蒙阴组     | 业各场交易色粉、细粒砂岩互层夹泥岩。下部红色砂岩,并有药、晚期岩浆岩侵入,底部有不稳定的砾岩,仅在滕州有零星出露。 图                |
|    | 上统   | 建州       | 杂色泥岩、粉砂岩和灰色粉砂岩,底部含 B 层铝土岩、区域意厚质大于 593m。                                    |
| 墨  |      | 二<br>盒子组 | 灰绿色砂岩和杂色泥岩、粉砂岩,富含植物化石,kink                                                 |
| X  | 35   | 山西组      | 浅灰、灰白色中、细粒砂岩及深灰色粉砂岩、流发。 1~2 层厚煤层,富产植物化石,为本区主要含煤地层之一。厚度 110m。               |
| 石岩 | 上统   | 太原组      | 以深灰、灰黑色粉砂岩、泥岩为主,主灰龙砂岩及石灰岩 8~13 层,煤 17~23 层,为本区的主要含煤地层之一、厚 168m。            |
| 炭系 | 中统   | 本溪组      | 以杂色泥岩为主,夹石灰岩 (大层) 上部夹不稳定薄煤 1~2 层,<br>底部具 G 层铝土岩及山西式铁矿层,厚 37m。              |
| 奥陶 |      | 中统       | 八陡组:为浅海相厚层白云岩夹豹皮灰岩、泥灰岩,厚 66~121m。<br>阁庄组:为浅海相白玄质灰岩、白云岩、泥灰岩、石灰岩,厚 105~127m。 |
| 系  |      | 下统       | 马家沟组:为这场和中厚层灰岩夹泥灰岩、白云质灰岩。厚 203~227m。                                       |

|      |        | 北庵庄组:为豹皮灰岩、泥灰岩、芦云岩、厚 198~281m。<br>纸坊组:为潟湖相白云岩、五云质灰岩,含燧石结核,厚 86~117m。 |
|------|--------|----------------------------------------------------------------------|
|      | 上统     | 凤山组、长山组、崮山组、青灰医竹叶状灰岩、白云岩,夹鲕状灰岩<br>及泥岩,厚 212~273m。                    |
| 寒武系  | 中统     | 张夏组和徐庄组;厚庭泥质灰岩、鲕状灰岩及黄绿、暗紫色云母泥岩、<br>粉砂岩,厚 26% 20 m。                   |
| ग्रर | 下统     | 毛庄组、馒头粗、为暗紫色云母泥岩、白云质灰岩夹豹皮灰岩、泥灰岩及竹叶大大岩,厚 185~212m。                    |
| - 5  | 大古界泰山群 | 主要一众少质的变质岩系。                                                         |

#### 4.1.7.2 岩浆岩

滕州区域内名《岩较为发育,广泛出露,按时代可分为中元古代四堡景和设元古代晋宁明侵入岩。

本元古代侵入岩为四堡期海阳所超单元,但由于其规模较为,常被晚元古代, 普多期形州超单元侵入,而均呈包体状。岩性为超基性,是独岩,为幔源岩浆在 约造作用下侵位形成。由早到晚,分为通海单元和之黄、草云。

晚元古代侵入岩为晋宁期滕州超单元,区域内广泛出露。该超单元为壳、幔混合成因,由早到晚,壳源组分增加,具有成为 给构双演化的特点,为板块碰撞同构造期的产物。根据岩石成分、结构、构造和野外宏观特征,又分为枣庄亚超单元和大时家亚超单元。

拟建项目所在区域周围 3. 4. 6 内,未发现岩浆岩存在。

#### 4.1.7.3 地质构造

本区在大地构造位置《处于华北板块鲁西地块鲁中隆起区与鲁西南港隆起区的交接部位,区内构造以断裂为主,主要有峄山断裂、化石沟断裂、官桥政、西王庄--北书断裂等,详见图 4.1-7。

#### 1、峰山断层

20-30 垂直断距大于 1500m,断裂破碎带宽度 30-360,属张性、略具左移扭动的正断层。为鲁中南和鲁西南的重要的区域地质分界线,自中生代后期以来一直控制着鲁西南断陷区的沉积。断裂东侧地层是前震旦系和寒武——奥陶系,西侧地层是侏罗系。该断裂的形成可能受基底构造控制,燕山期强烈活动,后期又多次活动,控制着现代地貌单元。该断裂真有阻水性质,形成官桥断块西部隔水边界。

#### 2、化石沟断层

北起北安上南至张桥,全长约 30km, 走向北东 10°~20°, 倾向西, 倾角 70°~80°, 断距大 1000m, 断面陡立且光滑, 有顺时针扭动的迹象。断裂平面展布呈舒缓波状,从河北庄至埠岭方向晚至西南,而从埠岭至刘昌庄方向大致呈东西。北盘为古生界寒武系地层, 南岛为太古界变质岩。木石以北该断裂导水,木石以南具有阻水性质。

#### 3、官桥断系

该断裂北起北王庄南至东公桥,全长约 12km,除北段可见外其余人部外。 伏于第四条之下,走向北东 30°左右,倾向北西西,倾角 75°~80°,断距大于 200m, 逆流 55向扭动,为一压扭性断裂。

#### 、西王庄—北辛断裂

隐伏于西王庄—北辛一带,规模较小,走向近天水、何南 N,为一正断层。 断层东段两盘为石炭—二叠系煤系地层,具限火炸用,西段断层两侧为奥陶系灰岩,南侧岩溶水通过岩溶裂隙接受北侧岩溶水流流补给,因此该断裂具导水意义。

#### 5、泉头断裂

隐伏于泉头村南侧,规模较少、龙向近 EW,倾向 N,为一高角度断层,断层南北盘岩性皆为奥陶系马家被通复岩、泥灰岩,该断层具阻水性质,对泉头北部富水地段具有重要意义。逐断裂规模较小,向西未与峄山断裂相交,北侧岩溶水可通过西部断裂不发青段逐流补给南侧岩溶水。

#### 6、金河断裂

为一隐伏断裂,东起张桥西至大辛庄一带,长约 5km,走向近面下,倾向 N,属高角度正断层。南盘岩性以寒武系为主,北盘岩性以奥陶系从金,该断裂大辛 D 付近背由于岩浆岩的穿插切割而导致阻水,从而形成裂隙,盖容水南部的相对隔水边界;而付庄—张桥段断裂则透水。

根据《山东省滕县煤田滕南矿区供水水文地质色查设告》(中国煤田地质总局第一水文地质队)评价区位于峄山断裂、化石沟断裂两大南北断裂之间的官桥断块内,官桥断块内存在着一条北东至南西走向的官桥断裂、一条位于官桥南约1km处近东西走向的西王庄至北亲断裂。西王庄至北辛断裂将官桥断块分成南北

两部分,官桥断裂又将官桥北断块分成东西的形分,分区编号为 I、II、III。评价区位于峄山断裂、化石沟断裂、西王庄至北学断裂构成的 II 区内。

滕州市的羊庄水源及其保护区位于北石沟断裂以东; 薛城区的金河水源地及 其保护区位于薛城区境内, 位于峰山断裂、化石沟断裂、西王庄至北辛断裂构成 的III区南部。

拟建工程厂区内无构造发育,区外发育的构造主要为峄山断裂及官桥断裂。 峄山断裂位于厂区改制,隐伏于第四系之下,总体走向约 345°,倾向南西 姆 70~80°,垂直断距大于 1500m,断裂破碎带宽度 30~40m,属张性、略其之移 扭动的正断层:斯裂东盘地层为寒武—奥陶系,西盘地层为侏罗系。官桥断裂发育了,还东侧,走向近北东—南西,倾向北西西,倾角 75°~80° 斯距大于 200m, 运输了向扭动,为一压扭性断裂。

#### 7.4 区域地壳稳定性

本区大地构造上处于新华夏第二隆起带的鲁西隆起的边缘,新华夏断裂构造控制了全区地质构造基本格局。本区新构造活动产要表现为区域升降运动和第四纪断裂活动。具体表现为:老构造仍在独绿活动,峄山大断裂以东为新构造活动的上升区,以西则为下降区,上分区断层发育。

据《中国地震动参数区划图》(GB18306-2016),地震动峰通知速度为 0.05g 地震基本烈度VI度),建筑场地类型为II类。评估区附近最为高荷造、全新活 助断裂,区内断裂构造虽比较发育,但处于相对稳定的所期且均为隐伏断裂,拟 建工程场地属稳定区。

#### 4.1.8 资源

滕州市矿产资源以煤炭为主其次是石水石和河沙。煤炭探明储量约 52 亿 t, 占全省各县首位,境内可分为滕水水滕南、官桥三大煤田。具有煤层厚、埋藏浅、

山东优纳特环境科技有限公司

煤质优等特点。该市石灰石总储量约 5 亿 1 16%,石灰石含氧化钙 41.16%,有害成分在 2.2%以下,质地优良、为水泥生产提供了充足的原料。除此之外花岗石、白云石等也有一定储量。

兖矿鲁南化工有限公司西南、85m 处为已基本采空下马的"魏庄煤矿",现为 枣庄市监狱;西南 6.2km 处有"从一煤矿",厂区周围主要为石灰岩及部分白云岩, 落凤山是本市石灰石主要产地之一。

拟建项目厂区外运矿

#### 4.2 水源泉沪地

以建项目所在区域周边水源保护地主要有三个,其中,两个为版州市集中式 该民产源地,即荆泉饮用水水源地和羊庄饮用水水源地,另一个为枣庄市薛城 区饮用水水源地,即金河饮用水水源地。

#### 1、荆泉饮用水水源地

根据《滕州市荆泉水源地饮用水水源保护》调整划分技术报告》,荆泉饮用水源地为滕州市主要集中式饮用水水源地,某补拾区位于滕州东北部山区,荆泉断块地下水补给量  $Q_*=14.47\times10$ 人成为,地下水开采资源量  $Q_{\pi}=13.21\times104$  m³/d,荆泉水源地在水位降深 15m 的分子,件下的允许开采量  $Q_{\pi}=7.50\times104$  m³/d,剩余开采量  $Q_{\pi}=2.03\times104$  m³/d,剩余开采量  $Q_{\pi}=2.03\times104$  m³/d,剩

#### 羊庄饮用水水源地

文建饮用水源地是园区主要的供水水源,根据《腊州市学区水源地饮用水水源保护区调整划分技术报告》,羊庄饮用水水源补充区位于学庄镇东北部山区及枣庄市山亭区部分地区,羊庄岩溶水系统的可开采资源量 21.71×10 m³/d,目前实际开采 14.81×10 m³/d,尚有 6.90×10 m³/d 的剩余量通过河水基流、泉及潜流的形式排泄出去。

根据《滕州市羊庄水源地饮用水水源保护区海总划分技术报告》相关结论, 羊庄盆地是一个地表、地下分水岭基本一致和天整的水文地质单元及地表水流域,除在下游出口处向区外排泄外,由于上游地区汇集的地表水和地下水均与区外水体不存在水力联系和水量交换关系,所以,在自然或现状条件下,区外污染源对本区的地表水体及地个水体均不会造成直接的污染和影响。根据《鲁南高科技化工园区环境影响设计平析报告书》,鲁南高科技化工园区位于峄山断裂、化石沟断裂两大场处断裂之间的官桥断块内,官桥断块内存在着一条北东交通的走向的官桥断裂之间的官桥断块内,官桥断裂又将官桥北断块分成东西主户的官桥断级、一条位于官桥南约 1km 处近东西走向的西王庄至北学断裂、西王庄至北学断裂将官桥断块分成南北两部分,官桥断裂又将官桥北断块分成东西场。分区编号为 I、II、III。园区位于峄山断裂、化石沟断裂、西王庄至北学断裂构成的 I、II 区内。滕州市的羊庄水源及其保护区位于化石沟断裂以东,静城区的金河水源地及其保护区位于薛城区境内,位于闽市裂、化石沟断裂、西王庄至北学断裂构成的 III 区南部。由此可知、对建项图)址与羊庄水源地分属于两个不同的水文地质单元,之间存在一处限水的化石沟断裂,故场址所在区域与羊庄水源地之间不存在水力联系。

#### 3、金河饮用水水源地保护。

金河饮用水水源地保护区食养园区南侧,距离项目区最近处大于 18km,从水文地质上分析,园区与金河饮用水水源地保护区位于同一个断块——官桥断块属于同一水文地质单元。金河饮用水水源地补给区位于官桥板块北部山区,级区位置与金河饮用水水源存在地下水水力联系,本场区不在水源地保护区范围内,但位于金河水源地准保护区以外的补给径流区。根据饮用水水源保护区内的环境管理要求,在一级保护区内禁止新建、改建、扩建与供水设施处保护水源无关的建设项目"、"禁止在二级保护区水体内清洗船舶、车辆、火发推保护区内禁止新建、扩建对水体污染严重的建设项目"等。

拟建项目与周边饮用水源地关系图见图 4.2~1

# 4.3 新薛河流域 (滕州段) 人工湿地水质净化工程

新薛河流域(滕州段)人工湿地水质净化工程是新薛河流域应急安全防控体系工程之一,是《重点流域水泛》《治规划(2011-2015年)》确定的治污项目。

\* \* 方

山东优纳特环境科技有限公司

主要是对园区污水处理厂排入河道的废水进入海水和综合防控。共分为小沂河、小魏河、古薛河和新薛河四个湿地片区,总区域面积 3711 亩。总投资 5044 万元。设计污水处理总规模为 50000m/d, 进水水质 COD≤40mg/L, 氨氮≤2mg/L。

该工程是滕州市水污染防治、熔、治、用、保、管"和"点源治理、集中处理、截蓄导用、湿地净化、立体监控、应急防控"综合举措的缩影和治污功能的"全覆盖"。通过橡胶坝、溢深坝海葡萄导洪工程,将园区污水处理厂排入河道的废水导入小魏河上游及处于河海滩地及坑塘(木石片区)、小魏河、古薛河和郑镇河等湿地片区、进行深度净化,采用"表流湿地+潜流湿地+风能曝气+生物源等十人工浮岛产生高滞留塘+河道走廊湿地+应急处置池"等组合工艺处理系统。该之经天2015年12月建成投入运营,经逐级净化,出水水质优于地表水 III 类水质沉滞,有效改善了河流断面水质。

新薛河流域应急安全防控体系工程坐落于木石镇的富庸高科技化工园区,集中展现于墨子人工湿地片区。该体系共包含"大人子系统"—"点源治理企业达标排放系统、污水处理厂集中处理系统、截蓄导用本水综合利用生态修复系统、人工湿地水质净化功能系统、应急预警监控(中文文体监控系统、提水泵站和应急池自动切换应急处置系统"。同时兼有"天人"制 结合功能,"平常"时发挥水质"净化"功能,"应急"时发挥截导"安全"放制。通过提水泵站自动切换系统处理闸阀,把事故水调入事故应急池,发现留得住、治的好、用得上,把最危险的地方变成最安全的区域,为保障情况上调东线工程调水水质安全发挥着重要作用

墨子河湿地工程示意图详见图 43-1。

# 4.4 南水北调东线工程(山东段)概况

文统、南水北调东线工程已于 2002 年 12 月 27 日开工/ 榆水子线途经江苏省的 骆马湖、中运河和山东省内的韩庄运河、南四湖、沿济水河、东平湖,北达天津,年抽长江水能力达 126 亿 m³。按照工期和水质保证情况、确定规划基准年为 2002 年。规划分为三期:一期规划水平年为 2005 年,输水干线水质基本达到Ⅲ类水质标准;二期规划水平年为 2007 年,输水干线水质稳定达到Ⅲ类水质标准;三期规划水平年为 2007 年,输水干线水质稳定达到Ⅲ类水质标准;三期规划水平年为 2010 年,输水平线水质稳定达到Ⅲ类水质标准;

主体工程二期给水要求。《南水北调东线工术以外级水污染防治规划》要求汇水区处于城市污水处理厂覆盖范围内的工业污染源。达标后一律投入城市污水处理厂,经处理实现污水资源化。沿岸分散工业废水必须经处理后达到一级排放标准。

根据《山东省南水北调工程格线区域水污染防治条例》(2006.11.30 山东省第十届人民代表大会常务委员会第二十四次会议通过)中对南水北调工程调水水质的要求,将沿线区域划分为重级保护区。核心保护区、重点保护区和一般保护区。核心保护区是指域水平线大堤或者设计洪水位淹没线以内的区域,重点保护区是指核心保护区间外延伸十五公里的汇水区域,一般保护区是指除核心保护区和重点保护区员外的其他汇水区域。根据山东省地方标准《流域水污染物综合排放的体第1部分,南四湖东平湖流域》(DB37/3416.1-2018),将南四湖、东平湖流域形分下列三类控制区。

核心保护区域指:山东省南水北调东线工程干燥大堤和所流经湖泊大堤(这两条大堤以下简称"沿线大堤")内的全部区域

重点保护区域指:核心保护区域向外延伸 Aim 的汇水区域。

一般保护区域指:除以上核心保护区域和重点保护区域以外的其他调水沿线汇水区域。

拟建项目不位于南水北调整。 项目废水经园区鲁化净化水厂深度处理后,外排至小沂河。项目所在内置距离南水北调干线约 29km,不在南水北调东线工程的核心保护区域和重点保护区域内,属于一般保护区域。小沂河上分别设有谷山水闸、官桥水闸及小沂河汇入新薛河前水闸,新薛河截污导流工程目前设置格房节制闸,位于新薛河汇入南四湖前。通过实施截污导流工程,可有效减少新薛河及南水北调东线工程输水干线的污染影响。拟建项目不新增度及排放 2017年12岁时,在干旱季节的情况是一定进入南四湖以前基本上消耗殆尽,影响不到南水北调工程。即使老水期有少量排水进入南四湖、由于南水北调工程处于非调水期,且丰水期自然各类量大,在水体自然蒸发和自净作用下,最终排入南四湖的污染物的量积少,符合《南水北调东线工程山东段水污染防治规划》的要求,项目建设对南水北调东线工程的影响较小。

拟建项目与南水北调东线山东段工程位置关系见图 4.4-1。

#### 4.5 环境质量现状调查与评价

#### 4.5.1 环境空气质量现状调查与评价

#### 4.5.1.1 评价基准年筛选

根据本项目所需环境空气质量现状、气象资料等数据的可获得性、数据质量、代表性等因素,选择 202. 4. 为评价基准年。

#### 4.5.1.2 环境空气质量达标区处定

根据枣庄市 X 的 2022 年度枣庄环境情况通报,滕州市 PM2.5 年均次度为 42ug/m³, PM10 年均浓度为 79ug/m³, SO<sub>2</sub>年均浓度为 11ug/m³, NO<sub>2</sub>年均浓度为 22ug/m³, CO 年均(第 95%位数)浓度为 152ug/m³, CO 年均(第 95%位数)浓度为 152ug/m³, CO 年均(第 95%位数)浓度为 152ug/m³。其中 PM<sub>10</sub>、PM<sub>25</sub>、O<sub>3</sub>超过《环境空气质量标准》(GB3095-2012)中二級标准要求。

因此项目所在滕州市为不达标区,超标因子为 P. A. P.M. 19M2.50

#### 4.5.1.3 环境空气例行监测数据

#### 1、基本污染物环境空气质量现状证

本次基本污染物环境空气质量现代平位采用滕州市新二中常规监测站点评价基准年(2022年)连续1年发生的数据。

#### 2、数据有效性分析

对照《环境空气质量评析技术规范(试行)》(HJ663-2013)及《环境空气质量标准》(GB30%、2012),本次基本污染物监测数据符合上述标准要求

#### 3、基本污染物环境空气质量现状评价

表 4.5-1 项目基准污染物现状评价结果一览表单级 (pe/m³)

| E/A    | 滕州    | 坐标              | X       |       |         | Y    |  |
|--------|-------|-----------------|---------|-------|---------|------|--|
| 黑亚     | 点位新二中 |                 | 35.039  |       | 117.114 |      |  |
| 标准     | 限值    | 污染因子            | 监测结果的   |       | 年均值     | 日均值  |  |
| 年均     | 日均    | 75条四丁           | m///sca | CILIE | 超标倍数    | 达标情况 |  |
| 60     | 150   | SO <sub>2</sub> | 、矢均レ    | 11    |         | 达标   |  |
| 00 130 | 130   | 302             | 第級並数    | 33    |         | 江州   |  |
| 40     | 80    | NO <sub>2</sub> | 外纬均     | 22    |         | 达标   |  |

A STATE OF THE PARTY OF THE PAR

|    |        |                      | 第 98%位数 | 55   |            | 100  |       |
|----|--------|----------------------|---------|------|------------|------|-------|
| -  | 4000   | co                   | 第 95%位数 | 7.00 | 177        | 达标   |       |
| _  | 160    | O <sub>3</sub>       | 第90%    | 152  | 144"       | 达标   |       |
| 70 | 70 150 | 70 150               | D) (    | (無均) | 79         | 0.12 | ±27±= |
| 70 |        | 150 PM <sub>10</sub> | 第95%位数  | 180  | 0.12       | 超标   |       |
| 25 | 75     | note. 7/             | 年均      | 42   | 0.20       | 4940 |       |
| 35 | 75     | PIE                  | 第 95%位数 | 112  | 0.20       | 超标   |       |
|    | 듔      | 全场                   | _       |      | 不达标        |      |       |
|    | A      | 要污染物                 |         |      | PM10, PM25 | 7    |       |

由表 4.5-1分次可知。2022 年滕州市新二中监测站点监测结果表明,原昌所在区域 60元 NO<sub>2</sub>24 小时平均第 98 百分位数满足《环境空气质量标准》(GA309-2012)中 24 小时平均浓度二级标准要求;CO24 小时平均第 95 百分位数海足《环境空气质量标准》(GB3095-2012)中 CO2+外时平均浓度二级标准要求。O<sub>3</sub>日最大 8 小时滑动平均值的第 90 百分位数常或满足《环境空气质量标准》(GB3095-2012)中 O<sub>2</sub>8 小时平均浓度乙级标准要求。SO<sub>2</sub>、NO<sub>2</sub>年平均质量浓度满足《环境空气质量标准》(GB3095-2012)中 CB3095-2012)中 CB3095-2012

#### 4.5.1.4 其它特征污染物补充监查

#### 1、数据来源

根据《环境影响设计技术穿则—大气环境》(HJ2.2-2018)规定,项目所在 地区的环境特点及项目周围环境保护目标的分布情况,本次评价引用企业各建模 目《兖矿鲁南代工有限公司甲醇老旧装置更新改造产能整合项目环境影响报告书》 及园区内企业《山东山海新材料有限责任公司年产 20 万吨电池级锂电桥对导碳酸 酯域形分一期)环境影响报告书》中部分监测数据。

S监测点位详细情况见表 4.5-2,分布示意图见图 / 5-1

#### (1) 监测点位

表 4.5-2 环境空气质量引用情况~览表

| 编号 | 测点名称   | 相对方位 | 相对距离   | 设置意义                     |
|----|--------|------|--------|--------------------------|
| 1# | 凤翔小镇   | W    | 1.1km  | 了解项目主导风向下风向<br>敏感点环境空气现状 |
| 2# | 墨子森林公园 | E    | 7/500m | 了解一类功能区敏感点环境空气现状         |

#### (2) 监测因子

根据当地环境状况及工程特点,本次环境空气质量现状监测

1#凤翔小镇:选取氨、硫化氢、非甲烷总烃、甲醇、硫酸、臭气浓度、TSP、VOCs(含分项)作为监测因子;

2#墨子森林公园:选取硫酸作为监测因子,同时引用 SO<sub>2</sub>、NO<sub>2</sub>、PM<sub>10</sub>、PM<sub>2.5</sub>、CO、O<sub>3</sub>、VOCs(含分分)、非甲烷总烃、甲醇、氨、硫化氢、臭气浓度等数据;同时进行气温、《压、风向、风速、总云量、低云量等气象条件观测

#### (3) 监测时间和频率

连续监测分天,青岛中博华科检测科技有限公司于2024.9.25~2024.10.1 连续 表现场 金测;引用数据监测时间为2022.9.29~2022.10.20

#### (4) 分析方法

本次环境空气质量现状监测项目的分析方法见表

表 4.5-3 环境空气质量现状监测分析方法一览表

|                  | 12.                    | +」う 外児工 「灰里以           | 11 X XX - 5C-3X              |                        |
|------------------|------------------------|------------------------|------------------------------|------------------------|
|                  | 分析项目                   | 分析方法                   | <b>人</b> 法依据                 | 检出限                    |
| Š                | 总悬浮颗粒物                 | 重量法                    | НЈ 1263-2022                 | 7μg/m³                 |
|                  | 硫化氢                    | 亚甲基蓝分光光度去              | 全气和废气监测分析方<br>≥≥2003(第四版增补版) | 0.001mg/m <sup>b</sup> |
|                  | 氨                      | 纳氏试剂分析,遵法              | HJ 533-2009                  | 0.01mg/m <sup>3</sup>  |
|                  | 臭气浓度                   | 三点比较多复数法               | НЈ 1262-2022                 | 10 (无量纲)               |
|                  | 甲醇                     | <b>为</b> 相色增法          | 《空气和废气监测分析方法》2003 (第四版增补版)   | 0.1mg/m <sup>3</sup>   |
|                  | 非甲烷总烃                  | 直接进样-<br>气相色谱法         | НЈ 604-2017                  | 0.07m                  |
| 担                | 军发性有机物                 | 吸附管采样-热脱附/<br>气相色谱-质谱法 | HJ 644-2013                  | A A                    |
|                  | 1000万氯乙烯               | 吸附管采样-热脱附/<br>气相色谱-质谱法 | НЈ 644-2013                  | 0.300 m <sup>3</sup>   |
| 1                | 2.1.1.2.三氯<br>2.2.三氟乙烷 | 吸附管采样-热脱附/<br>气相色谱-质谱法 | НЈ 644-2017                  | 0.5μg/m <sup>3</sup>   |
| <del>1</del> 244 | 氯丙烯                    | 吸附管采样-热脱附/<br>气相色谱-质谱法 | НЈ 04-2013                   | 0.3μg/m <sup>3</sup>   |
| 挥发<br>性有<br>机物   | 二氯甲烷                   | 吸附管采样-热脱附/<br>气相色谱-质谱法 | THE WORLD                    | 1.0µg/m²               |
| 101.79           | 1,1-二氯乙烷               | 吸附管采样-热脱附/<br>气相色谱-质谱法 | HJ 644-2013                  | 0.4μg/m <sup>‡</sup>   |
|                  | 顺式-1,2-<br>二氯乙烯        | 吸附管采样-热脱附/气相色谱-质谱法     | НЈ 644-2013                  | 0.5μg/m <sup>2</sup>   |
|                  | 三氯甲烷                   | 吸附管采掉-热脱帆/气相色。         | HJ 644-2013                  | 0.4μg/m³               |

|      | 1,1,1-三氯乙烷        | 吸附管采祥-热脱附/<br>气相色谱-质谱法   | 57 A 14-2013 | 0.4μg/m³             |
|------|-------------------|--------------------------|--------------|----------------------|
|      | 四氯化碳              | 吸附管采样-热脱附以<br>气相色谱-质谱法   | HJ 644-2013  | 0.6μg/m <sup>1</sup> |
|      | 1,2-二氯乙烷          | 吸附管采样-热脱剂/气相色谱/质谱法       | HJ 644-2013  | 0.8µg/m²             |
|      | 苯                 | 吸附管采样 规脱附/               | HJ 644-2013  | 0.4µg/m³             |
|      | 三氯乙烯              | 观料食系祥-热脱附/<br>气相色谱-质谱法   | НЈ 644-2013  | 0.5µg/m <sup>1</sup> |
|      | 1.2-二氯丙烷          | 吸付置采样-热脱附/<br>气相色谱-质谱法   | НЈ 644-2013  | 0.4ug/m²             |
|      | 顺式。               | 吸附管采样-热脱附/<br>气相色谱-质谱法   | HJ 644-2013  | 0.3                  |
|      | 100               | 吸附管采样-热脱附/<br>气相色谱-质谱法   | НЈ 644-2013  | д.4µg/m³             |
| 16   | ○ 反式 1.3-<br>二氯丙烯 | 吸附管采样-热脱附/<br>气相色谱-质谱法   | НЈ 644-2013  | 0.5µg/m <sup>3</sup> |
| 11.  | 1,1,2-三氯乙烷        | 吸附管采样-热脱附/<br>气相色谱-质谱法   | HI 64-201    | 0.4µg/m³             |
|      | 四氯乙烯              | 吸附管采样-热脱附/<br>气相色谱-质谱法   | Шомому       | 0.4µg/m³             |
|      | 1,2-二溴乙烷          | 吸附管采样-热脱附/<br>气相色谱-质谱法   | (H) 644-2013 | 0.4μg/m <sup>3</sup> |
| 挥发   |                   | 吸附管采样-热脱附                | НЈ 644-2013  | 0.3µg/m³             |
| 性有机物 |                   | 吸附管采样,热脱附                | НЈ 644-2013  | 0.3µg/m³             |
|      | 间,对-二甲苯           | 吸附管 人工 人工 时间             | НЈ 644-2013  | 0.6μg/m³             |
|      | 邻-二甲苯             | 及                        | НЈ 644-2013  | 0.6μg/m <sup>2</sup> |
|      | 苯乙烯人              | 版 对 管采样-热脱附/<br>气相色谱-质谱法 | HJ 644-2013  | 0.64 a ha            |
|      | 1,122<br>四幕 C烷    | 吸附管采祥-热脱附/<br>气相色谱-质谱法   | HJ 644-2013  | ugym                 |
|      | <b>泛基甲苯</b>       | 吸附管采样-热脱附/<br>气相色谱-质谱法   | HJ 644-2013  | 0.8/g/m <sup>2</sup> |
|      | 三三甲基苯             | 吸附管采样-热脱附/<br>气相色谱-质谱法   | НЈ 644-26    | 0.7μg/m³             |
|      | 1,2,4-三甲基苯        | 吸附管采样-热脱附/<br>气相色谱-质谱法   | H1/4/13      | 0.8µg/m³             |
|      | 1,3-二氯苯           | 吸附管采样-热脱附/<br>气相色谱-质谱法   | H4424-2013   | 0.6µg m³             |
|      | 1,4-二氯苯           | 吸附管采样-热脱附/<br>气相色谱-质谱法、  | НЈ 644-2013  | 0.7μg/m <sup>3</sup> |
| 挥发   |                   | 吸附管采样-热脱附/气相色谱-质谱表       | НЈ 644-2013  | 0.7μg/m <sup>2</sup> |
| 性有机物 |                   | 吸附管采车 脱附/                | HJ 644-2013  | 0.7µg/m³             |

With the last

第 94 页

山东优纳特环境科技有限公司

| 1,2,4-三氯苯 | 吸附管采样-热脱附/<br>气相色谱-质谱法 | AV 014-2013               | $0.7 \mu g/m^3$        |
|-----------|------------------------|---------------------------|------------------------|
| 六氯丁二烯     | 吸附管采样-热脱附/<br>气相色谱-质谱法 | HJ 644-2013               | 0.6μg/m³               |
| 硫酸        | 离子色谱法                  | HJ 544-2016               | 0.005mg/m <sup>2</sup> |
| 甲醇        | 气相色谱法                  | 《空气和废气监测分析方法》2003(第四版增补版) | 0.1mg/m <sup>3</sup>   |

# (5) 监测结果

| (1) | 补充监测期间常规气象参数一 | 览表 |
|-----|---------------|----|
|-----|---------------|----|

|   | 采样日期       | 金融的     | 气温(℃) | 气压<br>(KPa) | Xi速<br>(m/s) | 风向       | 总云人 | 展五  |   |
|---|------------|---------|-------|-------------|--------------|----------|-----|-----|---|
|   | 1/2        | 07.00   | 17.4  | 100.8       | 1.2          | NE       | to  | _   |   |
|   | She        | 08:00   | 21.3  | 100.7       | 1.4          | NE «     | 252 | 0   |   |
|   |            | 14:00   | 26.8  | 100.5       | 1.3          | NEZ//    | 1 2 | 0   |   |
|   |            | 20:00   | 22.5  | 100.6       | 1.5          | The live |     | _   |   |
|   |            | 02:00   | 16.8  | 100.9       | 2.4          | W        | -   | _   |   |
|   | 2024.09.26 | 08:00   | 22.5  | 100.7       | 7.3          | IT.      | 3   | 0   |   |
|   | 2024.09.20 | 14:00   | 30.6  | 100.5       | 23/1         | NW       | 3   | 0   |   |
|   |            | 20:00   | 26.1  | 100.6       | X 24         | NW       |     | _   |   |
|   |            | 02:00   | 19.2  | 100.3       | 2.3          | SE       | _   | _   |   |
|   | 2024.09.27 | 08:00   | 22.8  | 1005        | 3.2          | SE       | 2   | 0   |   |
|   | 2024.09.27 | 14:00   | 29.7  | 100         | 3.4          | SE       | 2   | 0   |   |
|   |            | 20:00   | 25.6  | 107.7       | 2.1          | SE       | _   | _   | l |
| ı |            | 02:00   | 183   | 100.9       | 2.3          | SE       | _   | _   |   |
|   | 2024.09.28 | 08:00   | 22.5  | 100.8       | 3.2          | SE       | 3   | X.  |   |
|   | 2024.09.28 | 14:00   | 29.3  | 100.6       | 2.1          | SE       | 3   | 100 |   |
|   |            | 20.00   | 25.1  | 100.7       | 2.4          | SE       |     | X   |   |
|   | A          | 02:00   | 20.4  | 100.8       | 1.2          | SE       | 7   |     |   |
|   | 202/ 6620  | ₹ 08:00 | 24.8  | 100.7       | 2.1          | SE       | 173 | 0   |   |
|   | 201        | 14:00   | 30.7  | 100.6       | 2.3          | SE /-    | (A) | 0   |   |
|   |            | 20:00   | 26.4  | 100.8       | 1.4          | SE V     |     | _   |   |
|   |            | 02:00   | 14.4  | 101.1       | 1.3          | 7/3      |     | -   |   |
| 4 | 2024.09.30 | 08:00   | 18.2  | 100.9       | 1.4          |          | 3   | 0   |   |
| N | 2024.09.30 | 14:00   | 26.1  | 100.8       | 1,2          | 5        | 3   | .0  |   |
|   |            | 20:00   | 21.4  | 101.0       | X            | S        | -   | -   |   |
|   |            | 02:00   | 8.9   | 101.2 v     | 1-2/2        | N        | -   |     |   |
|   | 2024.10.01 | 08:00   | 13.7  | 101:0       | 2.4          | N        | 3   | .0  |   |
|   |            | 14:00   | 22.4  | 180.9V      | 3.3          | N        | 3   | 0   |   |

| 20:00 | 17.3 | 101.0 | N | <br>_ |
|-------|------|-------|---|-------|

# 表 4.5-4 (2) 引用数据监测期间 氯 2.5 象参数一览表

| 检测日期       | 检测频次   | 气温     | 气压kPa  | MP | 风速      | 总云量  | 低云量 | 天气    |
|------------|--------|--------|--------|----|---------|------|-----|-------|
|            | 2:00   | 17.2°C | 101.81 | S  | 1.6m/s  | I    | I   | 晴     |
|            | 8:00   | 20.5°C | 4004   | S  | 1.7m/s  | 2    | 1   | 晴     |
| 2022.09.29 | 14:00  | 28.70  | 101.2  | S  | 1.5m/s  | 2    | 1   | 晴     |
|            | 20:00  | 242    | 101.5  | S  | 1.5m/s  | 1    | 1   | 晴     |
|            | 2:00   | 623    | 101.4  | SE | 1.4m/s  | 1    | 1   | 晴     |
| 2022.09.30 | 8:00   | 20,4℃  | 101.5  | SE | 1.6m/s  | 2    | 1   | 清     |
| 2022.09.30 | 1.50   | 27.6°C | 101.3  | SE | 1.5m/s  | 1    | 0   | XE    |
|            | 20:00  | 23.5°C | 101.3  | SE | 1.4m/s  | 1    | 12  | LA DE |
| 1          | 2:00   | 23.1℃  | 101.5  | E  | 1.6m/s  | 1:   | IN  | 晴     |
| 02         | 8 00   | 23.4°C | 101.4  | E  | 1.5m/s  | 1 _  | 110 | 晴     |
|            | 14:00  | 29.6°C | 101.1  | E  | 1.7m/s  | 2    | 5 1 | 晴     |
| ((-)       | 20:00  | 25.3°C | 101.4  | E  | 1.5m/s  | VII  | . / | 晴     |
|            | 2:00   | 23.3°C | 100.8  | SE | 1.8m/s  |      | 1.  | 多云    |
| 022.10.02  | 8:00   | 24.5°C | 100.9  | SE | 1,4ms   | 3    | 7   | 多云    |
| 022.10.02  | 14:00  | 27.9°C | 100.6  | SE | 5 5 M/S | 8    | 7   | 多云    |
|            | 20:00  | 24.7°C | 100.9  | SL | Ahr/s   | -/-  | 1   | 多云    |
|            | 2:00   | 21.7°C | 101.1  | A. | . 5m/s  | 1    | . V | 多云    |
| 022.10.03  | 8:00   | 22.9°C | 101.2  | 5  | 1.6m/s  | 7    | 6   | 多云    |
| 022.10.03  | 14:00  | 28.7°C | 100    | S  | 1.5m/s  | 8    | 7   | 多云    |
|            | 20:00  | 19.6°C | MA     | S  | 1.6m/s  | 1    | - / | 多云    |
|            | 2:00   | 14.3°C | 1(-)   | N  | 1.6m/s  | 7    | 1   | 阴     |
| 022.10.04  | 8:00   | 7279   | 101.7  | N  | 1.6m/s  | 9    | 9   | 阴     |
| .022.10.04 | 14:00  | 12.9   | 102.7  | N  | 1.7m/s  | 10   | 9   | BE    |
|            | 20:00  | TINEC  | 102.8  | N  | 1.6m/s  | -1   | 1   | , Ve  |
|            | 2:00   | 10.2°C | 102.8  | N  | 1.7m/s  | -/   | 1.  |       |
| 022 10.05  | 1 8:00 | 11.2°C | 102.8  | E  | 1.8m/s  | 2    |     | 晴     |
| 2022.10.05 | 14:00  | 16.2°C | 102.6  | E  | 1.7m/s  | 2    | 117 | 晴     |
| 3/2        | 20:00  | 12.7°C | 102.8  | Е  | 1.7m/s  | 1 12 | 24  | 晴     |

# 表 4.5-5 (a) 1#凤翔小镇环境空气监测给。

| 70 A 10 14 | 27.14.CI AD | 监测项目上均值       |         |            |  |  |
|------------|-------------|---------------|---------|------------|--|--|
| 木件思证       | 采样日期        | 总悬浮颗粒物(μg/m³) | into my | 甲醇 (mg/m³) |  |  |
|            | 2024.09.25  | 209           | 3/ 20V  | 未检出        |  |  |
|            | 2024.09.26  | 232           | 0.015   | 未检出        |  |  |
| 1同報小佐      | 2024.09.27  | 207           | 0.012   | 未检出        |  |  |
| 1=凤翔小镇     | 2024.09.28  | 184           | 0.016   | 未检出        |  |  |
|            | 2024.09.29  | 195 35        | 0.016   | 未检出        |  |  |
|            | 2024.09.30  |               | 0.019   | 未检出        |  |  |

96 万

兖矿鲁南化工有限公司微反应高效合成精细化学品节能,**发现**有种最加报告书

|       | 2024.10.01 | 171    | 0.015 | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|------------|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |            | 温息证据   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |            |        |       | I THE THE PARTY OF |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| L THE |            |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE REAL PROPERTY OF THE PARTY |
|       | A TENT     |        |       | A STATE OF THE STA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| HAM   |            | 第97页   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |            | 第 97 页 | 山东优纳特 | 环境科技有限公司                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 1.5 | (6) | 1#凤翔小镇环境空气监测结果一览表            |   |
|-----|-----|------------------------------|---|
| All |     | illesete at 1 and the set 15 | ۱ |

| 采样点位        | 采样日期         | 采样时间    |        |       | <b>顺目</b> (小时值, |        | 144     | 量纲)    |       |
|-------------|--------------|---------|--------|-------|-----------------|--------|---------|--------|-------|
| 3,311,000   | 2447.945     |         | 硫化氢    | 氨     | 臭气浓度            | 甲醇     | 作申烷总烃   | VOCs   | 硫酸    |
|             |              | 10,500  | 0.002  | 0.08  | <10             | 未检出了   | 0.95    | 0.103  | 0.009 |
|             | 2024.09.2    | ₹508.00 | 未检出    | 0.09  | 11              | 未检出。   | 1.03    | 0.102  | 0.007 |
|             | 2021.05      | 14:00   | 0.002  | 0.08  | 11              | 未检验    | 1.09    | 0.105  | 0.012 |
|             | 7//          | 20:00   | 0.003  | 0.07  | 12              | 未检出    | 1.05    | 0.106  | 0.016 |
|             |              | 02:00   | 未检出    | 0.10  | 11              | 未检出    | 0.94    | 0.0999 | 0.018 |
|             | 11.000000    | 08:00   | 未检出    | 0.06  | N.              | 未检出    | 1.04    | 0.0995 | 0.015 |
| 2           | AM24. 40.20  | 14:00   | 0.004  | 0.11  |                 | 未检出    | 1.08    | 0.0995 | 0. 14 |
| 1           | ,            | 20:00   | 0.002  | 0.06  | <b>AX</b>       | 未检出    | 1.01    | 0.0944 | 10.80 |
| 1 V         |              | 02:00   | 0.002  | 0.1   | <10             | 未检出    | 1.01    | 0.0994 | 0.016 |
| 12/2/2017/5 | 2024.09.27   | 08:00   | 未检出    | 8.0   | 12              | 未检出    | 1.02    | 0.106  | 0.006 |
| A 1997 1 14 | 2024.09,27   | 14:00   | 0.004  | 100   | 11              | 未检出    | 0.97    | 0.1045 | 0.014 |
|             |              | 20:00   | 未检出    | (1.1) | 12              | 未检出    | 0.96    | 8.0960 | 0.013 |
| 14          |              | 02:00   | 3909   | 0.08  | <10             | 未检出    | 1.03    | 0.0953 | 0.018 |
|             | 2024.09.28   | 08:00   | 0.084  | 0.09  | 11              | 未检出    | 1.04    | 0.0948 | 0.020 |
|             | 2024.09.28   | 14:00   | 10.002 | 0.10  | 12              | 未检出    | (1/2)   | 0.0946 | 0.012 |
|             |              | 20:00   | 0.003  | 0.10  | 12              | 未检出    | (A) (B) | 0.106  | 0.015 |
|             |              | 04:00   | 未检出    | 0.07  | 11              | 未检出    | 1.05    | 0.0988 | 0.016 |
|             | 2024 00 20 = | 208:00  | 0.003  | 0.11  | 11              | 未检出。   | 7.02    | 0.100  | 0.013 |
|             | 2024.09.29   | 14:00   | 0.004  | 0.08  | 12              | # 10 X | 1.03    | 0.104  | 0.018 |
|             | 111          | 20:00   | 未检出    | 0.12  | 12              | 43/3/  | 0.98    | 0.100  | 0.015 |

第 98 页

|            | 02:00  | 0.302 | 0.07 | <10 | 未检出  | 1729   | 0.101  | 0.014 |
|------------|--------|-------|------|-----|------|--------|--------|-------|
| 2024 00 20 | 08:04  | 0.002 | 0.07 | 11  | 未检出  | ((0)   | 0.101  | 0.022 |
| 2024.09.30 | 11-00  | 未检出   | 0.11 | 11  | 未检出  | 1-18.0 | 0.0993 | 0.024 |
| :          | 120:00 | 0,003 | 0.11 | 12  | 未检出。 | 0.94   | 0.105  | 0.015 |
|            | 0.0    | 0.002 | 0.08 | <10 | 未检出  | 0.96   | 0.0925 | 0.016 |
| 2004.10    | 08:00  | 0.004 | 0.10 | 11  | 未检出了 | 0.93   | 0.0962 | 0.011 |
| 2024.10.0  | 14:00  | 0.003 | 0.11 | 12  | 朱捻出  | 0.94   | 0,100  | 0.018 |
|            | 20:00  | 0.004 | 0.08 | 12  | 未检出  | 0.95   | 0.105  | 0.015 |

# 表 4.5-5 (c) 1#凤翔小镇 VOC 各分项监测结果统计表

| 采样点   | 采样    | **    | N//          |                      |     |      | A      | a market       | $n^1$  |                |        |             |     |     |
|-------|-------|-------|--------------|----------------------|-----|------|--------|----------------|--------|----------------|--------|-------------|-----|-----|
| 位     | 山村    | 时间    | 1,1-二氯<br>乙烯 | 1,12-三氯<br>-122-三氟乙烷 | 氯丙烯 | 二氯甲烷 | 1,1-二萬 | 顺式-1,2二<br>氯乙烯 | 三氯甲烷   | 1,1,1-三氯<br>乙烷 | 四氯化碳   | 1,2二氯<br>乙烷 | 荣基荣 | 素素  |
| - 2   | 25    | 02:00 | 未检出          | 未检出                  | 未检出 | 9.3  | 表签     | 未检出            | 19.3   | 未检出            | 16.5   | 未检出         | 裁出  | 未检出 |
| 17/2  | 2024. | 08:00 | 未检出          | 未检出                  | 未检出 | 8//  | 未拉上    | 未检出            | 16.7   | 未检出            | 19.4   | 未检验         | 未松出 | 未松出 |
| 016   | 09.25 | 14:00 | 未检出          | 未检出                  | 未捡出 |      | 未检出    | 未检出            | 20.4   | 未检出            | 17.5   | 未松出         | た松出 | 未检出 |
| M     |       | 20:00 | 未检出          | 未检出                  | 未检出 | 3.8  | 未检出    | 未检出            | 19.6   | 未检出            | 16.1   | 大統          | 未检出 | 未检出 |
| ( , , |       | 02:00 | 未检出          | 未检出                  | 未检验 | 7.9  | 未检出    | 未松出            | 17.3   | 未检出            | 1725   | 李胜          | 未检出 | 未松出 |
| 1#凤翔  | 2024. | 08:00 | 未检出          | 未松出                  | 未检比 | 6.7  | 未检出    | 未检出            | 18.2   | 未松出            | 20.9   | 大松出         | 未检出 | 未检出 |
| 小镇    | 09.26 | 14:00 | 未松出          | 未检出                  | 人来经 | 8.4  | 未检出    | 未松出            | 17.1   | 未检验            | \$ 183 | 未检出         | 未检出 | 未松出 |
|       |       | 20:00 | 未检出          | 未松出                  | 未松出 | 8.6  | 未检出    | 未检出            | 17.3   | 未检查            | 16.3   | 未检出         | 未检出 | 未检出 |
|       |       | 02:00 | 未检出          | 未繰り                  | 未检出 | 8.3  | 未检出    | 未检出            | 18.5   | 未組             | 15.7   | 未检出         | 未检出 | 未检出 |
|       | 2024. | 08:00 | 未检出          | **                   | 未检出 | 8.6  | 未检出    | 未检出            | 17.4 / | 未检验            | 16.5   | 未检出         | 未检出 | 未检出 |
|       | 09.27 | 14:00 | 未检出          | <b>大大松</b> 出         | 未检出 | 7,7  | 未检出    | 未检出            | 107    | シ末出            | 16.6   | 未检出         | 未检出 | 未检出 |
|       |       | 20:00 | 未检出          | 3                    | 未松出 | 7.7  | 未检出    | 未松出            |        | 未检出            | 15.7   | 未检出         | 未检出 | 未检出 |

第 99 页

|         |       |       |          |                 | _ ^ X  |      |             |          |                |       |            |             |               |       |
|---------|-------|-------|----------|-----------------|--------|------|-------------|----------|----------------|-------|------------|-------------|---------------|-------|
|         |       | 02:00 | 未松出      | 未检出             | 大松出    | 8.0  | 未检出         | 未检出      | 17.7           | 未检出   | 156        | 未创出         | 未检出           | 未检出   |
|         | 2024. | 08:00 | 未检出      | 未检出。            | 一位出    | 7.4  | 未检出         | 未检出      | 183            | 未检    | 1.0        | 未检出         | 未检出           | 未检出   |
|         | 09.28 | 14:00 | 未松出      | 未检出人            | 未检出    | 6.9  | 未松出         | 未松出      | 18.1           | 未检验   | 1.4        | 未松出         | 未松出           | 未检出   |
|         |       | 20:00 | 未检出      | 未维              | 未检出    | 10.5 | 未检出         | 未松出      | 19.6           | 金     | 18.2       | 未检出         | 未检出           | 未松出   |
|         |       | 02:00 | 未检出      | 入海出             | 未松出    | 10.1 | 未松出         | 未检出      | 17.3           | 1 未松出 | 169        | 未检出         | 未检出           | 未检出   |
|         | 2024. | 08;00 | 未检出      | 出。其             | 未松出    | 9,3  | 未检出         | 未检出      | 19.0           | 未检出   | 18.5       | 未检出         | 未检出           | 未检出   |
|         | 09.29 | 14:00 | 未松出      | <b>未</b> 进      | 未松出    | 10.4 | 未松出         | 未松出      | 199            | 未检出   | 17.4       | 未松出         | 未检出           | 未检出   |
|         |       | 20:00 | **       | 未检出             | 未检出    | 8.8  | 未松出         | 未检出      | M7.9           | 未检出   | 17.8       | 未松出         | 未检出           | 未检出   |
|         |       | 02:00 | <b>F</b> | 未检出             | 未松出    | 10.4 | 未检出         | 未检图      | 8.9            | 未检出   | 15.8       | 未检出         | 未检出           | 未检出   |
|         | 2024. | 08:08 | 130米     | 未检出             | 未松出    | 10.5 | 未检出         | 人。       | 19.3           | 未检出   | 16.6       | 未检出         | 未松出           | 赤海鱼   |
|         | 09.30 | 1400  | 未检出      | 未检出             | 未检出    | 10.4 | 未检坎         | A COL    | 17.2           | 未检出   | 18.0       | 未检出         | 未检出           | 100   |
|         | 11    | 20:00 | 未检出      | 未检出             | 未检出    | 11.3 | 未验的         | 未出       | 19.0           | 未检出   | 17,4       | 未检出         | 未松长           | 光絵上   |
|         | Dav   | 02:00 | 未检出      | 未捡出             | 未检出    | 7.9  | 丰姓          | 未松出      | 18.6           | 未检出   | 17.7       | 未检出         | 未松出           | 未松出   |
| 3/4     | 1024. | 08:00 | 未松出      | 未检出             | 未检出    | 9.0  | 2 未拉出       | 未检出      | 18.4           | 未检出   | 16.7       | 未检出。        | 北部            | 未检出   |
|         | 10.01 | 14:00 | 未检出      | 未检出             | 未检出    |      | 未检出         | 未检出      | 17.8           | 未检出   | 18.3       | 未检的         | 未检出           | 未检出   |
|         |       | 20:00 | 未检出      | 未检出             | 未检出    |      | 未松出         | 未检出      | 18.6           | 未检出   | 19.1       | 未检路         | 未检出           | 未检出   |
| 采样点     | 采样    | 采样    |          |                 |        |      |             | 监测项目1911 | n <sup>j</sup> |       |            | <b>AL</b>   |               |       |
| 位       | 日期    | 时间    | 甲苯       | 反式-1.3-二氯丙<br>烯 | 1.12/3 | 四氯乙烯 | 1,2二溴<br>乙烷 | 氯苯       | 乙苯             | 苯     | 三氯医        | 7.2上氯<br>丙烷 | 1,2,4-三<br>氯苯 | 六氯丁二烯 |
|         |       | 02:00 | 5.0      | 未出 🗸            | (本松出   | 17.5 | 未松出         | 未松出      | 7,2            | 43,   | <b>海松出</b> | 未检出         | 未检出           | 未检出   |
| - Exp   | 2024. | 08:00 | 5.2      | 未检出一            | 未检出    | 18.3 | 未检出         | 未检出      | 7.7            | 3/3/  | 未检出        | 未检出         | 未检出           | 未检出   |
| 1#凤翔    | 09.25 | 14:00 | 4.6      | 未掺出             | 未检出    | 16.8 | 未松出         | 未检出      | 81             | 135   | 未松出        | 未检出         | 未检出           | 未检出   |
| - ] .4台 |       | 20:00 | 4.7      | / 未被比           | 未松出    | 18.2 | 未松出         | 未检出      | 8.5 2          | 4     | 未松出        | 未松出         | 未检出           | 未检出   |
|         | 2024. | 02:00 | 4.7      | 多松出             | 未松出    | 18.7 | 未检出         | 未松出      | 1660           | 3.3   | 未检出        | 未检出         | 未松出           | 未松出   |

第 100 页

| 采样   | 采样             | 采样             |      |           |        |       |                | 监测项目 <sub>11</sub> 9.11 |      |      |          |      |     |     |
|------|----------------|----------------|------|-----------|--------|-------|----------------|-------------------------|------|------|----------|------|-----|-----|
|      | - 2007         | 20:00          | 5.3  | 未姓        | 未检出    | 17.5  | 未检出            | 未检出                     | 14   | 5    | 未检出      | 未检出  | 未检出 | 未检出 |
|      | 10.01          | 14:00          | 5.1  | 来处        | 未检出    | 15.5  | 未松出            | 未检出                     | 7.4  | 170  | 未检出      | 未检出  | 未检出 | 未检出 |
|      | 2024.          | 08:00          | 4.5  | 未松出       | 未松出    | 14.8  | 未检出            | 未松出                     | 5.5  | 32   | 未检出      | 未检出  | 未检出 | 未松出 |
|      |                | 02:00          | 3.5  | 未检出       | 大米松出   | 14.6  | 未检出            | 未检出                     | 5.4  | 3.25 | 米检出      | 未检出  | 未检出 | 未检出 |
|      |                | 20:00          | 5.1  | 未检出       | L HOLE | 19.0  | 未检出            | 未检出                     | 7.5  | 4.4  | 金出       | 未检出  | 未检出 | 未检出 |
|      | 09.30          | 14:00          | 4.9  | 未检出       | 未检查    | 1.7.8 | 未松出            | 未检出                     | 5,7  | 3.3  | 未检认      | 和出   | 未检出 | 未检出 |
| 14   | 2024.          | 08:00          | 5.2  | 未松出       | 未检出    | 18.4  | 未检出            | 未检出                     | 6.6  | 3.6  | 未检出      | 争进   | 未检出 | 未检出 |
|      |                | 02:00          | 5.2  | 未松出       | 未松出    | N.    | 未检出            | 未检出                     | 7.0  | 4.3  | 未松出      | 未检验  | 未检出 | 未检出 |
|      |                | 20:00          | 5.2  | 未检出       | 未检出    | 50    | 接出             | 未检出                     | 7.3  | 4.5  | 未检出      | 未检的  | 未检出 | 未检出 |
| 13/4 | 2024           | 14:00          | 5.1  | 未检出       | 未检出    | 165   | <b>企</b> 表4. T | 未检出                     | 6,5  | 4.7  | 未检出      | 未检出。 | 和企  | 未松出 |
| 1    | 3024           | 08:00          | 4.2  | 未松出       | 未检出    | 14.5  | 本金出            | 未松出                     | 7.0  | 3.3  | 未检出      | 未检出  | 未松出 | 未检出 |
| 1    | 1,             | 02:00          | 5.0  | 未松出       | 未检出    | 18.1  | ***            | 未检出                     | 6.0  | 3.7  | 未检出      | 未检出  | 未松丛 |     |
|      |                | 20.00          | 5.2  | 未检出       | 未检出    | 17.0  | 未检比            | 和企业                     | 7.3  | 3.5  | 未检出      | 未松出  | 未检出 | 186 |
|      | 09.28          | 14:00          | -15  | 未松出       | 未松出    | 15.2  | 未检出            | · ANATOM                | 6.9  | 4.3  | 未检出      | 未检出  | 未松出 | 表為  |
|      | 2024.          | 08:00          |      | 未松出       | 未检出    | 16.4  | 未检出            | 未給的                     | 7.4  | 2.8  | 未松出      | 未松出  | 未检出 | 未检出 |
|      | _              | 02:00          | 7480 | 未松出       | 未松出    | 15.3  | 未松出            | 未检出                     | 9.4  | 4.7  | 未松出      | 未松出  | 未检出 | 未检出 |
|      | 777            | 20:00          | 5.0  |           | 未松出    | 15.7  | 未松出            | 未检出                     | V/18 | 4.0  | 未松出      | 栽出   | 未检出 | 未检出 |
|      | 2024.<br>09.27 | 14:00          | 4.9  |           | 未松出    | 15.9  | 未检出            | 未松出                     | 8.   | 4.6  | 未松出      | 未松出  | 未松出 | 未松出 |
|      | 2024           | 08:00          | 4.8  | CAMPILL . | 未松出    | 18.9  | 未松出            | 未松出                     | 7.3  | 1745 | 未松出      | 未松出  | 未松出 | 未松出 |
| +    |                | 20:00<br>02:00 | 4.7  | 未维力       | 未松出    | 14.8  | 未松出            | 未松出                     | 6.9  | 135  | 未检出      | 未松出  | 未松出 | 未松出 |
|      |                | 14:00          | 4.5  | 未检出人      | THANK  | 19.4  | 未检出            | 未检出                     | 7.1  | 3.9  | <b>金</b> | 未松出  | 未松出 | 未松出 |
|      | 09.26          | 08:00          | 3.8  | 未松出       | 大选出    | 17.7  | 未松出            | 未检出                     | 6.6  | 3.6  |          | 未出   | 未检出 | 未检出 |

第 101 页

| 点位   | 日期    | 时间    | 间,对二 | 邻二甲苯   | (秦文)庙 | 1,1,22-四氯<br>乙烷 | 4-乙基<br>甲苯 | 1,3,5-三甲<br>基苯 | 1,2,4三甲<br>基苯 | 顺式-1.3-二<br>氯丙烯 | A.A. | 入-二氯苯 | -    | #     |
|------|-------|-------|------|--------|-------|-----------------|------------|----------------|---------------|-----------------|------|-------|------|-------|
|      |       | 02:00 | 13.2 | 7.6    | 32    | 未松出             | 未松出        | 未检出            | 未检出           | 未检查             | 大学生  | 未检出   |      |       |
|      | 2024. | 08:00 | 129  | 6.7    | 3.5   | 未检出             | 未检出        | 未检出            | 未检出           | 未               | 未检出  | 未检出   | -    | -     |
|      | 09.25 | 14:00 | 16.0 | NA V   | 3.3   | 未松出             | 未检出        | 未检出            | 未检出。          | 来松出             | 未检出  | 未检出   | ~    |       |
|      |       | 20:00 | 15.2 | (3)3 V | 2.8   | 未松出             | 未检出        | 未检出            | 未检验           | 朱松出             | 未检出  | 未检出   |      | -     |
|      |       | 02:00 | 11.2 |        | 3.0   | 未检出             | 未检出        | 未检出            | 、未给长          | 未检出             | 未检出  | 未检出   | -    |       |
|      | 2024. | 08:00 | 1/3  | 6.4    | 2.8   | 未松出             | 未检出        | 未检出            | 大松上           | 未检出             | 未检出  | 未检出   |      |       |
|      | 09.26 | 14:00 | 29.5 | 5.9    | 2.9   | 未检出             | 未检出        | 未松生            | 未包出           | 未检出             | 未松出  | 未检出   |      | ***   |
|      |       | 20:00 |      | 6.3    | 3.0   | 未检出             | 未检出        | 失變出            | 未检出           | 未松出             | 未检出  | 未检出   |      | 7/    |
|      |       | 92,00 | 14.0 | 7.3    | 3.0   | 未检出             | 未检出,       | 少进             | 未检出           | 未检出             | 未松出  | 未检出   | -    |       |
|      | 2024  | 08:00 | 16.6 | 8.0    | 3.3   | 未检出             | 未检此        | · Fabet        | 未检出           | 未检出             | 未检出  | 未检出   | - 1  | 10    |
| #凤翔, | 09.27 | 14:00 | 133  | 7.0    | 3.2   | 未检出             | 未检出        | 未检出            | 未检出           | 未检出             | 未检出  | 未检出   | X    | - 1   |
| 小镇   | 35    | 20:00 | 12.7 | 6.3    | 2.7   | 未检出。            | 基金         | 未检出            | 未检出           | 未检出             | 未检出  | 未检出   | 10   | 11.00 |
| V    | ,     | 02:00 | 12.9 | 6.0    | 2.9   | 未经              | 未核出        | 未检出            | 未检出           | 未检出             | 未检出  | 未检比   | 22 - | -+    |
|      | 2024. | 08:00 | 123  | 6.6    | 3.0   | NX.             | 未检出        | 未检出            | 未检出           | 未检出             | 未检出  | 林兴    | _    | -     |
|      | 09.28 | 14:00 | 12.2 | 6.3    | 2.8   | 未総計             | 未检出        | 未检出            | 未检出           | 未检出             | 未检出  | 和独    | -    |       |
|      |       | 20:00 | 14.1 | 7,5    | 3,0   | 未进              | 未检出        | 未检出            | 未检出           | 未检出             | 未必。  | 电影出   | -    | **    |
|      |       | 02:00 | 129  | 6.1    | 128   | 未检出             | 未检出        | 未检出            | 未检出           | 未检出             | 未出   | 未检出   | -    | -     |
|      | 2024. | 08:00 | 143  | 7.0    | X 314 | 未检出             | 未检出        | 未检出            | 未松出           | 未检查             | 赤光出  | 未检出   | 2    | *     |
|      | 09.29 | 14:00 | 13.6 | 69     | 32    | 未松出             | 未检出        | 未检出            | 未检出           | 丰松              | 末检出  | 未检出   | -    |       |
|      |       | 20:00 | 12.2 | 53 V   | 3,5   | 未检出             | 未检出        | 未检出            | 未检出           | 承继              | 未松出  | 未检出   | -    |       |
|      | 2024. | 02:00 | 12.8 | 1/258  | 3.3   | 未检出             | 未检出        | 未检出            | 未检火           | 上卷床             | 未松出  | 未检出   | -    | +     |
|      | 09.30 | 08:00 | 11.4 | 3.5    | 3.6   | 未检出             | 未松出        | 未松出            | 7/1/2         | 未松出             | 未检出  | 未松出   | -    |       |

第 102 页

|       | 14:00 | 12.1 | 6.5        | 3.4 | 未检出 | 未检出 | 未检出 | 未松出 | 未松出 | 大松出 | 未織出 | - |   |
|-------|-------|------|------------|-----|-----|-----|-----|-----|-----|-----|-----|---|---|
|       | 20:00 | 11.7 | 6.4        |     | 未检出 | 未检出 | 未检出 | 未检出 | 未检  | (本) | 未松出 | ~ | - |
|       | 02:00 | 12.5 | 6.4        | 2.7 | 未检出 | 未检出 | 未检出 | 未检出 | 未松出 | 北北  | 未检出 |   | - |
| 2024. | 08:00 | 14.1 | 151        | 3.2 | 未检出 | 未检出 | 未检出 | 未检出 | 米金  | 未检出 | 未检出 |   | - |
| 10.01 | 14:00 | 12.6 | A CONTRACT | 3.5 | 未松出 | 未松出 | 未检出 | 未检出 | 未松出 | 未检出 | 未检出 |   | - |
|       | 20:00 | 13.3 | 10 801     | 3.5 | 未检出 | 未检出 | 未检出 | 未检论 | 未松出 | 未检出 | 未松出 | - | - |

# 表 4.5-6 (a) 2#墨子森林公园 VOCs 各分页临测结果统计表

| 监测点位     | 采样日期        |         |                 | 华沙汶   | 日均值 单            | 位: mg/m³          |                |          |
|----------|-------------|---------|-----------------|-------|------------------|-------------------|----------------|----------|
| 血测点证     | 木件口期        | 甲醇      | SO <sub>2</sub> | M     | PM <sub>10</sub> | PM <sub>2.5</sub> | O <sub>3</sub> | 硫酸       |
| 12/11    | 2022/9/29   | 未检出     | 0.07.13         | 0.022 | 0.099            | 0.043             | 0.045          | -\/      |
| · X      | 2024/9/25   |         | AX              | 4.    | **               |                   |                | 0.01     |
| V        | 2022/9/30   | 未检出     | 0:017           | 0.023 | 0.095            | 0.041             | 0.048          | 17       |
| 25       | 2024/9/26   | - 1     | 17-7            | 44    |                  | 4.0               |                | 1 20.012 |
|          | 2022/10/1   | 未被处     | 0.016           | 0.020 | 0.105            | 0.045             | 0.052          | 5 -      |
| 7        | 2024/9/27   |         |                 |       | **               |                   | 1/4/           | 0.018    |
| 2#墨子森林公园 | 2022/10/2   | 朱检出     | 0.013           | 0.020 | 0.091            | 0.048             | 0.857          |          |
| 27金丁斌外公四 | 2024/9/28   |         |                 | -     |                  | - 1               |                | 0.018    |
|          | 2022/10/3   | *   未检出 | 0.015           | 0.027 | 0.085            | 250               | 0.053          |          |
|          | 2024/900    |         |                 |       | 224              | 2.10              | 19             | 0.018    |
|          | 2022/10/4   | 未检出     | 0.014           | 0.022 | 0.088            | 9.0 3             | 0.059          |          |
|          | 2/2024/9/30 |         |                 | 44    | - 11             | 7-                |                | 0.015    |
|          | 2022/10/5   | 未检出     | 0.015           | 0.025 | 0.089            | 0.039             | 0.061          |          |
|          | 2024/10/1   |         |                 |       | 11/2-            |                   |                | 0.014    |

第 103 页

|       | The second section is a second |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | つる業子をはんほけん世界を取り削を申一歩手                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2 (0) | 2#墨子森林公园环境空气监测结果一览表                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| 采样点位         | 采样日期       | 采样时间  | /X   | All I | 监测项目 | 目(小时值 | , 单位: mg/m <sup>1</sup> , | 其中臭   | 不      | 量例)             |                 |      |                |
|--------------|------------|-------|------|-------|------|-------|---------------------------|-------|--------|-----------------|-----------------|------|----------------|
| <b>本什</b> 黑世 | 木件口的       | 本社が1回 | 硫化氢  | 氨     | 臭气浓度 | 甲醇    | 非甲烷总烃                     | VOCs. | 入硫酸    | SO <sub>2</sub> | NO <sub>2</sub> | CO   | O <sub>3</sub> |
|              |            | 02:00 | 未起   | 未检出   | 未检出  | 未检出   | 0.75                      | 0.187 | 0.009  | 0.013           | 0.021           | 0.6  | 0.041          |
|              | 2022.09.29 | 08-80 | 未检出  | 未检出   | 未检出  | 未检出   | 0.85                      | 0.192 | 0.007  | 0.018           | 0.025           | 0.6  | 0.033          |
|              | 2022.09.29 | 1000  | 未检出  | 未检出   | 未检出  | 未检出   | 0.83 7/1                  | 19243 | 0.012  | 0.016           | 0.028           | 0.6  | 0.055          |
|              |            | 20:00 | 未检出  | 未检出   | 未检出  | 未检出   | 0 79                      | 0.237 | 0.016  | 0.011           | 0.027           | 0.7  | 0.046          |
|              | X          | 82.00 | 未检出  | 未检出   | 未检出  | 未检出   | 2.62                      | 0.216 | 0.018  | 0.021           | 0.022           | 0.7  | 0.052          |
|              | 2022 00 20 | 08:00 | 未检出  | 未检出   | 未检出  | 未检出   | 0.86                      | 0.220 | 0.013  | 0.013           | 0.030           | 0.6  | 0.016          |
|              | 2023.05    | 14:00 | 未检出  | 未检出   | 未检出  | 未检工   | 0.81                      | 0.274 | 0.014  | 0.017           | 0.022           | 0.8  | V S            |
|              | -1         | 20:00 | 未检出  | 未检出   | 未检出  | 主核区   | 0.81                      | 0.210 | 0.015  | 0.015           | 0.025           | 0.7  | 10             |
| 1            | V          | 02:00 | 未检出  | 未检出   | 未检出  | 天脸出   | 0.80                      | 0.211 | 0.016  | 0.013           | 0.029           | 0.6  | 0.048          |
| 墨子           | 2022.10.1  | 08:00 | 未检出  | 未检出   | 未检出  | 、未检出  | 0.84                      | 0.228 | 0.006  | 0.017           | 0.033           | 1974 | 0.059          |
| 经区园          | 2022.10,1  | 14:00 | 未检出  | 未检出   | **** | 未检出   | 0.88                      | 0.285 | 0.014  | 0.016           | 0.8325          | 0.6  | 0.05           |
|              |            | 20:00 | 未检出  | 未检出   | 未签证  | 未检出   | 0.81                      | 0.243 | 0.013  | 0.0197          | 0.928           | 0.7  | 0.055          |
| 11           |            | 02:00 | 未检出  | 未检出   | 夫检出  | 未检出   | 0.80                      | 0.226 | 0.018  | 70.0            | 0.019           | 0.7  | 0.060          |
| •            | 2022.10.2  | 08:00 | 未检出  | 未检出   | 未检出  | 未检出   | 0.82                      | 0.253 | 0.020  | N DAY           | 0.021           | 0.5  | 0.053          |
|              | 2022.10.2  | 14:00 | 未检出  | 来後田   | 未检出  | 未检出   | 0.89                      | 0.274 | 0 (18) | 0.014           | 0.020           | 0.6  | 0.058          |
|              |            | 20:00 | 未检出〉 | 未检出   | 未检出  | 未检出   | 0.86                      | 0.252 | 30 W   | 0.012           | 0.024           | 0.6  | 0.064          |
|              |            | 02:00 | 未检出  | 未检出   | 未检出  | 未检出   | 0.83                      | 0.225 | 016    | 0.017           | 0.030           | 0.5  | 0.054          |
|              | 2022.10.3  | 08:00 | 金岭出  | 未检出   | 未检出  | 未检出   | 0.85                      | 9,260 | 0.013  | 0.011           | 0.027           | 0.6  | 0.046          |
|              | 2022.10.3  | 14:50 | 、未检出 | 未检出   | 未检出  | 未检出   | 0.86                      | THE   | 0.018  | 0.018           | 0.033           | 0.6  | 0.058          |
|              |            | 70.20 | 未检出  | 未检出   | 未检出  | 未检出   | 0.82                      | 150-V | 0.015  | 0.015           | 0.030           | 0.6  | 0.060          |

第 104 页

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 704 B101   | 七上有限公司  | MEMANA | 然相知化于阳1 | 能示范项目环 | · 原东河町区中下 | ,     | 1/2   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|---------|--------|---------|--------|-----------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02:00 | 未检出        | 朱松出     | 未检出    | 未检出     | 0.81   | 0.236     | 0.02  | 0.018 | 0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.6   | 0.050 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08:00 | 未检出,       | A TALL  | 未检出    | 未检出     | 0.87   | 0.239     | 0.00  | 0.013 | 0.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.7   | 0.069 |
| 2022.10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14:00 | 未检验        | 未检出     | 未检出    | 未检出     | 0.86   | 0.293     | 2 000 | 0.012 | 0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8   | 0.061 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20:00 | 未後出        | 未检出     | 未检出    | 未检出     | 0.88   | 0.252     | 0.015 | 0.015 | 0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5   | 0.055 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02:00 | 为<br>某种.   | 未检出     | 未检出    | 未检出     | 0.83   | 0.208     | 0.016 | 0.014 | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5   | 0.061 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00  | 表检出        | 未检出     | 未检出    | 未检出     | 0.92   | 9.261     | 0.011 | 0.017 | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.7   | 0.064 |
| 2022.10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14    | 未检出        | 未检出     | 未检出    | 未检出     | 0.87   | 0.312     | 0.018 | 0.018 | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.7   | 0.053 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20:00 | 未检出        | 未检出     | 未检出    | 未检出     | . 0    | 0.237     | 0.015 | 0.015 | 0.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5   | 0.068 |
| A STATE OF THE PARTY OF THE PAR |       |            |         |        | P       | 1      |           |       | / Y   | The state of the s | V     | (1,1) |
| ART THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |         |        |         |        |           |       |       | 内部                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ARIV ARIVE | X. KILL |        |         |        |           |       |       | 根据                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N. V. |       |

| 表 4.5-6 (c) | 2#墨子森林公 | 园环草亭 | 临测结果一 | 览表 |
|-------------|---------|------|-------|----|
|-------------|---------|------|-------|----|

|              | 表 4.3-6 (c)  | 2#墨子森林公园 冰第五 | 监测结果一览表  |
|--------------|--------------|--------------|----------|
| 采样点位         | 采样日期         | 采样时间人,       | 硫酸 mg/m³ |
|              |              | 02:00        | 0.015    |
|              | 2024.09.25   | 08:00        | 0.016    |
|              | 2024.09.23   | 14,500       | 0.012    |
|              |              | 20:00        | 0.018    |
|              | 11.          | 02:00        | 0.014    |
|              | 2020 00 20   | 08:00        | 0.012    |
|              | 200920       | 14:00        | 0.013    |
|              | 7-10/        | 20:00        | 0.009    |
| 1.5          | 3            | 02:00        | 0.021    |
|              | 7024 00 27   | 08:00        | 0.015    |
|              | 2024.09.27   | 14:00        | 0,013    |
|              |              | 20:00        | 7,0.037  |
|              | 2024.09.28   | 02:00        | 0.025    |
| △ 墨子森林<br>公园 |              | 08:00        | 0.014    |
| 公园           |              | 14:00        | 0.015    |
| 5/11/        |              | 20:00        | 0.016    |
| ,            | 2024.09.29   | 02:00        | 0.014    |
|              |              | 08:00        | 0.018    |
|              |              | 14-84        | 0.020    |
|              |              | 1/1/2000     | 0.020    |
|              |              |              | 0.016    |
|              | 2024.00.30   | 08:00        | 0.014    |
|              | 2024.0130    | 14:00        | 0.015    |
|              | 1.14         | 20:00        | 0.016    |
|              | X            | 02:00        | 0.014    |
|              | 2024.10.01   | 08:00        | 0.013    |
| _ 😓          | V 2024.10.01 | 14:00        | 0.012    |
| W. W.        |              | 20:00        | 1985     |

## 现状评价

①评价因子

本次评价因子为  $SO_2$ 、 $NO_2$ 、 $PM_{10}$ 、 $PM_{2.5}$ 、CC  $O_3$  氨、硫化氢、甲醇、硫酸雾、非甲烷总烃、 $VOC_8$ 、TSP,臭气浓度无质量标准,不予评价。

②评价标准详见表 1.6-2。

③评价方法

采用单因子指数法进行评价,某污染物的单尺子指数 Pi. 具体计算如下:

- 112-m

式中, Pi——i 污染物的单因子指数;

 $C_i$ —i污染物的实测速度值, $mg/Nm^3$ ;

Csi—i污染物的评价标准,mg/Nm³。

当 Pi≤1 时,表示该专案物不超标;当 Pi>1 时,表示该污染物超标准。

## ③评价结果

各监测点的单尺子指数见表 4.5-7。

表 4.5-7 监测结果评价表

|      | - A V           |         | 衣 4.3-     | / 西/四      | 后米许川农       |      | 1.          |          |
|------|-----------------|---------|------------|------------|-------------|------|-------------|----------|
| 115  | 多证复             | Į.      | 氨          |            |             | 罗    | 襲           |          |
| 0    | 小时浓度            | 度       | 小时浓        | 度          | 小时浓         | 度力力  | 〇日均值        | 直        |
| 位    | 评价范围            | 超标率     | 评价范围       | 超标率        | 评价范围        | A ST | 评价范围        | 超标率      |
| 14   | 未检出~ 0.4        | 0       | 0.3~0.6    | 0          | 未验出         | 0    | 未捡出         | 0        |
| 2#   | 未检出             | 0       | 未检出        | 0          | 泰省出         | 0    | 未检出         | 0        |
| 监    | 非甲烷总            | 烃       | VOCs       | 1          | - 4         | 硫菌   | <b>沒零</b>   |          |
| 测    | 小时浓度            | <b></b> | 小时浓        | 度。         | 小时浓         | 度    | 日均值         | 直        |
| 监测点位 | 评价范围            | 超标率     | 评价范围。      | The second | 评价范围        | 超标率  | 评价范围        | 超标率      |
| 1#   | 0.465~<br>0.545 | 0       | 0.04       | 0          | 0.02~0.08   | 0    | 0.11~0.19   | 1        |
| 2#   | 0.375~0.460     | 0       | 2.094-2.65 | 0          | 0.03~ 0.083 | 0    | 0.12~0.18   | 0        |
| 此    | 总悬浮颗精           | 立物      | 00         |            | PM10        | )    | PM2.        | 5        |
| 监测点位 | 日均值             | No.     | 小时浓        | 度          | 日均值         | 直    | 日均值         | i/       |
| 位    | 评价范围人           | 中       | 评价范围       | 超标率        | 评价范围        | 超标率  | 评价范围。       | <b>参</b> |
| 1#   | 0.570~0.773     | 0       | -/         | . /        | /           | 1    |             | 1        |
| 2#   | 105°            | 1       | 0.04~0.08  | 0          | 1.7~2.1     | 100% | 1.1-191     | 100%     |
| 监    | 7/4             | 0       | 3          |            |             | 13   | 165         |          |
| A)   | 小时浓度            |         | 日均值        |            | 小时浓         | 度    | / 日均        | 直        |
| 位    | 评价范围            | 超标率     | 评价范围       | 超标率        | 评价范围        | 超频率  | 评价范围        | 超标率      |
| 2#   | 0.206~0.431     | 0       | 0.30~0.41  | 0          | 0.011-0.021 | 0    | 0.013~0.017 | 0        |
| 监    |                 | N       | 02         |            | 11/         | V    |             |          |
| 监测上  | 小时浓度            | 雙       | 日均值        |            | XIII        | •    |             |          |
| 点位   | 评价范围            | 超标率     | 评价范围       | 超标本        |             |      | ^           |          |
| 2#   | 0.095~0.15      | 0       | 0.25~0.338 | 20         |             |      |             |          |

根据表 4.5-7 评价结果可知 《监测点位甲醇小时浓度、日均浓度、氨、硫

第 107 页

化氢小时值均能满足《环境影响评价技术导列》/ (HJ2.2-2018)附录 D; VOCs、非甲烷总烃小时值均能满足《大气冷染物实合排放标准》(GB16297-1996) 表 2 无组织排放监控浓度限值 1/2 要求。

2#监测点位墨子森林公园监测点、SO<sub>2</sub>、NO<sub>2</sub>、O<sub>3</sub>日均浓度值(O<sub>3</sub>为日最大 Sh 平均值标准折算)和小时浓度值、PM<sub>2</sub>0、PM<sub>2</sub>5日均浓度、CO 小时浓度值均能满足《环境空气质量标准》(AB1095-2012)一级标准要求,甲醇小时浓度、日均浓度,氨、硫化氢、胶管均能满足《环境影响评价技术导则大气环境》(HJ2.3.79/19) 附录 D; VOC 《非甲烷总烃小时值均能满足《大气污染物综合排放标准》(GB16217/1897)表 2 无组织排放监控浓度限值 1/2 要求。

便据《枣庄市"十四五"生态环境保护规划》相关内容、区域环境空气改善。 冷理措施如下:

【污染治理方案

- 1、实施重点行业 NOx 等污染物深度治理。积极开展焦化、水泥行业超低排放改造,推进玻璃、陶瓷、铸造、铁合金署经工污染深度治理。加强燃煤机组、锅炉污染治理设施运行管控,确保按照超低排放要求稳定运行。全面加强无组织排放管控,严格控制铸造、铁合金、焦化、水泥、砖瓦、石灰、耐火材料等行业物料储存、输送及生产工艺过程发组织排放。重点涉气排放企业逐步取消烟气旁路,因安全生产无法取消的一定装在线监管系统及备用处置设施。引导重点企业在秋冬季安排停产检验、维修、减少污染物排放。
- 2、大力推进重点行业 VOCs 治理。化工、包装印刷、工业涂装等重点产业建立完善源头替代、过程管控和末端治理的 VOCs 全过程控制体系。严格执行 VOCs 行业和产品标准。全面推进低 VOCs 含量工业涂料、油墨、腹粘药、清洗 动等原种料使用。新(改、扩)建工业涂装、包装印刷等含义。原辅材料使用的项目,原则上使用低(无) VOCs 含量产品。开展成品油、有机化学品等涉 VOCs 物质储罐排查,除因安全生产等原因必须保留的区外,逐步取消煤化工、制药、农药、化工、工业涂装、包装印刷等企业;必要的 VOCs 废气排放系统旁路。持续开展重点行业泄漏检测与修复(LIDAR),建立健全管理制度,重点加强搅拌器、泵、压缩机等动密封点、以及低点导淋、取样口、高点放空、液位计、

仪表连接件等静密封点的泄漏管理。2023年4万万,亿工行业集中的工业园区要建立统一的 LDAR 信息管理平台。推进工业园区、企业集群因地制宜推广建设涉 VOCs"绿岛"项目,各区(市)抵照本地实际需求,推动涂装类统筹规划、分类建设一批集中涂装中心、活性炭集中处理中心、溶剂回收中心。加强汽修行业 VOCs 综合治理,加大多位曲烟污染治理力度。对排放量大,排放物质以烯烃、芳香烃、醛类等为主的企业制度"一企一策"治理方案。围绕重点行业、重点企业,科学制定差异化的转锋(时)生产措施,培育绿色标杆企业,实施限停产绿色、免,避免"一万分次"有效减少夏秋季挥发性有机物排放总量。有条件的工业园区率先开展 VOCs 监测预警监控试点工作,积极开展走航监测、网格化监测及溯源

虽化车船油路港联合防控。加强新车源头管控 严格执行国家新生产机 叫道路移动机械排放标准,加大机动车、非复格表动 段排放标准要求的重型柴油车。严格落实营足 型柴油车燃料消耗量达标核查, 不满足标准限值要求的新车型禁止进入道路运输市场。严格执行汽柴油质量标准, 使用 链条监管, 加大执法力度, 取缔黑加 油站点,严厉打击制售劣质和《各名油品等违法行为。2025年年底前,符合国 家标准规定的储油库和长光度确定为重点排污单位的加油站,应安装油气回收食 动监控设备并与生态深境部、联网。采取自动监控和人工抽测模式,继续加 用机动车和非道路移动机械排气达标监管力度。淘汰或更新升级老旧工程 继续开展非道路移动机械编码登记、定位管控,基本消除未登记、未监管现象 ••围,将城市规划区、高新区、开发区、各类 高排放汽车禁行区。到 2022年,将禁止使用高速发 扩大至市、区(市)建成区及镇(街道)驻地。实施船外动机第二阶段标准和 油船油气回收标准。推进内河船型标准化,截ç沟流使用 20 年以上的内河航运 船舶,依法强制报废超过使用年限的航运船舶,严禁新建不达标船舶进入运输市 场,推广使用纯电动和天然气船舶。强化船舶发动机升级或尾气处理,加大京杭

运河主要港口污染防治力度,加快港口岸电话,企业设和船舶受电设施设备改造,推进岸电使用常态化。

- 4、推进扬尘精细化管控。全面加强各类施工工地、道路、工业企业料场堆 场、露天矿山和港口码头扬尘精细化管控。加强施工扬尘精细化管控,建立并动 态更新施工工地清单。全面扩泛绿色施工,将绿色施工纳入企业资质评价。严格 落实建筑工地扬尘防治 大风措施",规模以上建筑施工工地安装在线监测和视频 监控设施,并接入发放监管平台;道路、水务等线性工程科学有序施工。 尘机械化湿式清扫作业,鼓励使用纯吸式吸尘车,城市建成区主次干道机器 水率分别达到90%,加大城市出入口、城乡接合部、支路街巷等道路冲洗保洁 干道深度保洁覆盖范围,实施道路分类保洁分级作业方式。推广 规范房屋建筑(含拆除) 5. 负荷走航监测等先进路面积尘实时监控技术 、市政工程建筑垃圾密闭运输和扬尘防控,建筑发现运输车必须按规定的时 旬和路线通行,落实硬覆盖与全密闭运输,实行质量信誉等级管理,通过视频监 控、车牌号识别、安装卫星定位设备等措施、工作全过程监督。加强城市裸地、 粉粒类物料堆放和拆迁闲置地块排查、严格落实硬化、绿化、苫盖等治理措施, 强化绿化用地扬尘治理。实施矿文全边程为尘污染防治,在基建、开采及加工、 修复等环节实施严格有效的抑义措施》大型煤炭和矿石码头、干散货码头物料堆 场,全面完成抑尘设施建设和物料输送系统封闭改造,对有条件的码头堆场实施 全密闭改造。将扬尘客望了个不到位的纳入建筑市场信用管理体系,情 列入建筑市场主体 黑名单"。
- 5、探索推动大气氨排放控制。探索建立大气氨规范化排放清单、摸清重点排放源。严格执行重点行业大气氨排放标准及监测、控制技术规范。有效控制烟气脱铜和氨法脱硫过程中氨逃逸。推进养殖业、种植业大量发展放控制,加强源头防控,优化饲料、肥料结构。开展大型规模化养殖场,为氨排放总量控制试点,力争 2025 年年底前,大型规模化养殖场大气氨排放总量的减完成省分解任务。
- 6、加强其他涉气污染物治理。加强消耗臭氧层物质和氢氟碳化物履约管理,对消耗臭氧层物质的生产、使用实行总量控制和配额管理,含氢氯氟烃(HCFCs)实施淘汰和替代,鼓励、支持消耗臭氧层物质替代品和替代技术的科学研究、技



术开发和推广应用。持续推动三氟甲烷(HICL)的销毁和转化。加强恶臭、有毒有害大气污染物防控,对恶臭投诉较多的重点企业和园区安装电子鼻监测。加大其他涉气污染物的治理力度,强化多污染物协同控制。基于现有烟气污染物控制装备,推进工业烟气中三氧化硫、汞、铅、砷、镉等多种非常规污染物强效脱除技术的研发应用。加强生物质锅炉燃料品质及排放管控,禁止掺烧垃圾、工业固度,对污染物排放,能量产达标的生物质锅炉进行整改或淘汰。

## 4.5.2 地表水环境吸状调查与评价

#### 4.5.2.1 地表大环境质量现状调查

# 1、大量测断面

於任价引用企业在建项目《兖矿鲁南化工有限公司甲醇名员装置更新改造 产能整分项目环境影响报告书》中地表水监测数据,共布设计个监测断面,调查 项目区域地表水水质情况。

具体监测情况见表 4.5-8; 地表水监测断面分类图见图 4.5-2。

|    |      | 46 T.J-0 AL  | A SA SOUND WATER INT           |
|----|------|--------------|--------------------------------|
| 编号 |      | 断面位置         | 设置意义                           |
| 1# | 小沂河  | 鲁化西厂火炬东侧,长脚面 | 了解厂区废水汇入前上游小沂河<br>来水水质、水量现状    |
| 2# | 小沂河  | 沂河桥(木石邮号) 断面 | 了解鲁化净化水厂出水水质、水量现状              |
| 3# | ু≲িল | 科诚传工东侧小桥处    | 了解污水处理厂排水汇入后<br>完全混合水质、水量现状    |
| 4# | 小沂河  | 道西 区北 500小桥处 | 了解污水处理厂排水汇入后<br>经一定衰减后的水质、水量现状 |

表 4.5-8 地表水及从监测断面

# 2、监测项图

水温、pH、溶解氧、COD、BOD5、NH3-N、SS、高指数、总氮二总磷、氟化物、氰化物、挥发酚、氯化物、硫酸盐、硝酸盐、亚硝酸盐、石油类 硫化物、含度 基太肠菌群、六价铬、铜、铅、锌、镉、砷、硒、镉 60 人名盐量、阴离子表面活性剂、甲醇、甲醛、苯、甲苯、二甲苯共 35 项。同的测定各监测断面的流速、流量、河宽、水深等水文参数。

## 3、分析方法

分析方法见表 4.5-9。

表 4.5-9 地表或水质监测分析方法

| 分析项目      | 分报发达 | 方法依据       | 检出限       |
|-----------|------|------------|-----------|
| STILL VIE | 100  | 7,74,14,16 | LIZELITY. |

#### 兖矿鲁南化工有限公司微反应高效合成精细化学品节能**表现**。2015年11月11日

| 分析项目      | 分析方法          | 方法核据              | 检出限        |
|-----------|---------------|-------------------|------------|
| pH值       | 电极法           | 47/1147-2020      | 范围 0-14    |
| 溶解氧       | 电化学探头法        | HJ 506-2009       | _          |
| 化学需氧量     | 重铬酸盐法         | HJ 828-2017       | 4mg/L      |
| 五日生化需氧量   | 稀释与接种法        | HJ 505-2009       | 0.5mg/L    |
| 氨氮        | 纳氏试剂分光光度法     | HJ 535-2009       | 0.025mg/L  |
| 悬浮物       | 重量法           | GB/T 11901-1989   | 4mg/L      |
| 高锰酸盐指数    | 滴定法           | GB 11892-1989     | 0.5mg/L    |
| 总磷        | 银酸酸分光光度法      | GB/T 11893-1989   | 0.01mg/L   |
| 总氮        | 、             | НЈ 636-2012       | 0.050 (    |
| F.        | 离子色谱法         | HJ 84-2016        | 0,006mg/L  |
| 氰处物       | 异烟酸-吡唑啉酮分光光度法 | HJ 484-2009       | 1 004 mg/L |
| 漢发酚       | 4-氨基安替比林分光光度法 | HJ 503-20092      | 0.0003mg/L |
| 11/200    | 离子色谱法         | HJ 84-2016        | 0.018mg/L  |
| C1-       | 离子色谱法         | HI 4200           | 0.007mg/L  |
| 亚硝酸盐氮     | 分光光度法         | GB 7 (4.3-1987    | 0.003mg/L  |
| NO3 (以N计) | 离子色谱法         | JU 84-2016        | 0.004mg/L  |
| 石油类       | 紫外分光光度法       | /NV 970-2018      | 0.01mg/L   |
| 硫化物       | 亚甲基蓝分光光度过     | HJ 1226-2021      | 0.01mg/L   |
| 色度        | 铂钴标准比色法       | GB/T 11903-1989   | 5度         |
| 粪大肠菌群     | 多管发展发         | HJ 347.2-2018     | 20MPN/L    |
| 六价铬       | 二苯碳酰乙酰人类度法    | GB/T 7467-1987    | 0.004mg/L  |
| 铜         | 电感耦合等等于质谱法    | НЈ 700-2014       | 0.08μg/L   |
| 铅         | 电图为发展离子体质谱法   | HJ 700-2014       | 0.09µg/L   |
| 锌         | ,用壓稠台美寫子体质谱法  | НЈ 700-2014       | 0.67µg/L   |
| 镉         | 角感耦合等离子体质谱法   | НЈ 700-2014       | 0.05       |
| 砷         | 电感耦合等离子体质谱法   | НЈ 700-2014       | 0.12/12    |
| 硒。 \/>    | 电感耦合等离子体质谱法   | HJ 700-2014       | QAT Ig L   |
| ***       | 原子荧光法         | НЈ 694-2014       | 047.g.L    |
| 小學界書      | 重量法           | HJ/T 51-1902      | mg/L       |
| 高,新面括性剂   | 亚甲蓝分光光度法      | GB/T 7494-1457    | 0.05mg/L   |
| 串醇        | 顶空/气相色谱法      | HJ 365 2017       | 0.2mg/L    |
| 甲醛        | 乙酰丙酮分光光度法     | 1601-200          | 0.05mg/L   |
| 苯         | 顶空/气相色谱法      | 1 15 10 67 - 1019 | 2ug/L      |
| 甲苯        | 顶空/气相色谱法 人    | HJ1067-2019       | 2ug/L      |
| 邻-二甲苯     | 顶空/气相色谱法 、    | HJ1067-2019       | 2ug/L      |
| 间-二甲苯     | 顶空气相色谱法       | HJ1067-2019       | 2ug/L      |
| 对-二甲苯     | 顶空气机倒清净       | НЈ1067-2019       | 2ug/L      |

はは

#### 4、检测时间和频次

2024年9月25日-27日, 监测3天

# 5、监测结果

监测结果见表 4.5-10 和表 4

地表水监测期间参数

| 采样点位            | 采样日期        | <b>美国</b> | — 水温<br>(°C) | 水面宽<br>(m) | 水深<br>(m) | 流速<br>(m/s) | 流量<br>(m³/s) |
|-----------------|-------------|-----------|--------------|------------|-----------|-------------|--------------|
| 1#小沂河-          | 2024 (0.28) | 10:10     | 21.2         | 5.33       | 0.35      | 0.02        | 0.026        |
| 鲁化西厂火炬东侧        | 2024        | 11:15     | 22.8         | 5.33       | 0.35      | 0.02        | 1000         |
| 小桥断面            | 1024.00.27  | 10:11     | 23.2         | 5.33       | 0.35      | 0.02        | 0.0261       |
|                 | 2 24.09.25  | 10:53     | 21.4         | 4.27       | 0.40      | 0.20        | 0.167        |
| 石的层面            | 2024.09.26  | 10:59     | 23.0         | 4.27       | 1.40//    | 0.20        | 0.167        |
| 断面              | 2024.09.27  | 10:48     | 23.2         | 4.27       | 100       | 0.20        | 0.167        |
| 3#小沂河-          | 2024.09.25  | 11:27     | 21.4         | 9/2        | 2.03      | 0.08        | 0.342        |
| 科诚化工            | 2024.09.26  | 11:41     | 23.2         | 10         | 0.62      | 0.08        | 0.342        |
| 东侧小桥            | 2024.09.27  | 11:19     | 23.4         | 9.85       | 0.62      | 0.08        | 0.342        |
| 4#小沂河-          | 2024.09.25  | 11:59     | 1            | 27.23      | 1.17      | 静流          |              |
| 道西小区<br>北 500 小 | 2024.09.26  | 12:02     | 11.5         | 27.23      | 1.17      | 静流          |              |
| 桥处              | 2024.09.27  | 717       | 23.6         | 27.23      | 1.17      | 静流          | I -          |
|                 |             |           |              |            |           |             |              |

THE LIFE IN THE PARTY OF THE PA

| ¥ 4.5-11 | 地表水监测结果统计表                           |
|----------|--------------------------------------|
|          | ************************************ |
| - T T- 1 | 10 42 / \m / \m / \m   25            |

| 采样 | 采样         | 采样     |               | 4           | 44.5-11       |                          | 监测项目              | 1/1    |             |             |            |
|----|------------|--------|---------------|-------------|---------------|--------------------------|-------------------|--------|-------------|-------------|------------|
| 点位 | 日期         | 时间     | pH 值<br>(无量纲) | <b>海</b> 斯夏 | 化学需氧量<br>mg/L | BOD <sub>5</sub><br>mg/L | 高锰酸盐指数<br>mg/L    | Age I  | 悬浮物<br>mg/L | 总磷<br>mg/L  | 总氮<br>mg/L |
|    | 2024.09.25 | 10:10  | 750           | 7.9         | 13            | 3.0                      | 4.5               | 70.324 | 6           | 0.09        | 8.96       |
| 1# | 2024.09.26 | 11:15  | MIN           | 7.6         | 16            | 3.7                      | 4.4               | 0.327  | 5           | 0.07        | 9.13       |
|    | 2024.09.27 | 10:11  |               | 7.5         | 18            | 4.2                      | 13/10             | 0.316  | 4           | 0.08        | 8.83       |
|    | 2024.09.25 | 10:52  | 77            | 7.8         | 17            | 4.0                      | Di.               | 0.185  | 6           | 0.11        | 13.2       |
| 2# | 2024.09.26 | 10.50  | 7.6           | 7.5         | 19            | 4.4                      | 1 1917            | 0.204  | 7           | 0.11        | 13.2       |
|    | 2024.09.27 | VIQ #8 | 7.6           | 7.5         | 16            | 3.7                      |                   | 0.190  | 5           | 0.13        | 131        |
|    | 2024.09.25 | 11:27  | 7.7           | 7.8         | 13            | 3.0                      | 5.6               | 0.196  | 6           | 0.07        | N. J.      |
| 3# | 2024 00-26 | 11:41  | 7.8           | 7.5         | 13            | 3.0                      | 5.4               | 0.209  | 6           | 0.08        | 13.1       |
|    | 2024-09.27 | 11:19  | 7.7           | 7.4         | 19            | .4.7                     | 5.3               | 0.198  | 5           | 0.09        | 12.9       |
| 3  | 2024.09.25 | 11:59  | 7.6           | 7.7         | 20            | 31.7                     | 5.5               | 0.155  | 4           | 10.11       | 13.6       |
| #  | 2024.09.26 | 12:02  | 7.7           | 7.4         | 18            | A 4.2                    | 5.2               | 0.161  | 5 7         | 9.12        | 13.6       |
|    | 2024.09.27 | 11:51  | 7.6           | 7.4         | 18            | 4.2                      | 5.1               | 0.147  |             | 0.12        | 14.0       |
| 采样 | 采样         | 采样     |               |             | N//A          |                          | 监测项目              |        | DIE         |             |            |
| 点位 | 日期         | 时间     | 氰化物<br>mg/L   | 挥发酚、mg火、    | my L          | Cl-<br>mg/L              | NO₃ (以N计)<br>mg/L | 亚硝酸盐和  | 石族的         | 硫化物<br>mg/L | 色度度        |
|    | 2024.09.25 | 10:10  | 0.004L        | 0.000XI     | 133           | 127                      | 5.25              | 0.0031 | 0.01L       | 0.01L       | 5L         |
| 1# | 2024.09.26 | 11:15  | 0.004L        | 0.0003L     | 123           | 117                      | 4.40              | LOOSL. | 0.01L       | 0.01L       | 5L         |
|    | 2024.09.27 | 10:11  | 0.004L 🗸      | 9.0003L     | 123           | 122                      | 4.41              | .00°L  | 0.01L       | 0.01L       | 5L         |
| 24 | 2024.09.25 | 10:53  | 0.04          | 0.0003L     | 241           | 73.4                     | 4.68              | 008    | 0.01L       | 0,01L       | 5L         |
| 2# | 2024.09.26 | 10:59  | 17.00/1       | 0.0003L     | 228           | 66.2                     | 4.67              | 0.010  | 0.01L       | 0.01L       | 5L         |

第 114 页

|    | 2024.09.27 | 10:48 | 0.004L      | 0.00074   | 126         | 68.6      | 4.66      | 0.007      | J10.0     | 0.01L      | 5L    |
|----|------------|-------|-------------|-----------|-------------|-----------|-----------|------------|-----------|------------|-------|
|    | 2024.09.25 | 11:27 | 0.004L      | 0.000     | 233         | 74.0      | 2.79      | 0.00       | 0.01L     | 0.01L      | 5L    |
| 3# | 2024.09.26 | 11:41 | 0.004L      | O MOSL    | 232         | 71.5      | 2.99      | 6,00       | 0.01L     | 0.01L      | 5L    |
|    | 2024.09.27 | 11:19 | 0.004L      | 0.0003L   | 232         | 70.7      | 2.74      | 0,007      | 0.01L     | 0.01L      | 5L    |
|    | 2024.09.25 | 11:59 | 0.001       | 0.0003L   | 190         | 73.2      | 2.55      | 70.003L    | 0.01L     | 0.01L      | 5L    |
| 4# | 2024.09.26 | 12:02 | MARKET      | 0.0003L   | 189         | 74.1      | 2.52      | 0.003L     | 0.01L     | 0.01L      | 5L    |
|    | 2024.09.27 | 11:51 | 0.5.40      | 0.0003L   | 188         | 72.2      | 7.43      | 0.003L     | 0.01L     | 0.01L      | 5L    |
| 采样 | 采样         | 15    |             |           |             |           | 监测证       |            |           |            |       |
| 点位 | 日期         |       | 全盐量<br>mg/L | 铅<br>µg/L | 六价铬<br>mg/L | 铜<br>µg/L | 阴离于表面。每性剂 | ŧ‡<br>μg/L | 镉<br>µg/L | t伸<br>µg/L | 硒     |
|    | 2024.09.25 | 10:10 | 685         | 1.96      | 0.004L      | 5.93      | 0.05L     | 17.4       | 0.05L     | 1.94       | VEC.  |
| 1# | 2024 09:26 | 11:15 | 788         | 1.99      | 0.004L      | 5.84      | 0.05L     | 16.6       | 0.08      | 2.10       | 1.44  |
|    | 2024.00 27 | 10:11 | 692         | 1.97      | 0.004L      | 100       | 0.05L     | 16.4       | 0.12      | 1.94       | 0.41L |
| 3  | 2024.09.25 | 10:53 | 849         | 0.59      | 0.004L      | ₹2510     | 0.05L     | 94.1       | 0.24      | 2.137      | 0.41L |
|    | 2024.09.26 | 10:59 | 848         | 0.60      | 0.0047      | 2.34      | 0.05L     | 97.1       | 0.26      | 1.82       | 0.41L |
|    | 2024.09.27 | 10:48 | 844         | 0.55      | 0.004L      | 1.44      | 0.05L     | 92.1       | 0.17 X    | 1.84       | 0.41L |
| 1  | 2024.09.25 | 11:27 | 954         | 0.96      | 0.004       | 10.4      | 0.05L     | 80.2       | 10.1      | 2.12       | 0.41L |
| 3# | 2024.09.26 | 11:41 | 966         | 0.89      | 0.0 41      | 11.0      | 0.05L     | 86.9       | M         | 1.76       | 0.41L |
|    | 2024.09.27 | 11:19 | 978         | 0.87      | 0.004L      | 11.8      | 0.05L     | 92.7       | 0.32      | 1.99       | 0.41L |
|    | 2024.09.25 | 11:59 | 990         | 0.92      | 0.004L      | 7.98      | 0.05L     | 37.50      | 0.42      | 2.02       | 0.41L |
| 4# | 2024.09.26 | 12:02 | 957         | 0.87      | 0.004L      | 8.56      | 0.05L     | 19.7       | 0.38      | 2.00       | 0.41L |
|    | 2024.09.27 | 11:51 | 961         | \$5 0.87  | 0.004L      | 7.42      | 0.05L     | 35.7       | 0.46      | 1.60       | 0.41L |
| R# | 公共口告       | 采样    | VA          |           |             |           | 监测项目      | (3)        |           |            |       |
| 点位 | 采样日期       | 时间    | 用酸          | 甲醛        | 邻-二甲苯       | 间-二甲苯     | L苯        | 对-二甲苯      | F-        | 粪大肠菌群      | 汞     |

第 115 页

| mg/L   mg/L   mg/L   μg/L      | 0.163 8.4×10 <sup>2</sup> 0.04<br>0.163 8.4×10 <sup>2</sup> 0.04<br>0.211 7.9×10 <sup>2</sup> 0.04<br>0.196 3.5×10 <sup>3</sup> 0.04<br>0.196 5.4×10 <sup>3</sup> 0.04<br>0.191 4.3×10 <sup>3</sup> 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1# 2024.09.26 11:15 0.2L 0.05L 2L 2L 2L 2L 2L 0.163 8.4×10² 2024.09.27 10:11 0.2L 0.05L 2L 2L 2L 2L 2L 0.196 3.5×10³ 2024.09.25 10:53 0 0.05L 2L 2L 2L 2L 2L 0.196 3.5×10³ 2024.09.26 10:59 0.05L 2L 2L 2L 2L 2L 0.196 5.4×10³ 2024.09.27 10:48 22 0.05L 2L 2L 2L 2L 2L 0.191 4.3×10³ 2024.09.25 11:50 0.1 0.05L 2L 2L 2L 2L 2L 0.191 4.3×10³ 2024.09.25 11:50 0.1 0.05L 2L 2L 2L 2L 2L 0.292 2.2×10³ 3# 2024.09.26 10:59 0.2L 0.05L 2L 2L 2L 2L 2L 0.298 2.8×10³ 2024.09.27 10:48 22 0.2L 0.05L 2L 2L 2L 2L 2L 0.298 2.8×10³ 2024.09.26 10:59 0.2L 0.05L 2L 2L 2L 2L 2L 0.296 1.1×10³ 2024.09.27 10:48 22 0.2L 0.05L 2L 2L 2L 2L 2L 0.296 1.1×10³ 2024.09.26 10:59 0.2L 0.05L 2L 2L 2L 2L 2L 0.296 1.1×10³ 2024.09.26 10:59 0.2L 0.05L 2L 2L 2L 2L 2L 0.296 1.1×10³ 2024.09.26 10:59 0.2L 0.05L 2L 2L 2L 2L 2L 0.296 1.1×10³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.163 8.4×10 <sup>2</sup> 0.0<br>0.211 7.9×10 <sup>2</sup> 0.0<br>0.196 3.5×10 <sup>3</sup> 0.0<br>0.196 5.4×10 <sup>3</sup> 0.0<br>0.191 4.3×10 <sup>3</sup> 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2024.09.27   10:11   0.2L   9.6SL   2L   2L   2L   2L   2L   0.211   7.9×10²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.211 7.9×10 <sup>2</sup> 0.0<br>0.196 3.5×10 <sup>3</sup> 0.0<br>0.196 5.4×10 <sup>3</sup> 0.0<br>0.191 4.3×10 <sup>3</sup> 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2024.09.25 10:53 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.196 3.5×10 <sup>3</sup> 0.0<br>0.196 5.4×10 <sup>3</sup> 0.0<br>0.191 4.3×10 <sup>3</sup> 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| # 2024.09.26 10:59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.196 5.4×10 <sup>3</sup> 0.0<br>0.191 4.3×10 <sup>3</sup> 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2024.09.27   10:48   32L   0.05L   2L   2L   2L   2L   2L   0.191   4.3×10 <sup>3</sup>     2024.09.25   11:27   0.1L   0.05L   2L   2L   2L   2L   2L   2L   0.292   2.2×10 <sup>3</sup>     2024.09.26   1704   0.2L   0.05L   2L   2L   2L   2L   2L   2L   0.298   2.8×10 <sup>3</sup>     2024.09.27   13:49   0.2L   0.05L   2L   2L   2L   2L   2L   2L   0.280   2.5×10 <sup>3</sup>     2024.09.28   11:59   0.2L   0.05L   2L   2L   2L   2L   2L   2L   0.296   1.1×10 <sup>3</sup>     2024.09.26   12:02   0.2L   0.05L   2L   2L   2L   2L   2L   0.279   1.8×10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.191 4.3×10 <sup>3</sup> 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2024.09.27   10:48   32    0.05L   2L   2L   2L   2L   2L   0.191   4.3×10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| # 2024.09.26 17 N 0.2L 0.05L 2L 2L 2L 2L 2L 0.298 2.8×10 <sup>3</sup> 2024.09.27 7 N 9 0.2L 0.05L 2L 2L 2L 2L 2L 0.280 2.5×10 <sup>3</sup> 2024.09.28 11:59 0.2L 0.05L 2L 2L 2L 2L 2L 0.296 1.1×10 <sup>3</sup> # 2024.09.26 12:02 0.2L 0.05L 2L 2L 2L 2L 2L 0.279 1.8×10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.202 2.2×103 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| # 2024.09.26 17 N 0.2L 0.05L 2L 2L 2L 2L 2L 0.298 2.8×10 <sup>3</sup> 2024.09.27 11:59 0.2L 0.05L 2L 2L 2L 2L 2L 0.280 2.5×10 <sup>3</sup> 2024.09.28 11:59 0.2L 0.05L 2L 2L 2L 2L 2L 0.296 1.1×10 <sup>3</sup> 2024.09.26 12:02 0.2L 0.05L 2L 2L 2L 2L 2L 0.279 1.8×10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.232 2.2.10 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2024_09_28 11:59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.298 2.8×10 <sup>3</sup> 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| # 2024/0926 12:02 0.2L 0.05L 2L 2L 2L 2L 2L 0.279 1.8×10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.280 2.5×10 <sup>3</sup> 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.296 1.1×10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2024709.27 11:51 0.2L 0.05L 2L 2L 2L 2L 0.296 1.5x107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.279 1.8×10 <sup>3</sup> 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.296 1.5 10 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| THE TENED OF THE PARTY OF THE P | THE PARTY OF THE P |

#### 4.5.2.2 地表水环境质量现状评价

#### 1、评价因子

根据检测因子选择 pH、溶解氧、COD、BODs、NH3-N、SS、高指数、总氮、总磷、氟化物、氰化物、挥发酚、氯化物、硫酸盐、硝酸盐、亚硝酸盐、石油类、硫化物、色度、粪大肠菌群、价格、铜、铅、锌、镉、砷、硒、镉、汞、全盐量、阴离子表面活性剂、甲醇、甲醛、苯、甲苯、二甲苯等进行评价,未检出的及没有质量标准的选择不再进行评价。

# 2、评价标准

根据功能区划分,该区域地表水环境质量评价执行《地表水环境质量标准》 (20038-2002)表 1 中 III 类;全盐量参照《农田灌溉水质标准》(GB 5084-2021) (20038-2002)表 1 中 III 类;全盐量参照《农田灌溉水质标准》(GB 5084-2021)

#### 3、评价方法

采用单因子指数法,进行地表水水质的现在形价。

(1) 对于浓度越高其危害越大的污染物学的子指数 Pi

式中: Pi-第 i 项污染物的第一字指数:

Ci—第:项污染物的实测值,mg/L,本次评价取最大值; Si—是:预污染物的评价标准,mg/L。

(2) 对于浓度宣浪在一定范围内的评价因子,如 pH 值的标准指数扩展

计算:

$$P_{pH} = \frac{7.0 - pH_{Ci}}{7.0 - pH_{zd}} \quad (pH_{Ci} \le 7.0)$$

$$P_{pH} = \frac{pH_{Ci} - 7.0}{pH_{zd}} \quad (pH_{Ci} \ge 7.0)$$

式中: PpH—pH的标准指数;

pHc,—pH 的现状监测结果,本次评价取最大值

pHsd—pH采用标准的下限值;

pH<sub>su</sub>—pH采用标准的上限值。\

(3) DO的标准指数为:



究矿鲁南化工有限公司微反应高效合成精细化学品节能表现现象不  $S_i = \frac{\left|DO_f - DO_j\right|}{DO_f - DO_s} \underbrace{DO_j DO_f}_{DO_j \to DO_f},$  S $_j = DO_s DO_f$ , D $_j = 468/(31.6+T)$  式中: $S_j$ : 溶解氧  $DO_s$  的标准指数; D $_j = 268/(31.6+T)$  , D $_j = 268/(31$ 

A LANGE OF THE REAL PROPERTY OF THE PARTY OF 

| 表 4.5-12 | 地表水指数评价结果统计表 |
|----------|--------------|
|----------|--------------|

| = Sala S Gr = 1          | Lenden     | 采样    | 2      |       | C W. J - 12 PE 48 |                  |        | 公测项目 🔾                |       |        |       |       |
|--------------------------|------------|-------|--------|-------|-------------------|------------------|--------|-----------------------|-------|--------|-------|-------|
| 采样点位                     | 采样日期       | 时间    | 1      | 溶解氧   | 化学需氧量             | BOD <sub>5</sub> | 氨氮     | 高锰酸盐指数                | 多鞋    | F      | 氰化物   | 挥发酚   |
| 1#小沂河-鲁化                 | 2024.09.25 | 10:10 | 103    | 0.633 | 0.650             | 0.750            | 0.324  | 0.759                 | 0.450 | 0.121  | 未检出   | 未检出   |
| 西厂火炬东侧                   | 2024.09.26 | 1     | F0 B   | 0.658 | 0.800             | 0.925            | 0.327  | A733                  | 0.350 | 0.163  | 未检出   | 未检出   |
| 小桥断面                     | 2024.09.27 | 150   | 0.35   | 0.667 | 0.900             | 1.050            | 0.316  | 2, 80217              | 0.400 | 0.211  | 未检出   | 未检出   |
| 2#小沂河-沂河桥                | 2024.09.25 | 100   | 0.35   | 0.641 | 0.850             | 1.000            | 0.185  | 0.967                 | 0.550 | 0.196  | 未检出   | 未检出   |
| (木石邮局西)                  | 2024 99 76 | 10:59 | 0.3    | 0.667 | 0.950             | 1,100            | 0.201  | 0.933                 | 0.550 | 0.196  | 未检出   | 未检出   |
| 断面                       | 20.4.09.27 | 10:48 | 0.3    | 0.667 | 0.800             | 0.925            | 0.19   | 0.950                 | 0.650 | 0.191  | 未检出   | 未检出   |
| and the speak            | 2014.09.25 | 11:27 | 0.35   | 0.641 | 0.650             | 0.750            | Lo 196 | 0.933                 | 0.350 | 0.292  | 未检出   | 表     |
| 3#小沂河-科城 化工东側小桥          | 2024.09.26 | 11:41 | 0.4    | 0.667 | 0.650             | 0.750            | 9/203  | 0.900                 | 0.400 | 0.298  | 未检出   | 主的形   |
|                          | 2024.09.27 | 11:19 | 0.35   | 0.676 | 0.950             |                  | 0.198  | 0.883                 | 0.450 | 0.280  | 未检出   | 大台上   |
| 122                      | 2024.09.25 | 11:59 | 0.3    | 0.649 | 1.000             | 1.175            | 0.155  | 0.917                 | 0.550 | 0.296  | 未检出   | 未检出   |
| 少少不多00小桥处                | 2024.09.26 | 12:02 | 0.35   | 0.676 | 0.900             | 21 050           | 0.161  | 0.867                 | 0.600 | 0.279  | 未构出   | 未检出   |
| 4. P. M. 300 J. P. DUTE. | 2024.09.27 | 11:51 | 0.3    | 0.676 |                   | 1.050            | 0.147  | 0.850                 | 0.600 | 0.296  | 多检出   | 未检出   |
| A4+14                    | 5/4 VIII 7 |       |        |       | / (/-)            |                  | 1      | <b></b>               | 140   |        | ,     |       |
| 录样点位                     | 采样日期       | 时间    | SO42-  | CI-   | 次价格               | 石油类              | 硫化物    | NO <sub>5</sub> (以N计) | 铜     | 4      | 辛辛    | 镉     |
| 1=小沂河-鲁化                 | 2024.09.25 | 10:10 | 0.532  | 0.50  | 亲。出               | 未检出              | 未检出    | 0.525                 | 0.006 | 0.03.9 | 0.017 | 未检出   |
| 西厂火炬东侧                   | 2024.09.26 | 11:15 | 0.492  | 0.403 | 未检出               | 未检出              | 未检出    | 0.440                 | 0.076 | 0.040  | 0.017 | 0.016 |
| 小桥断面                     | 2024.09.27 | 10:11 | 0.492  | 9,488 | 未检出               | 未检出              | 未检出    | 0.441 🗶               | Ados  | 0.039  | 0.016 | 0.024 |
| 2#小沂河-沂河桥                | 2024.09.25 | 10:53 | 0.904  | 0.294 | 未检出               | 未检出              | 未检出    | 0.468                 | 0 008 | 0.012  | 0.094 | 0.048 |
| (木石邮局西)                  | 2024.09.26 | 10:59 | 20.91  | 0.265 | 未检出               | 未检出              | 未检出    | 0.46                  | 0.008 | 0.012  | 0.097 | 0.052 |
| Hr III                   | 2024.09.27 | 10:48 | \$ 904 | 0.274 | 未检出               | 未检出              | 未检出    | X460                  | 0.007 | 0.011  | 0.092 | 0.034 |
| 3#小沂河-科诚                 | 2024.09.23 |       | 0.932  | 0.296 | 未检出               | 未检出              | 未检出    |                       | 0.010 | 0.019  | 0.080 | 0.064 |

第 119 页

| 化工东侧小桥                     | 2024.09.26 | 11:41 | 0.928  | 286         | 未检出  | 未检出   | 未检出 | 0.299    | 7881  | 0.518 | 0.087 | 0.048 |
|----------------------------|------------|-------|--------|-------------|------|-------|-----|----------|-------|-------|-------|-------|
|                            | 2024.09.27 | 11:19 | 0.928, | The same of | 未检出  | 未检出   | 未检出 | 0.274    | COL   | 0.017 | 0.092 | 0.064 |
| and british taken          | 2024.09.25 | 11:59 | 0.76   | 0.293       | 未检出  | 未检出   | 未检出 | 0.255    | 1008  | 0.018 | 0.038 | 0.084 |
| 44小沂河-道西<br>小区北 500 小桥处    | 2024.09.26 | 12:02 | 11.756 | 0.296       | 未检出  | 未检出   | 未检出 | 0.252    | 0.009 | 0.017 | 0.040 | 0.076 |
| 1.15v(1.00c.1.4)()T        | 2024.09.27 | 11:51 | 0. 57  | 0.289       | 未检出  | 未检出   | 未检出 | 0.243    | 0,007 | 0.017 | 0.036 | 0.092 |
| 采样点位                       | 采样日期       | 监测项目  |        |             |      |       |     |          |       |       |       |       |
| 木件从区                       | 木件口與       | 0 时间  | 砷      | 硒           | 甲醛   | 全盐量   | 汞   | 明寫子表面活性剂 | 苯     | 甲苯    | 二甲苯   | 1     |
| 1=小沂河-鲁化<br>西厂火炬东侧<br>小桥断面 | 2024 29 25 | 10.10 | 0.039  | 未检出         | 未检出  | 0.685 | 未检生 | 未检出      | 未检出   | 未检出   | 未检出   | -1-   |
|                            | 34776      | 11:15 | 0.042  | 未检出         | 未检出  | 0.788 | 未松出 | 朱检出      | 未检出   | 未检出   | 未检出   | 1     |
|                            | XV 4 192   | 10:11 | 0.039  | 未检出         | 未检出  | 0.692 | 专校出 | 未检出      | 未检出   | 未检出   | 未检出   | 7     |
| 2#小沂河-沂河校                  | 3024.09.25 | 10:53 | 0.043  | 未检出         | 未检出  | 0.849 | 大松出 | 未检出      | 未检出   | 未检出   | 未检出   |       |
| (木石邮局西)                    | 2024.09.26 | 10:59 | 0.036  | 未检出         | 未检出  | 0.843 | 卡检出 | 未检出      | 未检出   | 未检出   | 未检出人  | 18    |
| 断画                         | 2024.09.27 | 10:48 | 0.037  | 未检出         | 未检出  | 0.844 | 未检出 | 未检出      | 未检出   | 未检出   | 未检出   | 11    |
| Mary Salve                 | 2024.09.25 | 11:27 | 0.042  | 未检出         | 未检出。 | 0.954 | 未检出 | 未捡出      | 未检出   | 未检出   | 未检出   | 7     |
| 一个人们的一种城                   | 2024.09.26 | 11:41 | 0.035  | 未检出         | 未经验  | 0.966 | 未检出 | 未检出      | 未检出   | 未检出   | 末松出   | 1     |
| 12 Mar 1 Avil              | 2024.09.27 | 11:19 | 0.040  | 未检出         |      | 0.978 | 未检出 | 未检出      | 未检出   | 未檢出   | 未检出   | _1    |
| 小沂河-道西<br>小区北 500 小桥处      | 2024.09.25 | 11:59 | 0.040  | 未检出         | 未验   | 0.990 | 未检出 | 未检出      | 未检出   | 主學宋   | 未检出   | (     |
|                            | 2024.09.26 | 12:02 | 0.040  | 未检七         | 大会出  | 0.957 | 未检出 | 未检出      | 未检出   | 大包古   | 未检出   | 1     |
|                            | 2024.09.27 | 11:51 | 0.032  | 未检红         | 未检出  | 0.961 | 未检出 | 未检出      | 入检出   | 未验出   | 未检出   | -1-   |
|                            |            |       |        |             |      |       |     |          |       |       |       |       |

由上表可以看出,现状监测期间,地表或4个监测断面中BOD。均不满足《地表水环境质量标准》《BN838-2002》表 1中III类标准要求,其余各监测因子均满足《地表水环境质量标准》(GB3838-2002)表 1中III类标准要求。根据监测数据分析,BOD。超标原因主要考虑与沿线生活污水、工业废水、农业污水的汇入,从而导致水体富营养化,水体含氧量降偏等原因。随着墨子河湿地的建设、园区各污水处理基础设施工程建设。 第一面高科技化工园区污水排水治理可起到一定的作品,从原河下游断面BOD。等指标均有大幅改善。

第 120 页

#### 4.5.2.3 地表水例行监测断面监测数据

为更好地说明地表水环境质量情况,本次评价收集了枣庄市生态环境局网站公布的《2023年度枣庄市水环境质量状况信息公开》中新薛河全年例行监测数据,例行监测资料具体见表 4.5-18-2

表 4.5-13 地表才 研究监测断面监测结果统计表(单位: mg/L)

| 断面名称          | 水质类别 | CVD = | CODer | 氨氮   | 总磷   | BOD <sub>5</sub> | 氟化物   |
|---------------|------|-------|-------|------|------|------------------|-------|
| 新薛河入湖口        | A    | 13/3  | 11.43 | 0.13 | 0.04 | 2.13             | 0.11  |
| (GB3838-2002) | 以实际自 | -     | 20    | 1.0  | 144  | 4                | A Car |

由上表可见,新薛河入湖口监测断面各监测因子均满足《地表水环境质量标准》(623388-2002)III类标准要求。

#### **为,**京域综合治理方案

根据《枣庄市"十四五"生态环境保护规划》相关内容、其中主要区域地表 水达标治理措施列举如下:

实施入河(湖)排污口分类整治和规范从监查、深入开展区(市)控及以上断面所在河流入河湖排污(水)口精准避逐、逐一明确入河湖排污(水)口责任主体,形成排污口台账,按照"取缔一业"各并一批、规范一批"要求,因地制宜、分类施策,制定"一口一策"整治方案。实施入河湖排污(水)口分类整治,依法取缔设置不合理或未得到排准的人河湖排污(水)口,加强排污口规范化建设和管理,基本形成权责清晰、整个到位、管理规范的入河湖排污(水)口监管体系。

狠抓工业污染防治。不随差别化流域环境准入政策,强化准入管理和底线发展,推动重点行业、重点区域绿色发展,严格控制高耗水、高污染行业发展、严格执行南四湖东平湖流域水污染物综合排放标准和管控要求。严格控制污染物排放总量、提高工业企业污染治理水平,加强全盐量、硫酸盐、发素之温磷、氟化物等特征污染物治理。加快推进城市建成区内现有焦化、均等处计汇等污染较重的企业有序搬迁改造或依法关闭。加强化工、印染、不健康品加工、煤矿开采等行业综合治理,实施玉米淀粉、肉类及水产品加工、煤矿开采等行业综合治理,实施玉米淀粉、肉类及水产品加工、煤矿开采等行业综合治理,实施玉米淀粉、肉类及水产品加工、煤矿开采等行业综合治理,实施玉米淀粉、肉类及水产品加工、煤矿开采等行业综合治理,实施玉米淀粉、肉类及水产品加工、煤矿开采等行业综合治理,实施玉米淀粉、肉类及水产品加工、以及产业等企业清洁化改造,加快推动流域产业布局优化升级。推进化工园区、海分流改造和初期雨水收集处理。加大现有工业园区整治力度,全面推进工业园区污水处理设施建设和污水管网排查整治。鼓励有条件的园区实施长工企业废水"一企一管、明管输送、实时监测、

统一调度"。推动开展有毒有害以及难降解原义,提供点。鼓励有条件的园区引进"环保管家"服务,提供定制化、全产业链的第三方环保服务,实现园区污水精细化、专业化管理。

推进农业面源污染防治。围绕国家农业可持续发展试验示范区建设,优化农业种植结构,推行高效生态循环种养模式,划分农业面源污染优先控制单元,积极创建国家级农业面源污染综合整治示范区。加强畜禽养殖污染治理,推进规模化畜禽养殖粪便资源。利用处理设施和收集设施建设,支持开展绿色种养循环发业试点。防治淹发养殖污染,推广生态养殖、探索"鱼塘+湿地"模式。继续实行测土配方地度,推广低毒低残留农药,提高农药利用率和化肥利用率,推进化肥农产业营化。开展汛前河湖垃圾、农作物秸秆、畜禽粪污堆放烹清理整治。

等3实施黑臭水体治理。以固成效、防反弹为重点,或固城市建成区黑臭水体治理成果,建立城市建成区黑臭水体清单动态调整机制,及时将反弹的和新发现的黑臭水体纳入清单督促治理。加快区(市)建成区黑臭水体治理和评估工作,每季度向社会公开治理进展情况。

有效利用非常规水源。加强再生水、有水等非常规水多元、安全、梯级利用,将非常规水纳入水资源统一配置,逐步提高非常规水利用比例。开展区域再生水循环利用试点,推动形成污染资源。循环利用、生态保护有机结合的综合治理体系。因地制宜建设人工资地水质净化工程,推动建设滕州市中水回用工程、山亭区中水回用改扩建工程。市中区税郭污水处理厂中水回用项目等,将处理达成后的尾水进一步净水。鼓励将再生水用于区域内工业用水、市政杂用和生态补水等。2025年年底制了再生水利用率达50%。推动海绵城市建设,提高雨水资源化利用率,打造生态、安全、可持续的城市水循环系统。

全面系统谋划境内南四湖流域生态环境治理,精准科学资产、保障调水水质 安全。加强硫酸盐浓度较高或氟化物不稳定达标的河流产治,推动煤矿矿井水深 度整治。实施北沙河河道水质净化等河流整治工程,强化入湖河流的总氮、总磷 排放控制和监管。全面落实河湖长制,推动河湖"清四乱"常态化规范化。加快 入河湖排污(水)口溯源整治,推进畜禽养殖粪污处理处置及资源化利用。

## 4.5.3 地下水环境现状调查与评价

#### 4.5.2.1 地下水环境质量现状监测

本次评价引用企业在建项目《充矿》南化工有限公司甲醇老旧装置更新改造产能整合项目环境影响报告书》中地下水监测数据。

#### 1、监测布点

根据地下水流动方向(南偏东),共布设14个地下水现状监测点,各地下水监测点位置及为能风表 4.5-14 和图 4.5-3。

|     | 1     | 表 4.5-14 地下7 | 、<br>监测点位置及功能          |
|-----|-------|--------------|------------------------|
| 编号  | 相对方位  | 监测点名称        | 功能                     |
| 1#  | (25 N | 南涝坡村         | 了解项目上游地下水水质、水位         |
|     | -     | 厂址           | 了解项目厂址地下水水质、水位         |
| 35  | SW    | 鲁化净化水厂       | 了解项目下发地下水水质、水位         |
| 4#  | W     | 木石镇政府        | 了解协会、操地下水水质、水位         |
| 2#  | W     | 俭庄村          | 解项目的地下水水质、水位           |
| б#  | W     | 尖山村          | 、                      |
| 7#  | SE    | 桥口村          | <b>】</b> 解项目周边地下水水质、水位 |
| 8#  | N     | 西山村          | 了解项目周边地下水水位            |
| 9#  | E     | 兴鲁村。入        | 了解项目周边地下水水位            |
| 10# | sw    | 北京のマ         | 了解项目周边地下水水位            |
| 11# | SSW   |              | 了解项目周边地下水水位            |
| 12# | SE    | <b>蔡凤山</b> 村 | 了解项目周边地下水水位            |
| 13# | NE    | 人分沟村         | 了解项目周边地下水水位            |
| 14# | NW N  | 新芒村          | 7解项目围边地下水水位            |

表 4.5-14 地下水监测点位置及功能

## 2、监测项目

监测项目、色、嗅和味、浑浊度、肉眼可见物、pH、总硬度、溶解性总固体、硫酸盐、氯化物、挥发性酚类、阴离子表面活性剂、耗氧量、表氮、硫化物、总大脑固群、细菌总数、亚硝酸盐、硝酸盐、氯化物、氟化物、碘化物、铁、锰、铜、锌、铝、钼、汞、砷、硒、镉、铬、铅、苯、用苯、甲醇、总α放射性、总β放射性、K<sup>+</sup>、Na<sup>+</sup>、Ca<sup>2+</sup>、Mg<sup>2+</sup>、CO<sub>3</sub><sup>2</sup>、HCO<sub>3</sub>:总计算、项、同时对地下水水位监测点进行并深和地下水埋深等水文要素的测量、调查水井功能。

# 3、监测时间

拟建项目地下水为一级评价。根据《环境影响评价技术导则 地下水环境》

(HJ610-2016)要求,水质监测频率为枯丰预算

丰水期: 2024年9月25~26日, 监测2米, 每天1次;

枯水期: 2025年2月20~21日、监测2天,每天1次。

4、监测单位

监测单位为中国国检测学控股集团青岛京诚有限公司。

5、分析方法

各项目的分布发表见表 4.5-15。

表 4.5-15 地下水现状监测分析方法一览表

| A          | 1 25 4-7-17 JE L. WYYA | (曲/パリカリノ) ないなく           | V 1"        |
|------------|------------------------|--------------------------|-------------|
| 分析项目       | 分析方法                   | 方法依据                     | 松出限         |
| (色)        | 铂钴标准比色法                | GB/T11903-1989           | ▶ 5度        |
| // PAGE    | 嗅气和尝味法                 | GBT 5750.4-2023 (6425    | _           |
| 理度         | 浊度计法                   | HJ 1077-2019             | 0.3NTU      |
| 肉眼可见物      | 直接观察法                  | GBT 57.32 + 7.22 (7.1)   | _           |
| pH值        | 电极法                    | HINANO                   | 范围 0-14     |
| 总硬度        | 乙二胺四乙酸二钠滴定法            | Q3(\$\)750.4-2023 (10.1) | 1.0mg/L     |
| 溶解性总固体     | 称量法                    | GF 15750 4-2023 (11.1)   | 4mg/L       |
| SO42-      | 离子色谱法                  | HJ 84-2016               | 0.018mg/L   |
| CI-        | 离子色谱法。入                | HJ 84-2016               | 0.007mg/L   |
| 挥发酚        | 4-氨基安替比林/大大度法          | HJ 503-2009              | 0.0003mg/L  |
| 阴离子表面活性剂   | 亚甲基蓝人为建工               | GB/T5750.4-2023 (13.1)   | 0.050mg/L   |
| 10 = B     | 碱性高锰酸钾高定法              | GB/T 5750.7-2023 (4.2)   | 0.05mg/L    |
| 耗氧量        | 酸性高温酸钾滴定法              | GB/T 5750.7-2023 (4.1)   | 0.05mg/L    |
| 氨氮         | ○納此ばか分光光度法             | HJ 535-2009              | 0.025mg L   |
| 硫化物 人      | 亚甲基蓝分光光度法              | HJ 1226-2021             | 0.645.0     |
| 总大肠菌群      | 多管发酵法                  | GB/T5750.12-2023 (5.1)   | 2MPN (00 ml |
| 细菌总数       | 平皿计数法                  | HJ 1000-2018             | 1CFU/mL     |
| 亚硝酸盐素      | 分光光度法                  | GB/T 7493-1987           | .003mg/L    |
| NO (O(Nit) | 离子色谱法                  | HJ 84-201                | 0.004mg/L   |
| (制物)       | 异烟袋咖埋桶的光光度去            | GB/T 5750.5-2023         | 0.002mg/L   |
| F.         | 离子色谱法                  | HV64 916                 | 0.006mg/L   |
| 碘化物        | 高浓度碘化物容量法              | GB/T5//305-2/23 (13.3)   | 0.025mg/L   |
| 铁          | 电感耦合等离子体质谱法            | Z XAJ/700 2014           | 0.82µg/L    |
| 锰          | 电感耦合等离子体质谱法            | HJ 700-2014              | 0.12µg/L    |
| 铜          | 电感耦合等离子体质谱法            | HJ 700-2014              | 0.08µg/L    |
| 锌          | 电感耦合等离子体质谱法。           | HJ 700-2014              | 0.67µg/L    |
| 铝          | 电感耦合等离子体谱法             | HJ 700-2014              | 1.15µg/L    |
|            |                        |                          |             |

#### 兖矿鲁南化工有限公司徽反应高效合成精细化学品节能表现为多种最影响报告书

| 钼                | 电感耦合等离子体质谱法    | 1/07/00 2014                       | 0.06µg/L     |
|------------------|----------------|------------------------------------|--------------|
| 汞                | 原子荧光法          | 4IJ 494-2014                       | 0.04µg/L     |
| 砷                | 电感耦合等离子体质谱法    | HJ 700-2014                        | 0.12µg/L     |
| 硒                | 电感耦合等离子体质谱法    | HJ 700-2014                        | 0.41µg/L     |
| 镉                | 电感耦合等离子体质谱法    | HJ 700-2014                        | 0.05μg/L     |
| 铬                | 电感耦合等离子体质谱法    | HJ 700-2014                        | 0.11µg/L     |
| 铅                | 电感耦合等离子体质谱法    | HJ 700-2014                        | 0.09µg/L     |
| 苯                | <b></b>        | HJ1067-2019                        | 2ug/L        |
| 甲苯               | <b>页空气相色谱法</b> | HJ1067-2019                        | 2ug          |
| 甲醇               | 顶空/气相色谱法       | HJ 895-2017                        | 0,2 hg/L     |
| 总。放射性人           | 厚源法            | HJ 898-2017                        | 4.5×1041     |
| 总的放射性            | 厚源法            | HJ 899-2017                        | 1.5×10-2Bq/L |
| NA TO            | 离子色谱法          | HJ 812-2016                        | 0.02mg/L     |
|                  | 离子色谱法          | HJ 812-2016,                       | 0.02mg/L     |
| (C)              | 离子色谱法          | HJ 817-2016                        | 0.03mg/L     |
| Mg <sup>2+</sup> | 离子色谱法          | HAND SOL                           | 0.02mg/L     |
| 碳酸盐              | 酸碱指示剂滴定法       | 《水和废水片测分析方<br>云、2002 第四版)<br>、增补版) | 1.0mg/L      |
| 重碳酸盐             | 酸碱指示剂滴定法       | 》和废水监测分析方<br>法》2002(第四版)<br>(增补版)  | 1.0mg/L      |

# 6、监测结果

监测结果见表 4.5-16 和表 4.7

# 5-16 地下水监测期间参数

| 采样点位     | 水製         | 一叉拌臼期       | 采样<br>时间 | 水温<br>(°C) | 井深<br>(m) | 地下水埋深<br>(m) | 位     |
|----------|------------|-------------|----------|------------|-----------|--------------|-------|
|          | 重水期        | 2024.09.25  | 17:08    | 15.6       | 15.50     | 1.13         | \$ 85 |
| 1#南涝坡村   | 一千小期       | 2024.09.26  | 17:25    | 15.8       | 15.50     | 1.13         | 89.65 |
| Z/A      | ++-1-140   | 2025.02.20  | 14:62    | 16.6       | 15.50     | 3.17         | 63.10 |
|          | 枯水期        | 2025.02.21  | 16:23    | 17.0       | 15.50     | 324          | 63.10 |
|          | 丰水期        | 2024.09.25  | 14:34    | 15.8       | 22.50     | 1/1/2        | 58.81 |
| A TOTAL  | <b>丰小期</b> | 2024.09.26  | 14:40    | 15.8       | 22.50     | 73           | 58.81 |
| Z+X-TIT  | ++-L++0    | 2025.02.20  | 15:18    | 17.0       | 25        | 4.35         | 57.92 |
|          | 枯水期        | 2025.02.21  | 14:50    | 17.2 /     | 2450      | 4.35         | 57.92 |
|          | +-1-40     | 2024.09.25  | 16:17    | 15.0       | 20.50     | 6.12         | 54.69 |
| 3#鲁化污水厂  | 丰水期        | 2024.09.26  | 16:25    | 100        | 20.50     | 6.12         | 54.69 |
| 3年曾化75小) | ++-1,00    | 2025.02.20  | 15:51    | 10.8       | 20.50     | 8.22         | 50.49 |
|          | 枯水期        | 2025.02.21  | 1,5%21   | 16.8       | 20.50     | 8.22         | 50.49 |
| 4#未不结功应  | 丰水期        | 2024.09.28- | 10.48    | 15.6       | 17.50     | 5.80         | 64.34 |
| 4#木石镇政府  | 千小期        | 2024.09.0   | 16:51    | 15.4       | 17.50     | 5.80         | 64.34 |

125 茂

#### 兖矿鲁南化工有限公司微反应高效合成精细化学品节能**不为**为。2004最响报告书

|                                       | ++-1-40    | 2025.02.20  | 16:53  | V     | 17.5  | 6.20                                                                                                                                                         | 57.05  |
|---------------------------------------|------------|-------------|--------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                                       | 枯水期        | 2025.02.21  | 14:11  | 7 198 | 17.5  | 6.20                                                                                                                                                         | 57.05  |
|                                       | 士小畑        | 2024.09.25  | 13:30  | 73.8  | 12.40 | 0.30                                                                                                                                                         | 69.01  |
| 54/4/1++                              | 丰水期        | 2024.09.26  | 13:38  | 15.6  | 12.40 | 0.30                                                                                                                                                         | 69.01  |
| 5#俭庄村                                 | ++-1-40    | 2025.02.20  | 17,23  | 16.8  | 12.40 | 3.10                                                                                                                                                         | 67.50  |
|                                       | 枯水期        | 2025.02.2%  | 16:51  | 17.0  | 12.4  | 3.10                                                                                                                                                         | 67.50  |
|                                       | ± -1-#0    | 29/24/09/25 | 13:02  | 15.8  | 16.25 | 2.03                                                                                                                                                         | 83.00  |
| ewlydd+                               | 丰水期        | 27.4 0 26   | 13:05  | 15.8  | 16.25 | 2.03                                                                                                                                                         | 83.00  |
| 6#尖山村                                 | 枯水期        | 202. 0 .20  | 17:47  | 16.8  | 16.25 | 4.10                                                                                                                                                         | 69.15  |
|                                       | 10/10/     | 2025.02.21  | 17:28  | 16.8  | 16.25 | 4.10                                                                                                                                                         | 10 X5  |
|                                       | K+ 144     | 2024.09.25  | 14:08  | 15.8  | 16.50 | 3.49                                                                                                                                                         | 3 25   |
| 7445m++                               | A TOWN     | 2024.09.26  | 14:08  | 15.6  | 16.50 | 3.49                                                                                                                                                         | 133,34 |
| 7#桥口村                                 | , the      | 2025.02.20  | 16:32  | 17.0  | 16.50 | 5.75 X                                                                                                                                                       | 58.05  |
|                                       | 古水期        | 2025.02.21  | 16:01  | 16.8  | 16.50 | 5 75                                                                                                                                                         | 58.05  |
| 1/1/15                                | キャ#ロ       | 2024.09.27  | 15:42  | 14.6  | 14.50 | £2323                                                                                                                                                        | 96.73  |
|                                       | 丰水期        | 2024,09.28  | 13:48  | 15.6  | 14507 | 2.23                                                                                                                                                         | 96.73  |
| SERTINA!                              | ++-1-#0    | 2025.02.20  | 09:30  | 16.4  | 14.50 | 4.05                                                                                                                                                         | 90.65  |
| <b>^</b>                              | 枯水期        | 2025.02.21  | 09:07  | 16.6  | 10.0  | 4.05                                                                                                                                                         | 90.65  |
|                                       | +-1.00     | 2024.09.27  | 13:47  | 17.8  | 1/30  | 5.23                                                                                                                                                         | 81.34  |
| 0.00/2544                             | 丰水期        | 2024.09.28  | 12:45  |       | 17.50 | 5.23                                                                                                                                                         | 81.34  |
| 9#兴鲁村                                 | ++-1-#0    | 2025.02.20  | 10:05  | V 6.  | 17.50 | 6.10                                                                                                                                                         | 80.20  |
|                                       | 枯水期        | 2025,02.21  | 00/30  | 16.8  | 17.50 | 6.10                                                                                                                                                         | 80.20  |
|                                       | +++        | 2024.09.27  | A 10   | 15.8  | 13.50 | 0.80                                                                                                                                                         | 57.83  |
| 10世紀古史                                | 丰水期        | 2024.00 28  | 12:06  | 15.8  | 13.50 | 0.30<br>0.30<br>3.10<br>3.10<br>2.03<br>2.03<br>4.10<br>4.10<br>3.49<br>3.49<br>3.49<br>5.75<br>5.76<br>2.23<br>4.05<br>4.05<br>5.23<br>5.23<br>6.10<br>6.10 | 57.83  |
| 10#北官庄                                | ++-1-40    | 2025.       | 1/13-1 | 16.8  | 13.50 | 2.00                                                                                                                                                         | 62.30  |
|                                       | 枯水期        | 3/1/5.0225  | 10:12  | 17.0  | 13.50 | 2.00                                                                                                                                                         | 62.30  |
|                                       | 土土地        | 2024 2 25   | 12:23  | 15.8  | 17.00 | 6.73                                                                                                                                                         | 50.73  |
| 11#谷山村                                | 基水期        | 3021.49.26  | 12:36  | 15.8  | 17.00 | 6.73                                                                                                                                                         | 54,73  |
| 11-4-11                               | 横水期        | 2025.02.20  | 11:10  | 17.0  | 17.00 | 9.20                                                                                                                                                         | (Etc.) |
|                                       | THE        | 2025.02.21  | 10:50  | 17.0  | 17.00 | 9.20                                                                                                                                                         | 10     |
| Α \                                   | <b>全水期</b> | 2024.09,25  | 12:39  | 16.0  | 12.50 | 110                                                                                                                                                          | 64.73  |
| 12章 日 1000                            | 十小州        | 2024.09,26  | 12:41  | 16.0  | 12.50 | 2017                                                                                                                                                         | 64.73  |
| · · · · · · · · · · · · · · · · · · · | 枯水期        | 2025.02.20  | 11:39  | 16.6  | 12.50 | 639                                                                                                                                                          | 64.70  |
| 711                                   | 和小州        | 2025.02.21  | 11:16  | 16.8  | 12.50 | 13.50                                                                                                                                                        | 64.70  |
| . Mi                                  | 主水 世       | 2024.09.27  | 14:55  | 15.6  | 15.25 | 3,22                                                                                                                                                         | 74.12  |
| 13#化石沟村                               | 丰水期        | 2024.09.28  | 13:16  | 15.6  | 195   | 3.22                                                                                                                                                         | 74.12  |
| ויוריבורוים                           | 枯水期        | 2025.02.20  | 12:05  | 16.4  | 15.5  | 5.10                                                                                                                                                         | 75.20  |
|                                       | THAT       | 2025.02.21  | 11:35  | 16.6  | 15.25 | 5.10                                                                                                                                                         | 75.20  |
|                                       | 丰水期        | 2024.09.27  | 16:33  | 16.8  | 18.50 | 6.18                                                                                                                                                         | 95.84  |
| 14#西荒村 —                              | +4590      | 2024.09.28  | 14:20  | 15.6  | 18.50 | 6.18                                                                                                                                                         | 95.84  |
| 1777(237771)                          | 枯水期        | 2025.02.20  | 1220   | 17.0  | 18.50 | 8.40                                                                                                                                                         | 92.30  |
| 4                                     | TO/INAM    | 2025.02.717 | 12,01  | 16.8  | 18.50 | 0.40                                                                                                                                                         | 92.30  |

THE REAL PROPERTY.

|   | (5-17 (1) | 地下水监测结果一览表 | (丰水期) |
|---|-----------|------------|-------|
| J |           | 11大河北西口    |       |

| 3.14     |            |     |               | 1   |           |     | 监测项         | 3               | 4     |             |                      |                 |                 |
|----------|------------|-----|---------------|-----|-----------|-----|-------------|-----------------|-------|-------------|----------------------|-----------------|-----------------|
| 采样<br>点位 | 采样<br>日期   | 色度度 | 臭和味           | 油度  | 肉眼<br>可见物 | pH值 | 总硬度<br>mg/L | 溶解性总固<br>体 mg/L | Sw. A | Cl·<br>mg/L | 挥发酚<br>mg/L          | 硫化<br>物<br>mg/L | 耗氧<br>量<br>mg/L |
| 1#       | 2024.09.25 | 10  | THE WORLD     | 1.7 | 无         | 7,1 | 521         | 821             | 174   | 49.8        | 0.0003L              | 0.003L          | 2.89            |
| 1#       | 2024.09.26 | 10  | 0% 无任<br>何嗅和味 | 1.7 | 无         | 7.1 | 532         | No.             | 194   | 43.7        | 0.0003L              | 0.003L          | 2.85            |
| 2#       | 2024.09.25 | Die | 级,无任<br>何嗅和味  | 2.7 | 无         | 7.2 | 65          | 1/2             | 71.9  | 53.5        | 0.0003L              | 0.003L          | 2.77            |
| 2#       | 2024.09.26 | (10 | 0级,无任<br>何嗅和味 | 2.7 | 无         | 7.2 | (1000)      | 865             | 77.9  | 42.9        | 0.0003L              | 0.003L          | NE.             |
| 2.0      | 2024.09/25 | 10  | 0级,无任<br>何嗅和味 | 2.4 | 无         | 747 | 477         | 725             | 163   | 104         | 0.0003L              | 0.003           | 2.00            |
| 17       | 2024.09.26 | 15  | 0级,无任<br>何嗅和味 | 2.4 | 无         | 185 | 481         | 741             | 149   | 90.8        | 0.00031              | 0.003L          | 2.20            |
|          | 1024.09.25 | 10  | 0级,无任<br>何嗅和味 | 2.3 | 夷         | -71 | 495         | 685             | 129   | 37.5        | 0 000SL              | 0.003L          | 2.39            |
| 44       | 2024.09.26 | 15  | 0级,无任<br>何嗅和味 | 2.3 |           | 7.1 | 511         | 728             | 149   | 36.1        | 1.00 <del>03</del> L | 0.003L          | 2.50            |
| 5.0      | 2024.09.25 | 15  | 0级,无任<br>何嗅和味 | 25  | The A     | 7.2 | 516         | 689             | 162   | K 12        | 0.0003L              | 0.003L          | 1.78            |
| 5#       | 2024.09.26 | 10  | 0级,无任 (何嗅和味   | 122 | 无         | 7.2 | 545         | 824             |       | 39.9        | 0.0003L              | 0.003L          | 1.76            |
| CII.     | 2024.09.25 | 15  | 0级,无伦         | 2.8 | 无         | 7.0 | 695         | 836             | 13    | 28.2        | 0.0003L              | 0.003L          | 1.60            |
| 6#       | 2024.09.26 | 10  | 0年9任          | 2.8 | 无         | 7.0 | 676         |                 | 332   | 32.9        | 0.0003L              | 0.003L          | 1.54            |

第 127 页

|          | 5 4 A S. M. |            | 0级,无任                       |           | · Kh           |                   |             | A 10 4               |             | 1           |           | I          | 100        |
|----------|-------------|------------|-----------------------------|-----------|----------------|-------------------|-------------|----------------------|-------------|-------------|-----------|------------|------------|
| 7#       | 2024.09.25  | 15         | 何嗅和味                        |           | Æ.             | 7.1               | 701         | 1.10×10 <sup>3</sup> | 261         |             | 0.0003L   | 0.003L     | 2.74       |
| /#       | 2024.09.26  | 15         | 0级,无任<br>何嗅和味               | X4        | 无              | 7.1               | 711         | 1.27×10 <sup>3</sup> | 442         | 300         | 0.0003L   | 0.003L     | 2.66       |
|          |             |            |                             |           |                |                   | 监测项E        |                      | -           |             |           | •          |            |
| 采样<br>点位 | 采样日期        | 氨氮<br>mg/L | 明大大                         | 钼<br>µg/L | 细菌总数<br>CFU/mL | 亚硝酸<br>盐氮<br>mg/L | 氰化物<br>mg/L | NO; (L)              | F-<br>mg/L  | 碘化物<br>mg/L | 铁<br>µg/L | 猛<br>µg/L  | 铜<br>µg/L  |
| 1#       | 2024.09.25  | 0.440      | GOVAL                       | 0.56      | 85             | 0,149             | 0.002L      | NA                   | 0.122       | 0.032       | 51.0      | 3.28       | 2.71       |
| 1#       | 2024.09.26  | 0, 53      | 0.050L                      | 0.43      | 79             | 0.150             | 0.002L      | 530                  | 0.535       | 0.038       | 51.2      | 3.20       | 2.46       |
| 2#       | 2024.09.25  | 10/421     | 0.050L                      | 1.12      | 91             | 0.004             | 0.000       | 2.79                 | 0.494       | 0.053       | 87.5      | 65.9       | 1.84       |
| 24       | 2024.09.26  | 0.448      | 0.050L                      | 0.96      | 93             | 0.006             | 0.00        | 2.87                 | 0.568       | 0.051       | 96.5      | 84.8       | 140        |
| 3#       | 2024.09.25  | 0.043      | 0.050L                      | 0.06L     | 68             | 0.051             | 30.00 L     | 10.5                 | 0.451       | 0.042       | 40.6      | 92.4       | 11.60      |
| Dπ       | 2024.09/26  | 0.067      | 0.050L                      | 0.06L     | 70             | 0.05B             | 0.002L      | 10.9                 | 0.582       | 0.051       | 29.6      | 80.2       | 0.08L      |
| 147      | ,2021.09.25 | 0.265      | 0.050L                      | 0.27      | 88             | 182.5             | 0.002L      | 4.16                 | 0.436       | 0.059       | 50.1      | 9.88       | 1.77       |
| X        | 024.09.26   | 0.271      | 0.050L                      | 0.28      | 91             | 138               | 0.002L      | 9.17                 | 0.486       | 0.068       | 47.00     | ₹ 9.51     | 1.52       |
|          | 2024.09.25  | 0.064      | 0.050L                      | 3.80      | 67             | 0 05              | 0.002L      | 5.07                 | 0.529       | 0.063       | 200       | 0.58       | 0.23       |
| -        | 2024.09.26  | 0.056      | 0.050L                      | 3.36      |                | 0.006             | 0.002L      | 10.0                 | 0.608       | 0.039       | 5.7       | 0.62       | 0.42       |
| 6#       | 2024.09.25  | 0.040      | 0.050L                      | 0.18      |                | 0.324             | 0,002L      | 5.14                 | 0.226       | 0.047       | 43.2      | 0.46       | 0.08L      |
| O#       | 2024.09.26  | 0.062      | 0.050L                      | 0.07      | 11/2           | 0.319             | 0.002L      | 10.4                 | 0.265       | (\$6) (51   | 42.7      | 0.40       | 0.08L      |
| 7#       | 2024.09.25  | 0.145      | 0.050L                      | 0.64      | 79             | 0.330             | 0.002L      | 5.13                 | 0.387       | 0.05        | 54.3      | 0.18       | 0.50       |
| / 17     | 2024.09.26  | 0.150      | 0.050L                      | 9.67      | 84             | 0.335             | 0.002L      | 12.7                 | 9.231       | 0.055       | 55.9      | 0.12L      | 0.62       |
| 采样       |             |            | 1. 43                       |           |                |                   | 监测项目        | 1                    |             |             |           |            |            |
| 点位       | 采样日期        | 铝<br>µg/L  | 指面<br>和<br>和<br>和<br>和<br>和 | 汞<br>µg/L | 砷<br>µg/L      | 硒<br>µg/L         | 锌<br>µg/L   | 10/10                | € #<br>µg/L | 铅<br>µg/L   | 苯<br>µg/L | 甲苯<br>µg/L | 甲醇<br>mg/L |

第 128 页

| 1#    | 2024.09.25 | 38.8           | 未检出           | 0.042                  | 0.61  | 0.41L                    | 4.48                     | 0.17        | 0.11L         | 2,30  | 2L  | 2L   | 0.2L |    |
|-------|------------|----------------|---------------|------------------------|-------|--------------------------|--------------------------|-------------|---------------|-------|-----|------|------|----|
| 1π    | 2024.09.26 | 44.9           | 未检出           | 20.7%                  | 0.22  | 0.41L                    | 4.30                     | 0.08        | 0.11L         | 1/28  | 2L  | 2L   | 0.2L |    |
| 2#    | 2024.09.25 | 20.6           | 未检出           | V.641                  | 1.04  | 0.41L                    | 7.86                     | 0.05L       | 0 NE          | 0.22  | 2L  | 2L   | 0.2L | 1  |
| Zm    | 2024.09.26 | 23.5           | 未检出           | 0.04L                  | 1.26  | 0.41L                    | 7.16                     | 0.05L       | OAL           | 0.21  | 2L  | 2L   | 0.2L | 1  |
| 3#    | 2024.09.25 | 32.3           | <b>养</b> 缝。   | J.04L                  | 0.26  | 0.44                     | 0.67L                    | 0.05L       | 8.11L         | 0.55  | 2L  | 2L   | 0.2L | 1  |
| 3#    | 2024.09.26 | 22.9           |               | 0.04L                  | 0.12L | 0.41L                    | 0.67L                    | 0.051       | 0.11L         | 0.41  | 2L  | 2L   | 0.2L | 1  |
| 4#    | 2024.09.25 | 77.1           |               | 0.04L                  | 0.62  | 0.41L                    | 1.18                     | 122         | 0.11L         | 0.19  | 2L  | 2L   | 0.2L | 1. |
| 4#    | 2024.09.26 | 70.3           | 未检出           | 0.04L                  | 0.71  | 0.50                     | 1.38                     |             | 0.11L         | 0.12  | 2L  | 2L   | 0.2L | k  |
| 5#    | 2024.09.25 | .49            | 未检出           | 0.04L                  | 0.34  | 0.41L                    | 0.672                    | VAD-T       | 0.11L         | 0.32  | 2L  | 2L   | 0.21 | 1  |
| >#C   | 2024.09.26 | 150/5          | 未检出           | 0.04L                  | 0.20  | 0.64                     | 600                      | 0.05L       | 0.11L         | 0.31  | 2L  | 2L   | 924  | Ż  |
| e     | 2024.09.25 | 27.4           | 未检出           | 0.04L                  | 0.12L | 0.88                     | STARY.                   | 0.32        | 0.11L         | 0.09L | 2L  | 2L , | W.   | 1  |
| 6#    | 2024.09.26 | 22.4           | 未检出           | 0.04L                  | 0.12L | 0.411                    | 3.16                     | 0.28        | 0.11L         | 0.09L | 2L  | 24   | 0.2L | Ī  |
| 2//   | 2024.09.25 | 76.4           | 未检出           | 0.04L                  | 0.12L | .0×1.L                   | 3.72                     | 0.28        | 0.11L         | 1.18  | 2L  | 1121 | 0.2L | 1  |
| V     | 2024.09.26 | 85.1           | 未检出           | 0.04L                  | 0.16  | 102                      | 4.03                     | 0.16        | 0.11L         | 1.12  | 2LX | - 2L | 0.2L | 1  |
| atta. |            |                |               |                        |       |                          | 监测项                      |             |               |       | Jus | 7    |      | 1  |
| 点众    | 采样日期       | 总α放射<br>性 Bq/L | 总β放射性<br>Bq/L | K <sup>+</sup><br>mg/L | 75    | ca <sup>2+</sup><br>mg/L | Mg <sup>2+</sup><br>mg/L | 碳酸盐<br>mg/L | 重碳酸<br>盐 mg/L |       | V   |      |      | 1  |
|       | 2024.09.25 | 0.044          | 0.160         | 9.83                   | 38.3  | 198                      | 18.6                     | 1.0L        | 452           |       |     |      |      |    |
| 1#    | 2024.09.26 | 0.043L         | 0.141         | 7,27                   | 37.1  | 199                      | 18.8                     | 1.0L        | 303           |       |     |      |      | l  |
| 211   | 2024.09.25 | 0.043L         | 0.059         | 1.46                   | 32.0  | 212                      | 37.2                     | 1.0L        | 653           |       | 1   |      |      | l  |
| 2#    | 2024.09.26 | 0.050          | 0.109         | 7.49                   | 31.4  | 211                      | 37.6                     | 1.0L        | 1654          | 1     |     |      |      | l  |
| 2.11  | 2024.09.25 | 0.043L         | 0.016         | 0.96                   | 51.8  | 166                      | 25.0                     | 1.0L        | 1 3/6         |       |     |      |      | l  |
| 3#    | 2024.09.26 | 0.043L         | MAIN'         | 1.07                   | 51.5  | 168                      | 25.9                     | 1.6         | 250           |       |     |      |      |    |
| 4#    | 2024.09.25 | 0.043L         | 0.160         | 9.28                   | 32.8  | 188                      | 17.6                     | 1.0         | 328           |       |     |      |      |    |
|       |            |                |               |                        |       | -                        |                          |             |               |       |     |      |      | _  |

第 129 页

| 兖矿鲁南化工有限公司微反应高数合成精细化学品节 | 能示范项目环境影响报告书 |
|-------------------------|--------------|
|-------------------------|--------------|

|    | 2024.09.26 | 0.043L | 0.150 | 919  | 33.0      | 186  | 17.6       | 1.0L           | 328  |  |
|----|------------|--------|-------|------|-----------|------|------------|----------------|------|--|
| ŕ. | 2024.09.25 | 0.090  | 0.058 | A. V | 37.9      | 132  | 55.8       | 1.0L           | 324  |  |
| 5# | 2024.09.26 | 0.050  | 0.168 | 4.68 | 36.7      | 133  | 57.2       | 1.0L           | 323- |  |
| 64 | 2024.09.25 | 0.043L | 0.060 | 2 46 | 33.8      | 192  | 63.1       | 1.0L           | 510  |  |
| 6# | 2024.09.26 | 0.043L | 120   | 2.70 | 35.0      | 192  | 62.1       | 1.0L           | 719  |  |
| 7# | 2024.09.25 | 0.127  |       | 7.98 | 95.0      | 226  | 45.4       | 1.0L           | 466  |  |
| /= | 2024.09.26 | 0.057  | A W   | 7.87 | 94.1      | 233  | 46.1       | VOL.>          | 408  |  |
|    |            |        |       | 表 4  | .5-17 (2) | 地下水监 | 测结果一       | <b>公表</b> (福永期 | )    |  |
|    |            |        |       | -    |           |      | When her I |                | -    |  |

# 表 4.5-17(2) 地下水监测结果一些表(荷水期)

| - 200 | 3.12       | 11. |                |           |           |     | 监测项目                | Kli,            |             |             |             |         | 7/1   |
|-------|------------|-----|----------------|-----------|-----------|-----|---------------------|-----------------|-------------|-------------|-------------|---------|-------|
| 采样点位  | 采样し期       | 色度度 | 臭和味            | 浊度<br>NTU | 肉眼<br>可见物 | pH值 | THE PERSON NAMED IN | 溶解性总<br>固体 mg/L | 硫酸盐<br>mg/L | 氯化物<br>mg/L | 挥发酚<br>mg/L | 硫化物,mg化 | ing A |
| 4~    | 2023-02.20 | 5L  | 0级,无任<br>何嗅和味  | 2.0       | 无         | No. | 603                 | 775             | 168         | 55.8        | 0.0003L     | 10,0031 | 1.0   |
|       | 025.02.21  | 5L  | 0级,无任<br>何嗅和味  | 1.6       | 无         | Yo  | 541                 | 672             | 103         | 39.4        | 0.00031     | 0.003L  | 1.2   |
| 2#    | 2025.02.20 | 5L  | 0级,无任<br>何嗅和味  | 2.8       | 174       | 7.8 | 463                 | 489             | 93.7        | 43.2        | 0. 003L     | 0.003L  | 0.9   |
| 2#    | 2025.02.21 | 5L  | 0级,无任<br>何嗅和味  | 2.3       |           | 7.7 | 461                 | 491             | 93.6        | 43.3        | 00003L      | 0.003L  | 0.8   |
| 3#    | 2025.02.20 | 5L  | 0级,无任何嗅和味、     | 30        | 无         | 7.7 | 603                 | 863             | 126         | 128         | 0.0003L     | 0.003L  | 1.2   |
| 3#    | 2025.02.21 | 5L  | 0级,无任何嗅和较。     | V8.4      | 无         | 7.6 | 599                 | 763             | 1176        | 129         | 0.0003L     | 0.003L  | 1.3   |
| 4#    | 2025.02.20 | 5L  | 0.5%无住<br>闭想加味 | 1.3       | 无         | 7.6 | 715                 | 751             | ₹ 201       | 91.9        | 0.0003L     | 0.003L  | 1.1   |

第 130 页

|     |            |            |                         |           | <b>X</b>                                |          |             |                    |            |             |           |            |           |
|-----|------------|------------|-------------------------|-----------|-----------------------------------------|----------|-------------|--------------------|------------|-------------|-----------|------------|-----------|
|     | 2025.02.21 | 5L         | 0级,无任<br>何嗅和味           |           | \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \ | 7.7      | 713         | 849                | 199        | 99.0        | 0.0003L   | 0.003L     | 1.1       |
| 5#  | 2025.02.20 | 5L         | 0级,无任<br>何嗅和味           | X3        | 无                                       | 7.7      | 617         | 518                | 198        | 620         | 0.0003L   | 0.003L     | 0.9       |
| .5# | 2025.02.21 | 5L         | 0级,无任<br>何奧和味           | 1.2       | 无                                       | 7.8      | 628         | 768                | 1700       | 61.7        | 0.0003L   | 0.003L     | 0.8       |
| 6#  | 2025.02.20 | 5L         | 光连                      | 1.7       | 无                                       | 8.0      | 472         | 588                | 97.3       | 46.2        | 0.0003L   | 0.003L     | 1.2       |
| 0#  | 2025.02.21 | 51         | 体<br>使<br>使<br>有<br>身和味 | 1.8       | 无                                       | 7.8      | 495         | ( ) Par            | 97.4       | 46.1        | 0.0003L   | 0.003L     | 1.0       |
| 7.0 | 2025.02.20 | 4          | 0级,无任<br>何嗅和味           | 1.2       | 无                                       | 7.7      | 50          | 172                | 106        | 43.2        | 0.0003L   | 0.003L     | 4         |
| 7#  | 2025.02.21 | 5L         | 0级,无任<br>何嗅和味           | 1.5       | 无                                       | 7.7      | 1.00        | 601                | 105        | 43.2        | 0.0003L   | 0.003L     |           |
|     | NV         |            |                         |           |                                         | 1        | 监测项目        |                    |            |             |           | X          | 1         |
| 科   | 来每日期       | 氨氮<br>mg/L | 阴离子表面<br>活性剂<br>mg/L    | 钼<br>μg/L | 细菌总数<br>CFU/mM                          | 藤坂<br>夏益 | 氰化物<br>mg/L | NO3 (以N<br>计) mg/L | F-<br>mg/L | 碘化物<br>mg/L | 铁<br>µg/t | )猛<br>pg/L | 铜<br>µg/L |
|     | 2025.02.20 | 0.037      | 0.04L                   | 0.91      | 74                                      | 0.003L   | 0.001L      | 13.9               | 0.261      | 0.002L      | 10.82L    | 0.64       | 1.24      |
| =   | 2025.02.21 | 0.033      | 0.04L                   | 0.90      | 161                                     | 0.003L   | 0.001L      | 18.8               | 0.212      | JZ00.0      | A \$2L    | 0.64       | 1.22      |
| 2#  | 2025.02.20 | 0.162      | 0.04L                   | 1.26      | 64                                      | 0.003L   | 0.001L      | 2.87               | 0.419      | 0.002       | 0.82L     | 3.60       | 0.72      |
| 2#  | 2025.02.21 | 0.154      | 0.04L                   | 1.40      | 17-10                                   | 0.003L   | 0.001L      | 2.83               | 0.440      | (40 Y 02L   | 0.82L     | 3.34       | 0.78      |
| 3#  | 2025.02.20 | 0.078      | 0.04L                   | 127       | 91                                      | 0.005    | 0.001L      | 17.1               | 0.255      | 0.002       | 0.82L     | 0.78       | 1,51      |
| 217 | 2025.02.21 | 0.086      | 0.04L                   | 1,29      | 94                                      | 0.005    | 0.001L      | 17.1               | 0.226      | 0.002L      | 0.82L     | 0.66       | 1.39      |
| 4#  | 2025.02.20 | 0.033      | 0.04                    | 0.95      | 69                                      | 0.005    | 0.001L      | 19.9               | b. 174     | 0.002L      | 0.82L     | 4.75       | 0.50      |
| 411 | 2025.02.21 | 0.038      | 18 ML                   | 1.05      | 72                                      | 0.005    | 0.001L      | 19.9               | 20.21      | 0.002L      | 0.82L     | 5.30       | 0.54      |
| 5#  | 2025.02.20 | 0.038      | 10                      | 1.27      | 85                                      | 0.003L   | 0.001L      |                    | 0.276      | 0.002L      | 0.82L     | 0.76       | 1.02      |

第 131 页

|        | 2025 02 24 | 2.020  | 0.047     | 1.41           |                 |                  |                  | ~ **  | 0.220 | A      |       |       |       |  |
|--------|------------|--------|-----------|----------------|-----------------|------------------|------------------|-------|-------|--------|-------|-------|-------|--|
|        | 2025.02.21 | 0.036  | 0.04L     | 1              | 89              | 0.003L           | 0.001L           | 7,53  | 0.270 | 0.305T | 0.82L | 0.63  | 1.06  |  |
| 6=     | 2025.02.20 | 0.036  | 0.04L     | 1              | 7               | 0.003L           | 0.001L           | 14.5  | 0.199 | (COM)  | 0.82L | 0.53  | 0.82  |  |
| OH     | 2025.02.21 | 0.038  | 0.04L     | 1.02           | 9               | 0.003L           | 0.001L           | 14.5  | 0.245 | 0.002L | 0.82L | 0.59  | 0.78  |  |
| 74     | 2025.02.20 | 0.041  | 0.041     | 1.22           | 79              | 0.003L           | 0.001L           | 12.1  | 0.236 | 0.002L | 1.00  | 0.54  | 1.82  |  |
| 7#     | 2025.02.21 | 0.046  | 142       | 1.23           | 82              | 0.003L           | 0.001L           | 12.2  | 0.220 | 0.002L | 0.88  | 0.38  | 1.98  |  |
| 采样     | of Paris   | 监测项目   |           |                |                 |                  |                  |       |       |        |       |       |       |  |
| 点位     | 采样日期       | 铝      | 多次形図群     | 汞              | 砷               | 硒                | 锌                | 人職人   | 铬     | 铅      | 苯     | 甲苯    | 甲醇    |  |
| / 1111 |            | цд/    | MPN-100mL | μg/L           | μg/L            | μg/L             | μg/L             | W.A.  | μg/L  | μg/L   | μg/L  | μg/L  | mg/L  |  |
| 1#     | 2025.02.20 | ME.    | 未检出       | 0.04L          | 2.90            | 0.41L            | 7.75             | 0.03  | 0.11L | 0.20   | 0.4L  | 0.3L  | 0.2L  |  |
| 1,11   | 2025.02.21 | 17/100 | 未检出       | 0.04L          | 2.62            | 0.41L            |                  | 9.05  | 0.11L | 0.20   | 0.4L  | 0.3L  | 0.4   |  |
| 2#     | 2025.02.20 | 1.28   | 未检出       | 0.04L          | 2.74            | 0.41L            |                  | 0.05L | 0.11L | 0.09L  | 0.4L  | 0.3L  | 66    |  |
| 28     | 2025.02.21 | 1.96   | 未检出       | 0.04L          | 2.68            | 0.41             | 1                | 0.05L | 0.11L | 0.09L  | 0.4L  | 0.3K  | 10:77 |  |
| 24     | 3025.02/20 | 4.68   | 未检出       | 0.04L          | 2.79            | 0. 11            | 0.67L            | 0.05L | 0.11L | 0.09L  | 0.4L  | .0.3L | 0.2L  |  |
| 3#     | 2023.02.21 | 3.61   | 未检出       | 0.04L          | 2.56            | L.O.             | 0.67L            | 0.05L | 0.11L | 0.09L  | 0.4L  | 163L  | 0.2L  |  |
|        | 025.02.20  | 1.15L  | 未检出       | 0.04L          | 1.38            | ALUL.            | 0.67L            | 0.05L | 0.11L | 0.09L  | 0,41  | 0.3L  | 0.2L  |  |
| 4#     | 1025.02.21 | 1,15L  | 未检出       | 0.04L          | 1.86            | 0.41L            | 0.67L            | 0.05L | 0.11L | 0.09L  | VO.40 | 0.3L  | 0.2L  |  |
|        | 2025.02.20 | 5.92   | 未检出       | 0.04L          | 123             | 0.41L            | 1.23             | 0.05L | 0.11L | 0.091  | M4L   | 0.3L  | 0.2L  |  |
| 5#     | 2025.02.21 | 4.48   | 未检出       | 0.04L          | 2.6             | 0.41L            | 1.36             | 0.05L | 0.11L | 0.09L  | 0.4L  | 0.3L  | 0.2L  |  |
|        | 2025.02.20 | 2.02   | 未检出       | 0.041          | 2.12            | 0.41L            | 2.01             | 0.05L | 0.11L | So OL  | 0.4L  | 0.3L  | 0.2L  |  |
| 6#     | 2025.02.21 | 2.97   | 未检出       | 0.041          | 2.43            | 0.41L            | 1.95             | 0.05L | 0.111 | 0.091  | 0.4L  | 0.3L  | 0.2L  |  |
| -      | 2025.02.20 | 5.05   | 未检出       | 9:04L          | 2.96            | 0.41L            | 0.78             | 0.05L | D-IIL | .09L   | 0.4L  | 0.3L  | 0.2L  |  |
| 7#     | 2025.02.21 | 5,03   | 未检验了      | 0.04L          | 2.88            | 0.41L            | 0.87             | 0.05L | d.VI  | 0.09L  | 0.4L  | 0.3L  | 0.2L  |  |
| 采样     | ₹74¥ F1##  |        | VAS       |                |                 | -                | 监测项目             | 1     | (3)   |        |       |       | -     |  |
| 点位     | 采样日期       | 总α放射   | 計劃        | K <sup>+</sup> | Na <sup>+</sup> | Ca <sup>2+</sup> | Mg <sup>2+</sup> | 碳酸物   | 重碳酸   |        | - J.  |       |       |  |

第 132 页

| Т |            | 性 Bq/L   | Bq/L    | mg     | 0.00 | mg/L    | mg/L | mg/L  | 盐 mg/L |               |
|---|------------|----------|---------|--------|------|---------|------|-------|--------|---------------|
| 4 | 2025 02 20 |          |         |        | 70.0 | -       |      |       | 1      |               |
| ŀ | 2025.02.20 | 0.043L   | 0.078   | 2-1    | 78.0 | 220     | 26.8 | 1.25L | 476    |               |
| ļ | 2025.02.21 | 0.043L   | 0.071   | 0.87   | 14.6 | 175     | 12.9 | 1.25L | 486    |               |
| l | 2025.02.20 | 0.043L   | 0.114   | 1.16   | 21.9 | 151     | 18.6 | 1.25L | 373    |               |
| l | 2025.02.21 | 0.043L   | 109     | 1.11   | 21.9 | 149     | 18.4 | 1.25L | 367    |               |
|   | 2025.02.20 | 0.043L   | 1/6/200 | 0.52   | 45.0 | 197     | 27.6 | 1.25L | 370    |               |
|   | 2025.02.21 | 0.043L   | 4.1     | 0.49   | 43.3 | 195     | 27.3 | 1/252 | 365    | 1             |
| Ī | 2025.02.20 | 0.0437   | 0.073   | 0.93   | 44.5 | 210     | 45.1 |       | 363    |               |
| Ì | 2025.02.21 | grage    | 0.099   | 1.13   | 45.6 | 203     | 45.3 | 173L  | 322    |               |
| t | 2025.02.20 | , 9:043L | 0.069   | 0.31   | 29.5 | 179     | 48   | 1.25L | 358    |               |
| Ì | 2025.02.21 | 0.043L   | 0.082   | 0.32   | 32.4 | 180     | 37.8 | 1.25L | 369    |               |
| t | 2025.02.20 | 0.043L   | 0.086   | 1.46   | 27.7 | 140-    | 18.5 | 1.25L | 242    | 1127          |
| Ì | 2023 02.21 | 0.043L   | 0.069   | 0.51   | 14.4 | .NO2    | 33.2 | 1.25L | 322    | 1,-           |
| ţ | 2025.02.20 | 0.043L   | 0.125   | 1.62   | 29.1 | 104     | 12.8 | 1.25L | 387    | 1 V           |
| - | 2025.02.21 | 0.043L   | 0.111   | 1.63   | 30.8 |         | 13.2 | 1.25L | 394    | - 11.         |
|   |            |          |         | IN THE |      |         |      |       |        |               |
|   |            |          | 14.     |        |      | 第 133 页 | T. H |       |        | 山东优纳特环境科技有限公司 |

#### 4.5.2.2 地下水质量现状评价

1、评价因子

铬、甲醇、K<sup>+</sup>、Na<sup>+</sup>、 Ca<sup>2+</sup>、 碳酸盐、重碳酸盐无相应质量标准,不予评价。除前述因子之外,评价为子同监测项目。

### 2、评价标准

现状评价采用《地飞水环境质量标准》(GB14848-2017)III类标准。

### 3、评价方法

地下水水环境现状评价采用单因子污染指数法。

采用单因于指数法对地下水环境质量现状进行评价, 计算公式为:

$$P_i = \frac{C_i}{Si}$$

式中: Pi---第 i 种评价因子的标准指数;

Ci——第i种污染物的实测浓度,mg

Si——第i种污染物的评价标准。ALL

对于浓度宜限在一定范围内的评价因子。如 H值的标准指数按下式计算:

$$P_{pH} = \frac{7.0 - H}{20.2 H}$$
 (pH<sub>Ci</sub> \le 7.0)  

$$P_{pH} = \frac{7.0 - H}{20.2 H}$$
 (pH<sub>Ci</sub> \le 7.0)

式中: PpH pH的标准指数:

pHX人口U的现状监测结果

pH采用标准的下限值;

pHsu—pH采用标准的上限值。

### 评价结果

水环境现状评价结果见表 4.5-18.

| 表45.20(1) 地下水环境质量现状评价结果 | (主水期 | ) |
|-------------------------|------|---|
|-------------------------|------|---|

|           | 1000       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AX.   |           |                  |         | 监测项目   |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | •                |        |       |
|-----------|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|------------------|---------|--------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------|--------|-------|
| 采样点位      | 采样<br>日期   | 色度    | 臭和時                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7     | 肉眼可<br>见物 | pH值              | 总硬度     | 溶解性总固体 | SO <sub>4</sub> <sup>2</sup> · | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 挥发酚   | 阴离子<br>表面活<br>性剂 | 耗氧量    | 氯氮    |
| 1#南涝      | 2024.09.25 | 0.667 | A STATE OF THE STA | 0.567 | 达标        | 0.067            | 1.158   | 0.821  | 0.696                          | 0.199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 未检出   | 未检出              | 0.963  | 0.880 |
| 坡村        | 2024.09.26 | 0.667 | (生)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.567 | 达标        | 0.067            | 1.182   | 0.788  | 10,716                         | 0.175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 未检出   | 未检出              | 0.950  | 0.906 |
| عدر الم   | 2024.09.25 | 300   | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.900 | 达标        | 0.133            | 1.453   | 0.802  | 288                            | 0.214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 未检出   | 未检出              | 0.910  | 0.842 |
| 2#厂址      | 2024.09.26 | 8 867 | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.900 | 达标        | 0.133            | 1.478   | 0.865  | 0.312                          | 0.172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 未检出   | 未检出              | 0.913  | 0.896 |
| 3≓鲁化      | 2024.09    | 0 607 | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.800 | 达标        | 0.067            | 1.060   | 0/125  | 0.652                          | 0.416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 未检出   | 未检出              | 0.667  | 0.688 |
| 污水厂       | 2024,09.26 | 1.000 | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.800 | 达标        | 0.067            | 1.069   | 30.71  | 0.596                          | 0.363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 未检出   | 未检出              | 0.733  | 31/17 |
| 4#木石镇     | 2024.09.25 | 0.667 | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.767 | 达标        | 0.067            | 1100    | 0.685  | 0.516                          | 0,150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 未检出   | 未检出              | 0.797  | 0.330 |
| 政府公       | 2024.09.26 | 1.000 | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.767 | 达标        | 0.067            | 736     | 0.728  | 0.596                          | 0.144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 未检出   | 未检出              | 0,833  | 0.542 |
| ZXX       | 2024.09.25 | 1.000 | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.733 | 达标        | 1                | 7 1 147 | 0.689  | 0.648                          | 0.157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 未检出   | 未检出,             | 0.503  | 0.128 |
| THE VA    | 2024.09.26 | 0.667 | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.733 | 达标 ◀      | N. P.A           | 1.211   | 0.824  | 0.992                          | 0.160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 未检出   | 未检出              | 38.587 | 0.112 |
| G-10/14+  | 2024.09.25 | 1.000 | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.933 | 选择        | 0.000            | 1.544   | 0.836  | 0.612                          | 0.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 未检出   | 未放出              | 0.533  | 0.080 |
| 6章 公山村    | 2024.09.26 | 0.667 | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.933 | E OF      | 0.000            | 1.502   | 0.986  | 1,328                          | 0.132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 未检出   | 7 By:            | 0.513  | 0.124 |
| 7=桥口村     | 2024.09.25 | 1.000 | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.800 | ()        | 0.067            | 1.558   | 1.100  | 1.044                          | 0.233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 夫俭出   | 主义朱              | 0.913  | 0.290 |
| /=f5(LLT) | 2024.09.26 | 1.000 | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.860 | 〉达标       | 0.067            | 1.580   | 1.270  | 1.796                          | 0.224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 大学    | 未检出              | 0.887  | 0.300 |
|           | 13.12      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |           |                  |         | 监测项目   |                                | - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KI.   |                  |        |       |
| 采样点位      | 采样<br>日期   | 硫化物   | 总大肠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 细菌总数  | 亚硝酸<br>盐氮 | NOs<br>(以N<br>计) | 氰化物     | F-     | 碘化物                            | NE STATE OF THE ST | 锰     | 铜                | 锌      | 铝     |
| 1#南涝坡     | 2024.09.25 | 未检出   | 急生                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.850 | 0.149     | 0.458            | 未检出     | 0.122  | 1000                           | 0.170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.033 | 0.003            | 0.004  | 0.194 |

第 135 页

|           |            |       |        |        |          |       |     |       |        |       |           | V.—/  |       |       |
|-----------|------------|-------|--------|--------|----------|-------|-----|-------|--------|-------|-----------|-------|-------|-------|
| 村         | 2024.09.26 | 未检出   | 未检出    | 0.790  | 0.1.0    | 0.500 | 未检出 | 0.535 | 0.475  | 0.171 | 700       | 0.602 | 0.004 | 0.225 |
| 2-1-44    | 2024.09.25 | 未检出   | 未检出    | 0.0    | 0.004    | 0.140 | 未检出 | 0.494 | 0.663  | 0.292 | 130       | 0.002 | 0.008 | 0.103 |
| 2=厂址      | 2024.09.26 | 未检出   | 未检出    | 0.930  | 0.006    | 0.144 | 未检出 | 0.568 | 0.638  | 0.325 | 0.845     | 0.002 | 0.007 | 0.118 |
| 3#鲁化污     | 2024.09.25 | 未检出   | 未检出    | 0.680  | 0.051    | 0.525 | 未检出 | 0.451 | 0.525  | 0.135 | 0.924     | 未检出   | 未检出   | 0.162 |
| 水厂        | 2024.09.26 | 未检出   | 果检查    | 2.700  | 0.053    | 0.545 | 未检出 | 0.582 | 0.638  | 0,000 | 0.802     | 未检出   | 未检出   | 0.115 |
| 4#木石镇     | 2024.09.25 | 未检出。  | A L    | 0.880  | 0.135    | 0.208 | 未检出 | 0.436 | 0.738  | 0.167 | 0.099     | 0.002 | 0.001 | 0.386 |
| 政府        | 2024.09.26 | 未捡出   | 表出     | 0.910  | 0.138    | 0.459 | 未检出 | 0.486 | 10.850 | 0.157 | 0.095     | 0.002 | 0,001 | 0.397 |
| تتخمدد    | 2024.09.25 | 1     | 未检出    | 0.670  | 0.005    | 0.254 | 未检出 | 0.529 | 788    | 0.069 | 0.006     | 0.000 | 未检出   | 0.247 |
| 5#俭庄村     | 2024.09.26 | ## AT | 未检出    | 0.580  | 0.006    | 0.500 | 未检出 | 0.603 | 0.738  | 0.086 | 0.006     | 0.000 | 未检出   | 0.268 |
|           | 2024.09.20 | 未验出   | 未检出    | 0.660  | 0.324    | 0.257 |     | < 226 | 0.588  | 0.144 | 0.005     | 未检出   | 0.004 | 0.191 |
| 6#尖山村     | 2024.89.26 | 未检出   | 未检出    | 0.750  | 0.319    | 0.520 | 未捡步 | 0.265 | 0.638  | 0.142 | 0.004     | 未检出   | 0.003 | 1 NE  |
| - 15-115  | 202#.09.25 | 未检出   | 未检出    | 0.790  | 0.330    | 0.257 | 未检出 | 0.387 | 0.638  | 0.181 | 0.002     | 0.001 | 0.004 | 0.382 |
| 7=桥口枝》    | 2024.09.26 | 未检出   | 未检出    | 0.840  | 0.335    | 0.635 | 多份公 | 0.231 | 0.688  | 0.186 | 未检出       | 0.001 | 0/004 | 0.426 |
| VAS.      | ₹7.4¥      |       |        |        |          |       | 7   | 监测项目  |        |       |           | 2     | 2-1   |       |
| <b>美美</b> | 采样<br>日期   | 钼     | 汞      | 砷      | 硒        |       | 铬   | 铅     | 苯      | 甲苯    | 总·敬<br>射性 | 总融。   | Na*   | 1     |
| 1=南涝      | 2024.09.25 | 0.008 | 未检出    | 0.061  | <b>*</b> | 0.034 | 未检出 | 0.030 | 未检出    | 未检出   | 0.088     | Cred  | 0.192 | 1     |
| 坡村        | 2024.09.26 | 0.006 | 未检出    | 0.022  | A WILL   | 0.016 | 未检出 | 0.028 | 未检出    | 未检出   | 未硷出       | A.M   | 0.186 | 7     |
| 2         | 2024.09.25 | 0.016 | 未检出    | 0.104  | 朱检出      | 未检出   | 未检出 | 0.022 | 未检出    | 未检出   | <b>F</b>  | 0.059 | 0.160 | /_    |
| 2=厂址      | 2024.09.26 | 0.014 | 未检出    | 0.126  | 未检出      | 未检出   | 未检出 | 0.021 | 未检出    | 未检出   | 0.100     | 0.109 | 0.157 | -/    |
| 3=鲁化      | 2024.09.25 | 未检出   | 未检出    | 102026 | 0.044    | 未检出   | 未检出 | 0.055 | 未检出    | 未检出   | 未截出       | 0.016 | 0.259 | 1     |
| 污水厂       | 2024.09.26 | 未检出   | 未捡些    | 7未检出   | 未检出      | 未检出   | 未检出 | 0.041 | 未检出,   | 支基区   | 未检出       | 0.090 | 0.258 | _/_   |
| 4#木石镇     | 2024.09.25 | 0.004 | 罗姓     | 0.062  | 未检出      | 0.024 | 未检出 | 0.019 | 未经     | 保检上   | 未检出       | 0.160 | 0.164 | 1     |
| 政府        | 2024.09.26 | 0.004 | र के म | 0.071  | 0.050    | 0.022 | 未检出 | 0.012 | 500    | 未检出   | 未检出       | 0.150 | 0.165 | j.    |

第 136 页

|              | 2024.09.25 | 0.054 | 未检出     | 0.02  | ## D  | 未检出   | 未检出 | 0.032 | 未检出 | 土松中  | 20 (40) | 10.00 | 0.190 |    |
|--------------|------------|-------|---------|-------|-------|-------|-----|-------|-----|------|---------|-------|-------|----|
| 5=俭庄村        | 2024.09.23 | 0.034 |         | 0.0 4 | 下顶口   |       |     | 0.032 |     | 未检出  |         | 0.038 | 0.190 |    |
| 544 DXXT ( ) | 2024.09.26 | 0.048 | 未检出     | 0,020 | 2.064 | 未检出   | 未检出 | 0.031 | 未检出 | 未检出、 | 1707    | 0.168 | 0.184 | 1  |
| 6#尖山村        | 2024.09.25 | 0.003 | 未检出     | 李極出   | 0.088 | 0.064 | 未检出 | 未检出   | 未检出 | 未检此  | 未会上     | 0.060 | 0.169 | 1  |
| оХ-ШТ        | 2024.09.26 | 0.001 | 未检出     | 井金出   | 未检出   | 0.056 | 未检出 | 未检出   | 未检出 | 、未捡出 | 未检出     | 0.070 | 0.175 | -1 |
| 7=桥口村        | 2024.09.25 | 0.009 | 求检查     | 未检出   | 未检出   | 0.056 | 未检出 | 0.118 | 未检出 | 未检出  | 0.254   | 0.419 | 0.475 | 1  |
| /=わパロヤリ      | 2024.09.26 | 0.010 | THE WAY | 0.016 | 0.202 | 0.032 | 未检出 | 0.112 | 未捡出 | 未检出  | 0.114   | 0.420 | 0.471 | 1- |

# 表4.5-18(2) 地下水环境质量现状评价结果(枯水期)

|                      |            |     |      |       |           |       |         | 监测项目       | 7                  |       |     |                  |        |        |
|----------------------|------------|-----|------|-------|-----------|-------|---------|------------|--------------------|-------|-----|------------------|--------|--------|
| 采样点位                 | 采样<br>日期   | 色度  | 臭和味  | 浊度    | 肉眼可<br>见物 | pH值   | 总硬      | 定解性<br>命國体 | SO <sub>4</sub> 2- | CI.   | 挥发酚 | 阴离子<br>表面活<br>性剂 | 耗氧量    |        |
| 1≓南涝                 | 2025,02,20 | 未检出 | 达标   | 0.667 | 达标        | 0.533 | 130     | 0.775      | 0.672              | 0.223 | 未检出 | 未检出              | 0,333  | (0.074 |
| 坡村公                  | 2025.02.21 | 未检出 | 达标   | 0.533 | 达标        | 0.533 | 202     | 0.672      | 0.412              | 0.158 | 未检出 | 未检出              | 0,400  | 0.066  |
| JAKA!                | 2025.02.20 | 未检出 | 达标   | 0.933 | 达标        | 17%   | 7 1 029 | 0.489      | 0.375              | 0.173 | 未检出 | 未检出,             | 0.300  | 0.324  |
| 1                    | 2025.02.21 | 未检出 | 达标   | 0.767 | 达标 ◆      | 100   | 1.024   | 0.491      | 0.374              | 0,173 | 未检出 | 未检出              | 38.267 | 0.308  |
| 关重长                  | 2025.02.20 | 未检出 | 达标   | 2.867 | 选择        | 4457  | 1.340   | 0.863      | 0.504              | 0.512 | 未检出 | 未改出              | 0.400  | 0.156  |
| 污水厂                  | 2025.02.21 | 未检出 | 达标   | 2.800 | E F       | 0.400 | 1.331   | 0.763      | 0.504              | 0.516 | 未检出 | 3 Oct            | 0.433  | 0.172  |
| 4=木石镇                | 2025.02.20 | 未检出 | 达标   | 0.433 | ()        | 0.400 | 1.589   | 0.751      | 0.824              | 0.368 | 才後出 | 金少出              | 0.367  | 0.066  |
| 政府                   | 2025,02.21 | 未检出 | 达标   | 0.433 | 达标        | 0.467 | 1.584   | 0.849      | 0,796              | 0.360 |     | 未检出              | 0.367  | 0.076  |
| 54/Ar++              | 2025.02.20 | 未检出 | 达标   | 0.438 | 达标        | 0.467 | 1.371   | 0.518      | 0.792              | 0.248 | 未始出 | 未检出              | 0.300  | 0.076  |
| 5#俭庄村                | 2025.02.21 | 未检出 | 达标入  | 0.400 | 达标        | 0.533 | 1.396   | 0.768      | 0.796              | 9247  | 未检出 | 未检出              | 0.267  | 0.072  |
| 6=尖山村                | 2025.02.20 | 未检出 | ,达标心 | 0.567 | 达标        | 0,667 | 1.049   | 0.588      | 0.389 5            | 11.5  | 未检出 | 未检出              | 0.400  | 0.072  |
| о <del>пус</del> шту | 2025.02.21 | 未检出 | 公东   | 0.600 | 达标        | 0.533 | 1.100   | 0.542      | 0,50               | 0.184 | 未检出 | 未检出              | 0.333  | 0.076  |

第 137 页

| 1≓南涝           | 2025.02.20 | 0.013  | 金出        | 0.290    | 未检出       | 0.016             | 未检出   | 0.02  | ***   | 法检出          | 未检出       | 0.078     | 0.390           | -1    |
|----------------|------------|--------|-----------|----------|-----------|-------------------|-------|-------|-------|--------------|-----------|-----------|-----------------|-------|
| 采样点位           | 日期         | 钼      | · A       | 神        | 硒         | 詩兩                | 铬     | 铅     | 苯     | THE STATE OF | 总。放<br>射性 | 总β放<br>射性 | Na <sup>+</sup> | 1     |
| CONT           | 采样         |        |           | 117      |           |                   |       | 监测项目  |       |              | 1         |           |                 |       |
| #桥口村           | 2025.02.21 | 未检出    | 未检出       | 0.820    | 未检出       | 0.610             | 未检出   | 0.220 | 未检出   | 0.003        | 904       | 0.002     | 0.001           | 0.003 |
| -+ <del></del> | 2025.02.20 | 未检出    | 未检出       | 0.790    | 不验书       | 0.605             | 未检出   | 0.226 | 未捡出   | 0.003        | 0.00      | 0.002     | 0.001           | 0.00  |
| 尖山村            | 2025.02.21 | 未检出    | 未检出       | 0.090    | REAL.     | 0.725             | 未检出   | 0.215 | 未检出   | 未检出          | 0.006     | 0.10      | 0.002           | 0.01  |
| V 11:4-4       | 2025.02.20 | 未检出    | 未检出       | 0.070    | 表面        | 0.725             | 未检出   | 0.199 | 未检出   | 未检出          | 0.005     | (M)       | 0.002           | 0.00  |
| BE             | 2025.02.21 | 未检出    | 未检出       | 0.890    | 未检出       |                   | 未检出   | 0.270 | 未检出   | 未检出          | 0.006     | 0.001     | 0.001           | 0.00  |
| 132            | 2025.02.20 | 未检出    | 未检出       | 0.850    | 未检出       | SE SE             | 未检出   | 0.276 | 未检出   | 未检出          | 0.008     | 0.001     | 20,001          | 0.01  |
| 政府             | 2025.02.21 | 未检出    | 未检出       | 0.720    | 0.005     | 0.095             | 导管公   | 0.239 | 未检出   | 未检出          | 0.053     | 0.001     | 未检出             | 0.00  |
| 木石镇》           | 2025.02.20 | 未检出    | 未检出       | 0.690    | 0.005     | 0.995             | 大捻出   | 0.214 | 未检出   | 未检出          | 0.048     | 0.001     | 未检出             | 0.00  |
| 水厂             | 3025.02.21 | 未检出    | 未检出       | 0.940    | 0.005     | 0.855             | 未检光   | 0.226 | 未检出   | 未检出          | 0.007     | 0.001     | 未检出。            | NO    |
| 鲁化污            | 2025.6228  | 未检出    | 未检出       | 0.910    | 0.005     | 0.855             | 未检查   | 255   | 未检出   | 未检出          | 0.008     | 0.002     | 未检出             | VI    |
| =厂址            | 2025.02.25 | 未包丛    | 未检出       | 0.600    | 未检出       | 0.142             | 未检出   | 0.440 | 表检出   | 未检出          | 0.033     | 0.001     | 0.002           | 0.0   |
|                | 2025.02.20 | 7 20 2 | 未检出       | 0.640    | 未检出       | 0.144             | 未检出   | .0.40 | 未盘出   | 未检出          | 0.036     | 0.001     | 0.001           | 0.03  |
| 村              | 2025.02.21 | 李念出    | 朱松出       | 0.760    | 未检出       | 0.940             | 未检出   | 0.212 | 大松出   | 未检出          | 0.006     | 0.001     | 0.008           | 0.02  |
| 南涝坡            | 2025.02.20 | 未检验    |           | 0.740    | 未检出       | 0.695             | 未检出   | 0.261 | 未检出   | 未检出          | 0.006     | 0.001     | 0.008           | 0.01  |
| 样点位            | 采样<br>日期   | 硫化物    | M太总<br>编章 | 知菌<br>送数 | 亚硝酸<br>盐氮 | NOs<br>(以 N<br>计) | 氰化物   | F     | 碘化物   | 通            | 锰         | 铜         | 锌               | 铝     |
|                | 111111     | 1      |           | AX.      |           |                   |       | 监测项目  |       | X            | lan       |           |                 |       |
| 桥口村            | 2025.02.21 | 未检出    | 达标        | (5) V    | 达标        | 0.467             | 1.176 | 0.601 | 0.420 | 0.173        | E 20 1    | 未检出       | 0.233           | 0.09  |
| +5-++          | 2025.02.20 | 未检出    | 达标        | 0.489    | 达标        | 0.467             | 1.242 | 0.672 | 0.424 | 0.173        | 724       | 未验出       | 0.233           | 0.08  |

第 138 页

| 坡村                    | 2025.02.21 | 0.013 | 未检出 | 0.264 | 未检出 | 0.010 | 未检出  | 0.02 | 未检出         | 未检出  | 724   | 0.0/1 | 0.073 |      |
|-----------------------|------------|-------|-----|-------|-----|-------|------|------|-------------|------|-------|-------|-------|------|
| 2≢厂址                  | 2025.02.20 | 0.018 | 未检出 | 0.2   | 朱检出 | 未检出   | 未检出  | 未检出  | 未检出         | 未检出、 | E SOL | 0.114 | 0.110 | 1    |
| 2#) AL                | 2025.02.21 | 0.020 | 未检出 | 0 268 | 未检出 | 未检出   | 未检出  | 未检出  | 未检出         | 未检此  | 未检出   | 0.094 | 0.110 | 7.   |
| 3≓鲁化                  | 2025.02.20 | 0.018 | 未检出 | 0.279 | 未检出 | 未检出   | 未检出  | 未检出  | 未检出         | 、未捡出 | 未检出   | 0.099 | 0.225 | -/-  |
| 污水厂                   | 2025.02.21 | 0.018 | 来检查 | 9.256 | 未检出 | 未检出   | 未检出  | 未检出  | 未检出         | 未检出  | 未检出   | 0.116 | 0.217 | 7    |
| 4#木石镇                 | 2025.02.20 | 0.014 | 人   | 0.138 | 未检出 | 未检出   | 未检出  | 未检出  | 未捡出         | 未检出  | 未检出   | 0.073 | 0.223 | Ž-   |
| 政府                    | 2025.02.21 | 0.015 | 和出  | 0.136 | 未检出 | 未检出   | 未检出  | 未检出  | <b>大松</b> 出 | 未检出  | 未检出   | 0.099 | 0.228 | -/-  |
| 5#俭庄村                 | 2025.02.20 | 9.0.6 | 未检出 | 0.226 | 未检出 | 未检出   | 未检出  | 未被出  | 未給出         | 未检出  | 未检出   | 0.069 | 0.148 | 1    |
| 3=[致)工1:]             | 2025.02.21 | 0.117 | 未检出 | 0.228 | 未检出 | 未检出   | 未检出  | 未检出  | 志俭出         | 未检出  | 未检出   | 0.082 | 0.162 | 4    |
| 6#尖山村                 | 2025.02.20 | 0.015 | 未检出 | 0.242 | 未检出 | 未检出   | 未检出、 | 会、金出 | 未检出         | 未检出  | 未检出   | 0.086 | 0.139 |      |
| о <del>п.Х.</del> шТ1 | 2025 02 21 | 0.015 | 未检出 | 0.243 | 未检出 | 未检出   | 未捡步  | 朱检出  | 未检出         | 未检出  | 未检出   | 0.069 | 0.072 | 11/1 |
| 7世桥口村为                | 2025.02.20 | 0.017 | 未检出 | 0.296 | 未检出 | 未检出   | 未检出  | 未检出  | 未检出         | 未检出  | 未检出   | 0.125 | 0.146 | 1    |
| -DILL DA              | 2025.02.21 | 0.018 | 未检出 | 0.288 | 未检出 | 未检出   | 多份公  | 未检出  | 未检出         | 未检出  | 未检出   | 0.111 | 0,154 |      |

硫酸盐超标可能与地层煤炭开采后煤矸石等圆填中含硫物质氧化或农业面源施用化肥过量污染导致

第 139 页

### 4.5.4 包气带现状调查

#### 1、监测布点

根据《环境影响评价技术导则地下水环境》(HJ610-2016)要求,对于一、二级评价的改、扩建类建设项目,应开展现有工业场地的包气带污染现状调查,在可能造成地下水污染的主要装置或设施附近开展包气带污染现状调查,对包气带进行分层取样,一般在 A Mann 埋深范围内取一个样品,其他取样深度应根据污染源特征和包含类似性、结构特征等确定,并说明理由。样品进行浸溶成分,测试分析浸溶液成分。

根据上述与列要求,本次包气带污染环境现状监测共布设 4 个点(其中 3#、4 70 月空矿鲁南化工有限公司甲醇老旧装置更新改造产能整合项目环境影响报告来单数据),并进行浸溶试验,土样深度为 0~20cm 左右,点位情况见表 4 2 19。

| 表 4.5-19 | 包气带监测 | 点位很 | 6 信况 | 一览表 |
|----------|-------|-----|------|-----|
|----------|-------|-----|------|-----|

| 序号     | 监测点位置              | 功能                |
|--------|--------------------|-------------------|
| 同土壤 1# | 拟建硫回收制酸装置区         | 了解似建硫回收装置区包气带污染现状 |
| 同土壤 2# | 拟建辛醇罐区             | 了解拟建辛醇罐区包气带污染现状   |
| 3#     | 拟建气化装置区 (原田原 ) (富) | 了解拟建气化装置区包气带污染现状  |
| 4#     | 木石一社               | 对照点               |

### 2、监测项目

pH、总硬度、溶解性、固体、硫酸盐、氯化物、挥发性酚类、阴离子素面活性剂、耗氧量、氨氮、硫化物、总大肠菌群、细菌总数、亚硝酸盐、硝酸盐、氧化物、氟化物、碘化物、铁、锰、铜、锌、铝、钼、汞、砷、硒、镉、铬、铅、苯、甲苯、甲醇等进行监测。

# 

监测时间为 2025 年 9 月 16~17 日,监测一次; 引角数据监测时间为 2024 9 月 29 日,监测一次。

#### 4、监测单位

监测单位为中国国检测试控股集团青岛京城有限公司。

#### 5、分析方法

各项目的分析方法见表。

表 4.5-20 包气带现状整则分析方法一览表

| 分析项目                           | 分析方法          | 方法依据                    | 检出限        |
|--------------------------------|---------------|-------------------------|------------|
| pH值                            | 电极法           | HJ 1147-2020            | 范围 0-14    |
| 总硬度                            | 乙二胺四乙酸二钠滴定法   | GB/T 5750.4-2023 (10.1) | 1.0mg/L    |
| 溶解性总固体                         | 称量法之了         | GB/T 5750.4-2023 (11.1) | 4mg/L      |
| CI-                            | <b>夏</b> 子芭蕉法 | HJ 84-2016              | 0.007mg/L  |
| SO <sub>4</sub> <sup>2</sup> · | 官子自谐法         | HJ 84-2016              | 0.018mg/L  |
| 挥发酚                            | +氨基安含化,4分光光度法 | HJ 503-2009             | 0.0003mg/L |
| 月离子表面活性剂                       | 亚甲基蓝分光光度法     | GB/T 5750.4-2023 (13.1) | 0.050mg/L  |
| 46 mm 2                        | 碱性高锰酸钾滴定法     | GB/T 5750.7-2023 (4.2)  | 0.0 vity Z |
| 耗氧量                            | 酸性高锰酸钾滴定法     | GB T 5750.7-2023 (4.1)  | Quite V    |
| 复海                             | 纳氏试剂分光光度法     | HJ 535-2009             | 0,025mg/L  |
| <b>活论</b> 物                    | 亚甲基蓝分光光度法     | НЈ 1226-2021            | 70.003mg/L |
| 相互加重群                          | 多管发酵法         | GB/T 5750.12-2023       | 2MPN/100ml |
| 如國之数                           | 平皿计数法         | HJ 1000-2018            | 1CFU/mL    |
| 亚硝酸盐氮                          | 分光光度法         | GB/T N.C. 987           | 0.003mg/L  |
| XO <sub>3</sub> *(以N计)         | 离子色谱法         | HX SA NI                | 0.004mg/L  |
| 気ル地                            | 异烟酸吡唑啉酮分光光度法  | 0/8/15/50.5 2023 (7.1)  | 0.002mg/L  |
| 氰化物                            | 流动注射-分光光度法    | H 823-2017              | 0.001mg/L  |
| F.                             | 离子色谱法         | HJ 84-2016              | 0.006mg/L  |
| 碘化物                            | 高浓度碘化物容量用     | GB/T 5750.5-2023 (13.3) | 0.025mg/L  |
| 铁                              | 电感耦合等离子体质量法   | HJ 700-2014             | 0.82µg/L   |
| 猛                              | 电感耦合等         | HJ 700-2014             | 0.12µg/L   |
| 铜                              | 电感耦合等离子体质谱法   | HJ 700-2014             | 0.08µg/L   |
| 锌                              | 电影病之美文子体质谱法   | HJ 700-2014             | 0.67µg/L   |
| 铝                              | 电图晶合等离子体质谱法   | HJ 700-2014             | 1.15µg/L   |
| 钼                              | 电感耦合等离子体质谱法   | HJ 700-2014             | 0.0 (23    |
| 汞                              | 原子荧光法         | НЈ 694-2014             | 0.0403     |
| 砷 17                           | 电感耦合等离子体质谱法   | HJ 700-2014             | D. Pμg/I   |
| · 通之5                          | 电感耦合等离子体质谱法   | НЈ 700-2014             | 0.4 µg/L   |
| NA.                            | 电感耦合等离子体质谱法   | НЈ 700-2014             | 7.05µg/L   |
| 11/4                           | 电感耦合等离子体质谱法   | НЈ 700-20               | 0.11µg/L   |
|                                | 电感耦合等离子体质谱法   | HJ 30%-2014             | 0.09µg/L   |
| 苯                              | 吹扫捕集/气相色谱-质谱法 | N SOM                   | 1.4µg/L    |
| met                            | 吹扫捕集 气相色谱-质谱法 | A 239 2012              | 1.4µg/L    |
| 甲苯                             | 吹扫捕集 气相色谱-质谱法 | 639-2012                | 0.3µg/L    |
| 甲醇                             | 顶空气相色谱法       | HJ 895-2017             | 0.2mg/L    |

5、监测结果

监测结果见表 4.5-21。

141 页

| 表 4 5-21 | 包气带检测结果一览表 |
|----------|------------|
|----------|------------|

|      |             |           |                        | 14             |             | 13 TTT 1V3=H >             | 1 2020      |                               |             |            |             |
|------|-------------|-----------|------------------------|----------------|-------------|----------------------------|-------------|-------------------------------|-------------|------------|-------------|
| 采样   |             |           |                        | 11/            |             | 监治                         | 则项目         | 11/1                          |             |            |             |
| 点位   | 采样日期        | pH值       | 总硬度                    | 溶解性总固体<br>mg/L | Cl·<br>mg/L | SO <sub>4</sub> 2-<br>mg/L | 挥发酚<br>mg/L | 阴离子表面活性剂                      | 耗氧量<br>mg/L | 氨氮<br>mg L | 硫化物<br>mg/L |
| 1#   | 2025.09-16  | 7.36      | (A)                    | 20             | 2.50        | 3.59                       | 0.0003L     | 0,050L                        | 7.3         | 0.026      | 0.003L      |
| 2#   | 2025.09-17  | 8.27      | Y5.8                   | 16             | 0.007L      | 4.32                       | 0.0003L     | \$5 0.050L                    | 8.1         | 0.029      | 0.003L      |
| 3#   | 2024 00 20  | 7.82      | 105                    | 256            | 32.5        | 121                        | 0.00031     | 0,050L                        | 0.98        | 0.045      | 0.003L      |
| 4#   | 2024.09.29  | 1/2       | 98                     | 165            | 21.5        | 99.5                       | 0.000       | 0.050L                        | 0.82        | 0.061      | 0.003L      |
| 采样   |             |           |                        |                |             | 此                          | 则项目         |                               |             |            |             |
| 点位   | 采样日期〈       | mg/L      | ξ <del>‡</del><br>μg/L | 氰化物<br>mg/L    | F mg/L      | 碘化 (V<br>mg/L              | 铁<br>) ug/L | NO <sub>3</sub> (以N计)<br>mg/L | 猛<br>µg/L   | 铜<br>µg/L  | 14          |
| 1#   | 2025-09-16  | 0.003L    | 2.23                   | 0.001L         | 0.097       | 0,007                      | 0.82L       | 3.59                          | 0.12L       | 0.24       | Le X        |
| 2#   | ,2025.09-17 | 0.003L    | 2.46                   | 0.001L         | 0.074 (     | 0.002L                     | 1.99        | 4.32                          | 0.12L       | 0.26       | 4.50        |
| 34-/ | 2024.09.29  | 0.045     | 0.67L                  | 0.002L         | 0.74        | 0.45                       | 10.2        | 1.21                          | 1.49        | 0.187      | 22.7        |
| N.   | 2024.09.29  | 0.042     | 0.67L                  | 0.002L         | 100         | 0.036                      | 9.91        | 1.03                          | 0.66        | Ø30        | 19.9        |
|      |             |           |                        |                |             | 监治                         | 则项目         |                               | 144         | >,         |             |
| 点位   | 采样日期        | 钼<br>μg/L | 汞<br>μg/L              | W.             | 铅<br>µg/L   | 硒<br>µg/L                  | 镉<br>µg/L   | 铬<br>μg/L                     | ALC I       | 甲苯<br>μg/L | 甲醇<br>mg/L  |
| 1#   | 2025.09-16  | 0.06L     | 0.04L                  | 182            | 0.09L       | 0.41L                      | 0.05L       | 0.11L                         | 2.41        | 0.3L       | 0.2L        |
| 2#   | 2025.09-17  | 0.17      | 0.04L                  | 0.25           | 0.09L       | 0.49                       | 0.05L       | 0.11L                         | 0.4L        | 0.3L       | 0.2L        |
| 3#   | 2024 00 20  | 1.29      | 0.041                  | 0.12L          | 0.16        | 0.76                       | 0.05L       | OTHE                          | 1.4L        | 1.4L       | 0.2L        |
| 4#   | 2024.09.29  | 1.31      | 0.04L                  | 0.12L          | 0.16        | 0.41L                      | 0.05L       | D.III                         | 1.4L        | 1.4L       | 0.2L        |

第 142 页

### 4.5.5 声环境质量现状监测与评价

#### 4.5.5.1 声环境现状监测

### 1、监测布点

本次声环境质量现状监测共布设18个监测点位。具体见表4.5-22和图4.5-4。

表 4.4-22 项目区域声环境质量现状监测点位

| 序号         | 监测点位               | 方位                  | 功能             |
|------------|--------------------|---------------------|----------------|
| 1#         | 西厂区北大界             | 厂界外 1m              | 厂界噪声           |
| 2#         | 西厂区                | 厂界外 1m              | 厂界噪声           |
| 3#         | 西区区位)界             | 厂界外 1m              | 厂界噪声           |
| 4#         | ★F区北厂界1            | 厂界外 1m              | 厂秀噪声           |
| 5# y       | 东广区北厂界2            | 厂界外 1m              | <b>「</b>       |
| 197/1      | ②东厂区东厂界            | 厂界外 1m              | <b>冷</b> 、「界噪声 |
|            | 东厂区南厂界             | 厂界外 Im              | 厂界噪声           |
| 8#         | 东厂区西厂界             | 厂界外 1m              | 厂界噪声           |
| <b>N</b> # | 尖山村                | 距厂界最近第一排房屋外         | ■              |
| 10#        | 桥口村                | 距厂界最近第一批房屋处         | 敏感目标声环境        |
| 11#        |                    | 距厂界最近第一排,15% y 1m 处 |                |
| 12#        | 鲁化生活区              | 距厂界最近第一排,不當外,m处     | 敏感目标声环境        |
| 13#        |                    | 距厂界最近第一排,3F 窗外 1m 处 |                |
| 14#        |                    | 距厂界最近第一排,1F窗外 1m处   |                |
| 15#        | 木石社区               | 距厂系统第一样,3F窗外1m处     | <b>敏感目标声环境</b> |
| 16#        |                    | 距 排,5F 窗外 1m 处      |                |
| 17#        | <b>魚</b> // 助工医院 ■ | 距广外最近第一排,1F窗外1m处    | 敏感目标声环境        |
| 18#        | 鲁化职工医院             | 的人界最近第一排,3F窗外1m处    | 可以公田切户时间       |

备注: 厂界两测点之间超过 28 区 新增测点。

### 2、监测时间与频率

监测时间、2025年9月17日~9月19日,各点位均监测2d。昼夜各种量

### 3、监测项目、方法

本项目: LAeq、Lmin、Lamax、L50、L90、L10。

公顷项目及方法详见表 4.5-23。

表 4.5-23 噪声检测分析方法及拨出

| 分析项目 | 分析方法 , 公       | 方法依据          | 检出限 |
|------|----------------|---------------|-----|
| 噪声   | 声环境质量标准        | GB 3096-2008  |     |
| 噪声   | 工业企业厂界环境噪声排放标准 | GB 12348-2008 | _   |

### 4、监测结果

声环境现状监测结果见表

第 143 页

| 4 |        | A 10 and a second contract to the contract to |   |
|---|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Æ | 4-4-24 | 拟建项目声环境现状监测一览表                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Æ |
| × | 7.0424 | 1以建设日户40堤北10亩/四                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | × |

| 77.4¥ []#n | DESMITE /A      | 77.430      |                 |                         |                 | 噪声[dB(     | A)] \     |                  |     |      |
|------------|-----------------|-------------|-----------------|-------------------------|-----------------|------------|-----------|------------------|-----|------|
| 采样日期       | 监测点位            | (主人)        | $L_{eq}[dB(A)]$ | L <sub>10</sub> [dB(A)] | $L_{50}[dB(A)]$ | L90[dB(A)] | A [dB(A)] | $L_{min}[dB(A)]$ | SD  | 主要声源 |
|            | 01#西厂区北厂界。      | 11 27-1 .37 | 56              | 58                      | 55              | 53 1       | 64.9      | 50.5             | 1.9 | 生产   |
| 2025-09-17 | 01+M) (540) 31  | 23:09-23:19 | 50              | 53                      | 50              | 49         | 64.2      | 46.7             | 1.9 | 生产   |
|            | 02#西厂区南广        | 12:54-13:04 | 60              | 61                      | 59              | 7/758      | 68.8      | 56.0             | 1.3 | 生产   |
| 2025-09-18 | 02年四)区(3) 70人   | 00:13-00:23 | 53              | 56                      | 50              | 48         | 70.5      | 45.7             | 3.5 | 生产   |
|            | 03#两区域厂内        | 12:34-12:44 | 62              | 65                      | 59              | -7         | 74.3      | 55.1             | 3.3 | 生产   |
|            | 03=141 (Z14) X1 | 23:53-00:03 | 54              | 55                      | 54              | 50         | 64.9      | 37.4             | 3.7 | 生产   |
| 2025-09-17 | 京 区北厂界1         | 10:52-11:02 | 50              | 54                      |                 | 46         | 68.0      | 43.6             | 3.6 | 4 8  |
|            | (A-M) (74) 211  | 22:39-22:49 | 48              | 49                      | 48              | 47         | 68.3      | 46.1             | 1.6 | 本至   |
| 1/2        | 05#本に区北に思っ      | 19:24-19:34 | 57              | 1917                    | 54              | 50         | 78.3      | 45.2             | 3.8 | 生产   |
| 2025-09-18 | * 05#东厂区北厂界 2   | 01:52-02:02 | 50              |                         | 51              | 50         | 62.0      | 42.6             | 0.8 | 生产   |
| 2 -17      | 054左 厂          | 19:02-19:12 | 61              | Yi                      | 60              | 60         | 79.1      | 55.9,            | 7.0 | 生产   |
| 1076 09-18 | 06#东厂区东厂界       | 01:34-01:44 | 53              | 24                      | 53              | 52         | 65.6      | 48.8             | 1.2 | 生产   |
| 2025-09-17 | 07#东厂区南厂界       | 18:20-18:30 | 50              | 64                      | 58              | 52         | 71.0      | 11               | 4.5 | 生产   |
| 2025-09-18 | V/表示)区用)介       | 00:52-01:02 |                 | 57                      | 49              | 45         | 68.7      |                  | 4.6 | 生产   |
| 2025-09-17 | 08#东厂区西厂界       | 17:56-18:06 | 12.10           | 61                      | 58              | 57         | 77.86     | 54.4             | 1.9 | 生产   |
| 2025-09-18 | 08年末)区四)介       | 00:32-00:42 | 54              | 55                      | 53              | 51         | \$4. N    | 48.3             | 2.0 | 生产   |
| 2025-09-17 | oow!\\litt      | 12:01-12:11 | 52              | 53                      | 52              | 51         | J-67.2    | 49.3             | 1.3 | 环境   |
| 2025-09-17 | 09#尖山村          | 22:37-23:37 | 49              | 50                      | 48              | 47         | 70.8      | 44.3             | 2.0 | 环境   |
| 2025-09-17 | 10+t*CDt.tx     | 18:42-18:52 | 57              | 60                      | 55              | 11/6       | 70.9      | 49.7             | 3.1 | 环境   |
| 2025-09-18 | 10#桥口村          | 01:11-01:21 | 49              | 51                      | 47              |            | 68.4      | 42.0             | 2.6 | 环境   |

第 144 页

|                |                                        | _            | KANI |      |      |       |       | <b>V</b> (-) |      |      |
|----------------|----------------------------------------|--------------|------|------|------|-------|-------|--------------|------|------|
| 2025-09-17     | 114年14年14日 (15)                        | 19:59-20:09  | -3   | 55   | 52   | 49    | 71.5  | 45.8         | 2.6  | 环境   |
| 2025-09-18     | 11#鲁化生活区(1F)                           | 02:23-92.    | 48   | 50   | 47   | 44    | P 19  | 38.7         | 2.7  | 环境   |
| 2025-09-17     | 10世色77年2年77 / 2015                     | 20-14-20:24  | 54   | 55   | 52   | 50    | 1728  | 47.5         | 2.6  | 环境   |
| 2025-09-18     | 12#鲁化生活区(3F)                           | 02:38-02-48  | 48   | 50   | 48   | 45    | 39.4  | 42.3         | 2.1  | 环境   |
| 2025-09-17     | 12世紀12年25日 15年                         | 20: 7 20:37  | 54   | 56   | 53   | 50    | 63.4  | 48.4         | 2.3  | 环境   |
| 2025-09-18     | 13#鲁化生活区(                              | 02:52-03:02  | 49   | 51   | 48   | ,4835 | 58.4  | 41.8         | 2.3  | 环境   |
| 2025-09-17     | · · · · · · · · · · · · · · · · · · ·  | 19:51-20:01  | 56   | 58   | 54   | 130   | 72.2  | 46.0         | 2.6  | 环境   |
| 2025-09-18     | 14#木石补医 (1F)                           | 02:09-02:19  | 49   | 51   | 40   | 48    | 58.4  | 46.1         | 1.4  | 环境   |
| 2025-09-17     | 1500                                   | 20:06-20:16  | 53   | 54   | 52   | 50    | 69.1  | 46.0         | 1.2  | 环境   |
| 2025-09-18     | 15#306#± (3F)                          | 02:25-02:35  | 48   | 49   |      | 46    | 52.9  | 43.1         | 1.2  | 取婚   |
| 2025-09-17     | X                                      | 20:20-20:30  | 52   | 53   | V 31 | 50    | 70.2  | 46.0         | 0.8  | , 技能 |
| 2025-09-18     | 16#木石社区 (5F)                           | 02:47-02:57  | 48   | 49   | 47   | 45    | 54.9  | 40.1         | 1.8  | 环境   |
| 2025-09 12     | A TOTAL CONTRACTOR CARD                | 20:48-20:58  | 53   | VA V | 50   | 45    | 68.5  | 29.5         | 4.5  | 环境   |
| 2/15/0.18      | 17#鲁化职工医院(1F)                          | 03:24-03:34  | 48   | (30  | 48   | 46    | 57.0  | 43.0 2       | 11.1 | 环境   |
| 2024 - OE - 17 | 10世界/小田工匠時(2月)                         | 20:45-20:55  | 55   | 50   | 52.  | 48    | 75.9  | 4370/        | 2.7  | 环境   |
| 2025-19-18     | 18#鲁化职工医院(3F)                          | 03:28-03:38  | 49   | 50   | 48   | 46    | 57.2  | N. C.        | 1.4  | 环境   |
| 2025 00 10     |                                        | 13:28-13:38  | F    | 59   | 56   | 54    | 64.8  |              | 1.7  | 环境   |
| 2025-09-18     | 01#西厂区北厂界                              | 22:41-22:51  | 1-31 | 53   | 51   | 47    | 66.7  | 33.8         | 2.8  | 环境   |
|                | ************************************** | 14:48-14:58  | 60   | 62   | 59   | 57    | 5     | 55.6         | 2.1  | 环境   |
|                | 02#西厂区南厂界                              | 23:\$5-00:05 | 53   | 54   | 51   | 49    | 167.6 | 47.1         | 2.3  | 环境   |
| 2025-09-18     |                                        | 14:28/14:38  | 63   | 66   | 60   | 55    | 800   | 50.2         | 4.3  | 环境   |
|                | 03#西厂区西厂界                              | 29/34-23:44  | 50   | 53   | 51   | 4     | 28.8  | 45.6         | 2.0  | 环境   |
|                | 04#东厂区北厂秀                              | 12:55-13:05  | 50   | 55   | 48   |       | 68.7  | 40.9         | 4.4  | 环境   |

第 145 页

|            |                                             |              | X A I |      |      |        |       | <b>V</b> (-) |     |      |
|------------|---------------------------------------------|--------------|-------|------|------|--------|-------|--------------|-----|------|
|            |                                             | 22:14-22/2   | 7     | 52   | 44   | 42     | 63.0  | 38.9         | 3.9 | 环境   |
|            | の5世本に区北に思っ                                  | 16:31-16.    | 57    | 60   | 54   | 50     | 3/4   | 42.9         | 3.6 | 环境   |
| 2025-09-19 | 05#东厂区北厂界 2                                 | 04-74-01-44  | 50    | 54   | 50   | 46     | (6X)  | 42.2         | 3.3 | 环境   |
| 2025-09-18 | 064本厂区本厂里                                   | 16.04-16-14  | 61    | 64   | 56   | 53     | 70.7  | 51.3         | 4.3 | 环境   |
| 2025-09-19 | 06#东厂区东厂界                                   | \$1:15 01:25 | 54    | 56   | 54   | 50     | 67.8  | 45.1         | 2.2 | 环境   |
| 2025-09-18 | 07##                                        | 15:28-15:38  | 60    | 63   | 57   | 1,5835 | 77.3  | 46.0         | 3.9 | 环境   |
| 2025-09-19 | 07#东厂区南广东                                   | 00:39-00:49  | 54    | 58   | 52   | 39     | 74.9  | 47.1         | 3.0 | 环境   |
| 2025-09-18 | 004                                         | 15:09-15:19  | 60    | 64   | 56   | 40     | 74.1  | 44.9         | 5.3 | 环境   |
| 2025-09-19 | 08#东                                        | 00:19-00:29  | 53    | 54   | 53   | 51     | 58.5  | 50.1         | 1.0 | 环境   |
|            | A AND TOUR                                  | 14:11-14:21  | 53    | 55   |      | 51     | 66.2  | 46.4         | 1.7 | 取燭   |
| 2025-09-18 | No #XIII                                    | 23:09-23:19  | 49    | 51   | 7 49 | 46     | 63.0  | 41.9         | 1.9 | ,被除一 |
|            | ▼ 10#桥口村                                    | 15:45-15:55  | 58    | 60   | 51   | 46     | 75.8  | 43.2         | 5.6 | 环境   |
| 2025-09 19 | 10#BiHfi                                    | 00:56-01:06  | 48    | VXVV | 47   | 44     | 60.7  | 39.9         | 2.0 | 环境   |
| 2/25/05/18 | 11#鲁化生活区 (1F)                               | 16:53-17:03  | 53    | (33  | 52   | 50     | 67.3  | 47.1 2       | 2.5 | 环境   |
| 2022 08 19 | 11%曾化土冶区(117)                               | 02:05-02:15  | 48    | 19   | 47   | 46     | 57.6  | 4378/        | 1.6 | 环境   |
| 2025 19-18 | 10.4条 // // / / / / / / / / / / / / / / / / | 17:09-17:19  | - 5   | 56   | 52   | 50     | 68.8  | WAY          | 2.6 | 环境   |
| 2025-09-19 | 12#鲁化生活区(3F)                                | 02:21-02:31  | 13    | 49   | 48   | 46     | 61.4  | 0.8          | 1.9 | 环境   |
| 2025-09-18 | 13#鲁化生活区(5F)                                | 17:29-17:39  | - 34  | 56   | 53   | 51     | 67.67 | 4).5         | 2.2 | 环境   |
| 2025-09-19 | 13#當化土冶区(31)                                | 02:36-02:46  | 49    | 50   | 48   | 47     | 01.   | 45.4         | 1.1 | 环境   |
| 2025-09-18 | 14年十五十八十五十八十五十                              | 16:49-16:39  | 54    | 56   | 53   | 50     | ₹0.9  | 46.1         | 2.2 | 环境   |
| 2025-09-19 | 14#木石二社区(1F)                                | 02:11/02:21  | 49    | 51   | 49   | 46     | 17561 | 43.1         | 1.8 | 环境   |
| 2025-09-18 | 154+7-117 (2)/                              | 19.06-17:16  | 52    | 54   | 51   | 54     | 55.3  | 46.1         | 2.0 | 环境   |
| 2025-09-19 | 15#木石二社区(3/)                                | 02:25-02:35  | 47    | 49   | 46   |        | 62.1  | 43.1         | 1.5 | 环境   |

第 146 页

|            |                              | <b>兖矿鲁南化工有</b> □ | 限公司微反应 | 高效合成精细化 | 学品节能示范功 | 页目环境影响报告 | 书    |        |         |    |
|------------|------------------------------|------------------|--------|---------|---------|----------|------|--------|---------|----|
| 2025-09-18 | 16#木石二社区(5F)                 | 17:21-17:53      | A      | 56      | 53      | 46       | 69.8 | 49.1   | 3.7     | 环境 |
| 2025-09-19 | 10#小石二社区(3F)                 | 02:39-02.        | 49     | 50      | 48      | 47       | 3/4  | 43.1   | 1.2     | 环境 |
| 2025-09-18 | → 17#集化肥   医院(1F)            | 10.073(8.17      | 53     | 54      | 52      | 50       | 643  | 46.4   | 1.6     | 环境 |
| 2025-09-19 |                              | 03 02 03-12      | 48     | 49      | 48      | 46       | 60.6 | 44.3   | 1.1     | 环境 |
| 2025-09-18 | → 18#無化 III 下底层 <b>4.</b> 下入 | 7: 7 18:07       | 53     | 55      | 53      | 79       | 65.2 | 43.1   | 2.9     | 环境 |
| 2025-09-19 |                              | 03:06-03:16      | 49     | 50      | 48      | 1,44.5   | 64.2 | 43.1   | 1.4     | 环境 |
|            | 1/2 Hills                    |                  | Zá.    |         |         |          |      | # 7/1. | SIV SIV |    |
|            | IZ HIM                       |                  |        |         |         |          |      |        | SIV S   | W  |
|            |                              | A THE THE        |        |         |         |          |      |        | No.     | W  |

#### 4.5.5.2 声环境现状评价

### 1、评价量

采用等效连续 A 声级 Leg 作为评价量。

### 2、评价标准

厂界执行3类标准, 家原国标执行2类标准, 声环境现状评价标准见表 1.6-5。

### 3、评价方法

采用超标值在效差效声级 Leq 进行评价, 计算方法为:

P=Leq-Lb

式中 2 超标值, dB(A);

侧点等效 A声级,dB(A);

-噪声评价标准, dB(A)。

### 4、评价结果

声环境现状评价结果见表 4.5-25。

表 4.5-25 声环境质量现状深介结果表单位: dB(A)

| 监测点位           | 监测<br>时间 | 昼间<br>测量值、 | 评价   | 超标值 | 夜间<br>测量值 | 评价标准        | 超标值      |
|----------------|----------|------------|------|-----|-----------|-------------|----------|
| 1#西厂区北厂界       | 第1天      | 10         | 7 6  | -9  | 50        | 55          | -5       |
| 外 1m           | 第2天      |            | 65   | -8  | 51        | 55          | -4       |
| 2#西厂区南厂界       | 第1天      | di         | 65   | -5  | 53        | 55          | -2       |
| 外 1m           | 第0万      | 60         | 65   | -5  | 53        | 55          | -2       |
| 3#西厂区西厂界       | 美山美      | 62         | 65   | -3  | 54        | 55          | A        |
| 外 1m           | 天化第一人    | 63         | 65   | -2  | 50        | 55          |          |
| 4#东厂区北厂界       | 第1天      | 50         | 65   | -15 | 48        | 55 /        | <b>A</b> |
| 外1四 17         | 第2天      | 50         | 65   | -15 | 47        | 55          | -8       |
| 5#东厂区北边界       | 第1天      | 57         | 65   | -8  | 50        | <b>△</b> 55 | -5       |
| 1 Om           | 第2天      | 57         | 65   | -8  | 3/-//     | V35         | -5       |
| × 东 区东厂界       | 第1天      | 61         | 65   | -4  |           | 55          | -2       |
| 5) 1m          | 第2天      | 61         | 65   | 4   | 54        | 55          | -1       |
| <b>米东厂区南厂界</b> | 第1天      | 60         | 65   | A   | \$        | 55          | -1       |
| 外 1m           | 第2天      | 60         | 65   | 12  | 54        | 55          | -1       |
| 8#东厂区西厂界       | 第1天      | 59         | 65   | 1-6 | 54        | 55          | -1       |
| 外 1m           | 第2天      | 60         | 45-  | -5  | 53        | 55          | -2       |
| 9#尖山村距厂界       | 第1天      | 52 2       | >60  | -8  | 49        | 50          | -1       |
| 最近第一排处         | 第2天      | 3/1        | 1 60 | -7  | 49        | 50          | -1       |

| 10#桥口村距厂界              | 第1天 | 57   | 60   | 111. | 49   | 50   | ,        |
|------------------------|-----|------|------|------|------|------|----------|
| 最近第一排处                 | 第2天 | 58   | 603  |      | 48   | 50   | -1       |
| 11#鲁化生活区距              | 第1天 | 53   | 600  | 7    | 48   | 50   | -2<br>-2 |
| 「界最近第一排,<br>1F 窗外 1m 处 | 第2天 | 53   | 1760 | -7   | 48   | 50   | -2       |
| 12#鲁化生活区距              | 第1天 | \$25 | 60   | -6   | 48   | 50   | -2       |
| 一界最近第一排,<br>3F 窗外 1m 处 | 第2天 | 34   | 60   | -6   | 48   | 50   | -2       |
| 13#鲁化生活区距              | 第1天 | 54   | 60   | -6   | 49   | 50   | -1       |
| 一界最近第一排,<br>5F 窗外 1m 处 | 第2天 | 54   | 60   | -6   | 49   | 50   | 71       |
| 4#木石社区距广               | 天幕  | 56   | 60   | -4   | 49   | 50   |          |
| 界最近第一排,AC<br>窗外 In.处   | 第2天 | 54   | 60   | -6   | 49   | 59   | 1        |
| 5#木石社区。可               | 第1天 | 53   | 60   | -7   | 48   | 130  | -2       |
| 是                      | 第2天 | 52   | 60   | -8   | 47 2 | 5 50 | -3       |
| ( ) 区距厂                | 第1天 | 52   | 60   | -8   | 1485 | 50   | -2       |
| 學最近第一排,5F<br>▲窗外 1m 处  | 第2天 | 54   | 60   | 4    | (D)  | 50   | -1       |
| #鲁化职工医院                | 第1天 | 53   | 60   | 4 -7 | 48   | 50   | -2       |
| 距厂界最近第一<br>非,1F窗外 1m处  | 第2天 | 53   | 60   | SEP. | 48   | 50   | -2       |
| 8#鲁化职工医院               | 第1天 | 55   | 60   | -5   | 49   | 50   | -1       |
| 距厂界最近第一<br>非,3F窗外 1m处  | 第2天 | 53   | 160  | -7   | 49   | 50   | -1       |

注:表中"超标值"中,负值表示》是值低于国标 GB3096 标准限值。

从表 4.5-26 可以看出,监狱的通厂界各监测点位噪声均未超标,能够满足《工业企业厂界环境噪声排放标准》【GB12348-2008)3 类标准,周边村庄声环境现状可满足《声环境质量标准》(GB3096-2008)2 类标准要求。

4.5.6 土壤环境质量现状监测与评价

4.5.6.1 土壤环境现状监测

### 1、监测布点

根据《环境影响评价技术导则 土壤环境(试行)》(图》 2018)布点原则,结合本项目特点,本次共设置 18 个土壤采样点(其中 18#原位为引用厂区在建项目充矿鲁南化工有限公司甲醇老旧装置更新效度产能整合项目环境影响报告书中数据),厂区范围内设 10 个点位,厂象处设 8 个点位。

土壤监测点位见表 4.5-26, 具体监测点位分布见图 4.5-1。

| 表 4.5-26 | 土壤监观点位一览表 |
|----------|-----------|
|----------|-----------|

|     |                     | te + 2-20 Takimidahan |      |        |
|-----|---------------------|-----------------------|------|--------|
| 序号  | 监测点位置               | 攻能                    | 采样   | 监测因子   |
| 1#  | 拟建硫回收制酸装置区          | 了解项目位置土壤质量状况          | 柱状样  | 监测因子1  |
| 2#  | 拟建辛醇罐区              | 了解项目位置土壤质量状况          | 柱状样  | 监测因子1  |
| 3#  | 辛醇装置区               | 了解项目位置土壤质量状况          | 柱状样  | 监测因子1  |
| 4#  | 南涝坡村                | 了解上风向敏感点土壤质量状况        | 表层样  | 监测因子1  |
| 5#  | 北厂界以北 400m农品        | 了解厂址上游土壤质量状况          | 表层样  | 监测因子 2 |
| 6#  | 北厂界以北 50m 林地        | 了解厂址上游土壤质量状况          | 表层样  | 监测因子2  |
| 7#  | 在建甲酰苯甲区             | 了解厂址土壤质量状况            | 柱状样  | 监测因了   |
| 8#  | 拟建气(人名)<br>(原用)(美置) | 了解厂址土壤质量状况            | 柱状样  | L'ARKE |
| 9#  | 中醇工装置区              | 了解厂址土壤质量状况            | 柱状样  | 监测因子1  |
| 10# | 甲醇罐区                | 了解厂址土壤质量状况            | 柱状样儿 | 监测因子1  |
| 19/ | 次有硫回收制酸装置区          | 了解厂址土壤质量状况            | 在狀律  | 监测因子1  |
| 12. | 低温甲醇洗装置区            | 解厂址土壤质量状况 //          | 表层样  | 监测因子1  |
| 13# | 危废暂存间               | 解厂址土壤质量状况             | 表层样  | 监测因子1  |
| V#  | 后木石村原址              | 了解厂址上游土壤质量状况          | 表层样  | 监测因子1  |
| 15# | 南厂界南 100m           | 了解厂址下游士模质量状况          | 表层样  | 监测因子 2 |
| 16# | 木石一社区               | 了解厂址上风户生态质量状况         | 表层样  | 监测因子1  |
| 17# | 西厂界以西 500m          | 了解厂址下风向土壤质量状况         | 表层样  | 监测因子 2 |
| 18# | 墨子森林公园              | 了解上风户敏感点上壤质量状况        | 表层样  | 监测因子 2 |
|     |                     | 2.7                   |      |        |

### 2、监测项目

监测因子 1: pH、锌、砷、腐、总铬、铬(六价)、铜、铅、汞、镍、钒、钴、锑、铑、四氯化碳、氯分、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烷、1,1-二氯乙烷、顺-1,2-二氯乙烷、灰-1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1/公里氯乙烷、1,1/2-二氯乙烷、四氯乙烯、1,1/1-三氯乙烷、1,1/2-三氯乙烷、苯氯乙烯、1,2/3-三氯乙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、二苯二苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯、硝基苯、苯胺、人氯酸、苯并[a] 蒽、苯并[b] 荧蒽、苯并[b] 荧蒽、元苯并[a] 为[含、五种[a] 为[含、五种[b] 交易。

监测因子 2: pH、镉、汞、砷、铅、总铬、铬、、、铜、镍、锌、钒、钴、锑、铑、甲醇、石油烃(C10-C40)等进行监测。

### 3、监测时间和频率

监测时间为 2025 年 9 月 16 12日,监测一次,引用数据监测时间为监测时

间为 2024 年 9 月 29 日, 监测一次。

### 4、监测单位

监测单位为中国国检测试控股集团青岛京诚有限公司。

### 5、监测方法

按照《土壤环境质量、建设用地土壤污染风险管控标准(试行)》 (GB36600-2018)、《土壤环境质量 农用地土壤污染风险管控标准》(GB 15618-2018)的有效,详见表 4.5-27。

表 4.5-27 土壤监测分析方法及检出限

| 1             | 秋 7.3-21 二·统曲/约71717  | JAMES AND THE PARTY OF THE PART | N. I.      |
|---------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 分析项目。         | 分析方法                  | 方法依据                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>检出限</b> |
| 直在            | 电位法                   | HJ 962-2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 范围 2-12    |
| XIII          | 石墨炉原子吸收分光光度法          | GB/T 17141-1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01mg/kg  |
| <b>学</b> 集    | 原子荧光法                 | GB/T 227/05/1-2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.002mg/kg |
| 总砷            | 原子荧光法                 | GB T 22008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.01mg/kg  |
| 铅             | 石墨炉原子吸收分光光度法          | GB/T 17.M - 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1mg/kg   |
| 铜             | 火焰原子吸收分光光度法           | (A) 1J 49 \ 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lmg/kg     |
| 镍             | 火焰原子吸收分光光度法。          | HN91-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3mg/kg     |
| 六价铬           | 碱溶液提取-火焰原子吸收<br>分光光度法 | НЈ 1082-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5mg/kg   |
| 石油烃 (C10-C40) | 气相包谱法                 | НЈ 1021-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6mg/kg     |
| 四氯化碳          | 吹扫捕集人用充准 质谱法          | НЈ 605-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.3µg/kg   |
| 三氯甲烷          | 吹扫捕集。                 | HJ 605-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.1µg/kg   |
| 氯甲烷           | 吹起镇集 气相色谱-质谱法         | HJ 605-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0µg/kg   |
| 1,1-二氯乙烷      | <b>以下海季汽相色谱-质谱法</b>   | HJ 605-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2µg/kg   |
| 1,2-二氯乙烷 人    | <b>於扫捕集/气相色谱-质谱法</b>  | HJ 605-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.3µ (5)   |
| 1,1-二氯乙烯      | 吹扫捕集 气相色谱-质谱法         | HJ 605-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.000      |
| 顺-1.2-二氯乙烯    | 吹扫捕集 气相色谱-质谱法         | HJ 605-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jug/kg     |
| 反-1,2-气氯乙烯    | 吹扫捕集/气相色谱-质谱法         | НЈ 605-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4μy ag     |
| 東申烷           | 吹扫捕集 气相色谱-质谱法         | HJ 605-2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ⊘ 1 µg/kg  |
| 1, 2_ 氯丙烷     | 吹扫捕集/气相色谱-质谱法         | HJ 605-200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,1µg/kg   |
| 1.1.1.2-四氯乙烷  | 吹扫捕集/气相色谱-质谱法         | НЈ 505 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2µg/kg   |
| 1,1,2,2-四氯乙烷  | 吹扫捕集/气相色谱-质谱法         | A (60%-201)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2µg/kg   |
| 四氯乙烯          | 吹扫捕集 气相色谱-质谱法         | 1 EL 015-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,4µg/kg   |
| 1,1,1-三氯乙烷    | 吹扫捕集/气相色谱-质谱法         | HJ 605-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.3µg/kg   |
| 1,1,2-三氯乙烷    | 吹扫捕集/气相色谱-质谱法         | НЈ 605-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2µg/kg   |
| 三氯乙烯          | 吹扫捕集气相色谱振谱法           | HJ 605-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2µg/kg   |
| 1,2,3-三氯丙烷    | 吹扫捕集气相色谱-质谱法          | НЈ 605-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2µg/kg   |
| 氯乙烯           | 吹扫捕集 气料 分谱-质谱法        | HJ 605-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0µg/kg   |

#### 兖矿鲁南化工有限公司微反应高效合成精细化学品节能**不**为,这种最小的报告书

| 分析项目          | 分析方法           | <b>广法</b> 核据           | 检出限        |
|---------------|----------------|------------------------|------------|
| 苯             | 吹扫捕集/气相色谱-质谱法  | ₹V 605-2011            | 1.9µg/kg   |
| 氯苯            | 吹扫捕集/气相色谱-质谱法  | HJ 605-2011            | 1.2µg/kg   |
| 1,2-二氯苯       | 吹扫捕集气相色谱。质谱法   | НЈ 605-2011            | 1.5µg/kg   |
| 1,4-二氯苯       | 吹扫捕集 气相色谱 质谱法  | НЈ 605-2011            | 1,5µg/kg   |
| 乙苯            | 吹扫捕集 汽相配谱-质谱法  | HJ 605-2011            | 1.2µg/kg   |
| 苯乙烯           | 吹扫 有集 气相色谱-质谱法 | НЈ 605-2011            | 1.1µg/kg   |
| 甲苯            | 吹 捕茅 相色谱-质谱法   | HJ 605-2011            | 1.3µg/kg   |
| 间,对-二甲苯       | 吟扫捕集 气相色谱-质谱法  | НЈ 605-2011            | 1.2µg/kg   |
| 邻-二甲苯         | 次扫捕集/气相色谱-质谱法  | НЈ 605-2011            | 1.2µ, kg   |
| 硝基苯           | 气相色谱-质谱法       | HJ 834-2017            | 0.09m      |
| <b>本版</b>     | 气相色谱-质谱法       | HJ 834-2017            | 0.1mg/kg   |
| 2. 到西         | 气相色谱-质谱法       | НЈ 834-2017            | 70.06mg/kg |
| 加鱼            | 气相色谱-质谱法       | HJ 834-2017            | 0.1mg/kg   |
| 发弄(a) 蒽       | 气相色谱-质谱法       | HJ 834-2017            | 0.1mg/kg   |
| 苯并(b) 荧蒽      | 气相色谱-质谱法       | H38. 207               | 0.2mg/kg   |
| 苯并 (k) 荧蒽     | 气相色谱-质谱法       | H) \$34_\$17           | 0.1mg/kg   |
| 蓙             | 气相色谱-质谱法       | <b>★ J</b> 1J 834 2017 | 0.1mg/kg   |
| 萘             | 气相色谱-质谱法       | HJ 834-2017            | 0.09mg/kg  |
| 二苯并(a,h)蒽     | 气相色谱-质谱法       | НЈ 834-2017            | 0.1mg/kg   |
| 茚并(1,2,3-cd)芘 | 气相色谱-质谱法       | НЈ 834-2017            | 0.1mg/kg   |
| 铬             | 火焰原子吸水光度去      | HJ 491-2019            | 4mg/kg     |
| 锌             | 火焰原子。从外元度法     | HJ 491-2019            | lmg/kg     |
| 钒             | 电感得合等属于本质谱法    | НЈ 1315-2023           | 0.4mg/kg   |
| 钴             | 東原加多萬子体质谱法     | НЈ 1315-2023           | 0.06mg/kg  |
| 锑             | 4. 美国美等离子体质谱法  | НЈ 1315-2023           | 0.3mg/     |
| 铑             | 电感耦合等离子体质谱法    | НЈ 1315-2023           | 0.05mg     |
| 甲醇、一          | 顶空/气相色谱法       | НЈ 895-2017            | OMEL       |

6、监测结果

**州**结果见表 4.5-28。

第 152 页 山东优纳特

|     |          |      |            |             |           |            | 表 4.5.2   | 8 (1)      | 土壤出          | 监测结果                    | 一览表         |          |            |                     |                   |             |            |
|-----|----------|------|------------|-------------|-----------|------------|-----------|------------|--------------|-------------------------|-------------|----------|------------|---------------------|-------------------|-------------|------------|
|     | Gu. en 1 |      |            | -           | - 7       | 1          |           |            | 1            | 监测项目                    |             |          | 11         | 47                  |                   |             |            |
|     | 采样<br>点位 | pH值  | 镉<br>mg kg | 总录<br>mg kg | <b>高咖</b> | 铅<br>ig kg | 铜<br>mgkg | 镍<br>mg kg | 六价铬<br>mg/kg | 石油烃<br>Cio-Ceo<br>mg/kg | 乙苯<br>µg/kg | 苯乙烯      | <b>海</b> 堤 | 间对-<br>二甲苯<br>ug/kg | 邻二<br>甲苯<br>ug/kg | 甲醇<br>mg/kg | 格<br>mg kg |
|     | 0-0.5m   | 7.58 | 0.08       | 0.0         | 331       | 20         | 19.4      | 24         | 未检出          | 8                       | 未检出         | 水灶       | 未检出        | 未检出                 | 未检出               | 未检出         | 54         |
| 1#  | 0.5-1.5m | 7.52 | 0.06       | 100         | 115       | 20         | 18.6      | 23         | 未检出          | 未检出                     | 未检出         | 兼验出      | 未检出        | 未检出                 | 未检出               | 未检出         | 53         |
|     | 1.5-3m   | 7.73 | 0.07       | 0.03        | 13.2      | 21         | 20.6      | 24         | 未检出          | 10                      | THE WAY     | 朱检出      | 未检出        | 未检出                 | 未检出               | 未检出         | 55         |
|     | 0-0.5m   | 8.60 | 0.74       | 0.021       | 12.9      | 20         | 17.7      | 22         | 未检出          | 7                       | To be       | 未检出      | 未检出        | 未检出                 | 未检出               | 未检出         | 51         |
| 2=  | 0.5-1.5m | 8.62 | 104        | 0.038       | 12.1      | _21        | 18.5      | 23         | 未检出          | 1                       | FART.       | 未检出      | 未检出        | 未检出                 | 未检出               | 未检出         | 52         |
|     | 1.5-3m   | 8.08 | 10.00      | 0.025       | 13.6      | 21         | 21.7      | 26         | 未检出          | <b>***</b>              | 未验出         | 未检出      | 未检出        | 未检出                 | 未检出               | 未检出         | A.C.       |
|     | 0-0.5m   | 834  | 0.06       | 0.020       | 14.0      | 23         | 24.8      | 26         | 未检出          | (A)                     | 未检出         | 未检出      | 未检出        | 未检出                 | 未检出               | 未检出         | 14         |
| #   | 0.5-1.5h | 8.45 | 0.08       | 0.022       | 14.4      | 22         | 23.0      | 28         | 表例上          | 1                       | 未检出         | 未检出      | 未检出        | 未检出                 | 未检出               | 未检验         | 161        |
|     | 155m     | 7.79 | 0.04       | 0.017       | 14.1      | 20         | 19.9      | 26         | 出林           | - 11                    | 未检出         | 未检出      | 未检出        | 未检出                 | 未检出               | 未检出         | 56         |
| 17, | 0-0.2m   | 8.82 | 0.11       | 0.025       | 14.4      | 29         | 29.0      | 3          | 為後世          | 29                      | 未检出         | 未检出      | 未检出        | 未检出                 | 未检出,              | 来           | 64         |
| V   | 0.5m     | 8.36 | 0.04       | 0.047       | 11.4      | 51.1       | 25        | 156        | 丰捡出          | 36                      | 未检出         | 未检出      | 未检出        | 未检出                 | 未检查               | 床检出         | -          |
| PΨ  | 7.5-1.5m | 8.24 | 0.03       | 0.028       | 8.43      | 31.1       | 23        |            | 未捡出          | 18                      | 未检出         | 未检出      | 未检出        | 未检出                 | 大松出               | 未检出         |            |
| 1   | 1.5-3m   | 8.69 | 0.11       | 0.025       | 9.34      | 24.4       | \$        | 3          | 未检出          | 15                      | 未检出         | 未检出      | 未检出        | 未松比                 | 出級点               | 未检出         | -          |
|     | 0-0.5m   | 8.33 | 0.04       | 0.083       | 9.71      | 71.0       | 3/        | 31         | 未检出          | 46                      | 未检出         | 未检出      | 未检出        | 未必少                 | 未出                | 未检出         | -          |
| 8#  | 0.5-1.5m | 8.52 | 0.05       | 0,088       | 7.13      | 101        | 1731      | 29         | 未检出          | 40                      | 未检出         | 未检出      | 未检点        | 李溢出                 | 未检出               | 未检出         | -          |
|     | 1.5-3m   | 8.47 | 0.05       | 0.083       | 8.50      | 28.9       | 56        | 30         | 未检出          | 37                      | 未检出         | 未检出      | 未战士        | 朱丛出                 | 未检出               | 未检出         |            |
|     | 0-0.5m   | 8.40 | 0.06       | 0.039       | 9.10      | 23.2       | 21        | 24         | 未检出          | 57                      | 未检出         | 未检出      | TAKE       | 未检出                 | 未检出               | 未检出         | -          |
| 9=  | 0.5-1.5m | 8.45 | 0.11       | 0.022       | 116       | 20.5       | 22        | 24         | 未检出          | 39                      | 未检出         | 未检出      | 未出         | 未检出                 | 未检出               | 未检出         | -          |
|     | 1.5-3m   | 8.41 | 0.05       | 0.0237      | 408       | 21.5       | 21        | 25         | 未检出          | 31                      | 未检出         | 未给社      | 世、生        | 未检出                 | 未检出               | 未检出         | 9-         |
| 10# | 0-0.5m   | 8.54 | 0.03       | 0.07        | 211.5     | 21.7       | 21        | 26         | 未检出          | 81                      | 未检出         | <b>发</b> | 未检出        | 未检出                 | 未检出               | 未检出         |            |

第 153 页

| 0.5-1.5m | 8.51                                                                 | 0.03                                                                                                    | 0.029                                                                                                                                 | 11.8                                                                                                                                                        | 14%                                                                                                                                                                                                                              | 1.                                                                                                                                                                                                                                                   | 21                                                                                                                                                                                                                                                   | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                               | 24                                                                                                                                                                                                                                                                                                         | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 未验出                                                          | 未检出                                                                                 | 未检出                                                                                  | -                                                                                  |
|----------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 1.5-3m   | 8.58                                                                 | 0.03                                                                                                    | 0.029                                                                                                                                 | 9.59                                                                                                                                                        |                                                                                                                                                                                                                                  | 21                                                                                                                                                                                                                                                   | 27                                                                                                                                                                                                                                                   | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                               | 18                                                                                                                                                                                                                                                                                                         | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 未检生                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 多會出                                                          | 未检出                                                                                 | 未检出                                                                                  |                                                                                    |
| 0-0.5m   | 8.45                                                                 | 0.03                                                                                                    | 0.021                                                                                                                                 | 9.55                                                                                                                                                        | 7.7.                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                   | 30                                                                                                                                                                                                                                                   | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                               | 32                                                                                                                                                                                                                                                                                                         | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 未签本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 未验出                                                          | 未检出                                                                                 | 未检出                                                                                  | - 22                                                                               |
| 0.5-1.5m | 8.32                                                                 | 0.05                                                                                                    | 0.015                                                                                                                                 | 117                                                                                                                                                         | 18.0                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                   | 26                                                                                                                                                                                                                                                   | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                               | 29                                                                                                                                                                                                                                                                                                         | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 未验出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 未检出                                                          | 未检出                                                                                 | 未检出                                                                                  |                                                                                    |
| 1.5-3m   | 8.30                                                                 | 0.04                                                                                                    | 0.0115                                                                                                                                | 3 12                                                                                                                                                        | 19.5                                                                                                                                                                                                                             | 22                                                                                                                                                                                                                                                   | 31                                                                                                                                                                                                                                                   | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                               | 22                                                                                                                                                                                                                                                                                                         | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 未检出                                                          | 未检出                                                                                 | 未检出                                                                                  |                                                                                    |
| 0-0.2m   | 8.06                                                                 | 0.05                                                                                                    | 17.05.0                                                                                                                               | ₹6.24                                                                                                                                                       | 37.9                                                                                                                                                                                                                             | 83                                                                                                                                                                                                                                                   | 31                                                                                                                                                                                                                                                   | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                               | 17                                                                                                                                                                                                                                                                                                         | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 未验出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 未松出                                                          | 未检出                                                                                 | 未检出                                                                                  | 40                                                                                 |
| 0-0.2m   | 8.56                                                                 | 0.11                                                                                                    | 6/1                                                                                                                                   | 10.5                                                                                                                                                        | 31.0                                                                                                                                                                                                                             | 37                                                                                                                                                                                                                                                   | 66                                                                                                                                                                                                                                                   | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                               | 79                                                                                                                                                                                                                                                                                                         | 未捡出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 未松出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 未检出                                                          | 未检出                                                                                 | 未检出                                                                                  | Ψŵ                                                                                 |
| 0-0.2m   | 8.65                                                                 | 613                                                                                                     | 0.032                                                                                                                                 | 8.61                                                                                                                                                        | 32.8                                                                                                                                                                                                                             | 25                                                                                                                                                                                                                                                   | 41                                                                                                                                                                                                                                                   | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                               | 51                                                                                                                                                                                                                                                                                                         | 专业                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 未检出                                                          | 未检出                                                                                 | 未检出                                                                                  | +-                                                                                 |
| 0-0.2m   | 8.59                                                                 | Cur                                                                                                     | 0.056                                                                                                                                 | 12.1                                                                                                                                                        | 20.0                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                   | 32                                                                                                                                                                                                                                                   | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                               | 57                                                                                                                                                                                                                                                                                                         | 13 Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 未检出                                                          | 未检出                                                                                 | 未检出                                                                                  | +                                                                                  |
|          | 1.5-3m<br>0-0.5m<br>0.5-1.5m<br>1.5-3m<br>0-0.2m<br>0-0.2m<br>0-0.2m | 1.5-3m 8.58<br>0-0.5m 8.45<br>0.5-1.5m 8.32<br>1.5-3m 8.30<br>0-0.2m 8.06<br>0-0.2m 8.56<br>0-0.2m 8.65 | 1.5-3m 8.58 0.03<br>0-0.5m 8.45 0.03<br>0.5-1.5m 8.32 0.05<br>1.5-3m 8.30 0.04<br>0-0.2m 8.06 0.05<br>0-0.2m 8.56 0.11<br>0-0.2m 8.65 | 1.5-3m 8.58 0.03 0.029<br>0-0.5m 8.45 0.03 0.021<br>0.5-1.5m 8.32 0.05 0.015<br>1.5-3m 8.30 0.04 0.011 <sub>3</sub><br>0-0.2m 8.06 0.05<br>0-0.2m 8.56 0.11 | 1.5-3m 8.58 0.03 0.029 9.59 0-0.5m 8.45 0.03 0.021 9.55.5 0.5-1.5m 8.32 0.05 0.015 117 1.5-3m 8.30 0.04 0.011, 111 0-0.2m 8.06 0.05 0.05 0.05 0-0.2m 8.56 0.11 0.05 0-0.2m 8.65 0.11 0.05 0-0.2m 8.65 0.11 0.05 0-0.2m 8.65 0.11 | 1.5-3m 8.58 0.03 0.029 9.59 7.3<br>0-0.5m 8.45 0.03 0.021 9.55 7.3<br>0.5-1.5m 8.32 0.05 0.015 117 18.0<br>1.5-3m 8.30 0.04 0.011, 111 19.5<br>0-0.2m 8.06 0.05 0.05 0.00 0.24 37.9<br>0-0.2m 8.56 0.11 0.05 31.0<br>0-0.2m 8.65 0.12 0.03 8.61 32.8 | 1.5-3m 8.58 0.03 0.029 9.59 21 21 0-0.5m 8.45 0.03 0.021 9.55 7.1 20 0.5-1.5m 8.32 0.05 0.015 17 18.0 20 1.5-3m 8.30 0.04 0.011, 11 19.5 22 0-0.2m 8.06 0.05 0.05 0.01 0.5-24 37.9 83 0-0.2m 8.56 0.11 0.5 31.0 37 0-0.2m 8.65 0.5 0.05 8.61 32.8 25 | 1.5-3m     8.58     0.03     0.029     9.59     21     27       0-0.5m     8.45     0.03     0.021     9.55     7.3     20     30       0.5-1.5m     8.32     0.05     0.015     11     18.0     20     26       1.5-3m     8.30     0.04     0.011     11     19.5     22     31       0-0.2m     8.06     0.05     0.02     8.24     37.9     83     31       0-0.2m     8.56     0.11     0.02     8.61     32.8     25     41 | 1.5-3m 8.58 0.03 0.029 9.59 21 27 未检出<br>0-0.5m 8.45 0.03 0.021 9.55 20 30 未检出<br>0.5-1.5m 8.32 0.05 0.015 17 18.0 20 26 未检出<br>1.5-3m 8.30 0.04 0.011; 11 19.5 22 31 未检出<br>0-0.2m 8.06 0.05 0.05 0.05 37.9 83 31 未检出<br>0-0.2m 8.56 0.11 0.05 31.0 37 66 未检出<br>0-0.2m 8.65 0.3 0.06 8.61 32.8 25 41 未检出 | 1.5-3m     8.58     0.03     0.029     9.59     1.27     未检出     18       0-0.5m     8.45     0.03     0.021     9.55     7.2     20     30     未检出     32       0.5-1.5m     8.32     0.05     0.015     117     18.0     20     26     未检出     29       1.5-3m     8.30     0.04     0.011     11     19.5     22     31     未检出     22       0-0.2m     8.06     0.05     10.5     31.0     37.9     83     31     未检出     17       0-0.2m     8.56     0.11     0.02     10.5     31.0     37     66     未检出     79       0-0.2m     8.65     0.3     0.03     8.61     32.8     25     41     未检出     51 | 1.5-3m     8.58     0.03     0.029     9.59     21     27     未检出     18     未检出       0-0.5m     8.45     0.03     0.021     9.55     7.2     20     30     未检出     32     未检出       0.5-1.5m     8.32     0.05     0.015     117     18.0     20     26     未检出     29     未检出       1.5-3m     8.30     0.04     0.011;     11     19.5     22     31     未检出     22     未检出       0-0.2m     8.06     0.05     0.05     24     37.9     83     31     未检出     17     未检出       0-0.2m     8.56     0.11     0.05     10.5     31.0     37     66     未检出     79     未检出       0-0.2m     8.65     0.5     0.05     8.61     32.8     25     41     未检出     51     未检出 | 1.5-3m     8.58     0.03     0.029     9.59     21     27     未检出     18     未检出     未检出       0-0.5m     8.45     0.03     0.021     9.55     7.1     20     30     未检出     32     未检出     未检出       0.5-1.5m     8.32     0.05     0.015     11     18.0     20     26     未检出     29     未检出     未检出       1.5-3m     8.30     0.04     0.011     11     19.5     22     31     未检出     22     未检出     未检出       0-0.2m     8.06     0.05     0.05     0.05     0.05     37.9     83     31     未检出     17     未检出     未检出       0-0.2m     8.56     0.11     0.05     10.5     31.0     37     66     未检出     79     未检出     未检出       0-0.2m     8.65     0.5     0.05     8.61     32.8     25     41     未检出     51     未检出 | 1.5-3m 8.58 0.03 0.029 9.59 , 2 21 27 未检出 18 未检出 未检出 未检出 未检出 | 1.5-3m 8.58 0.03 0.029 9.59 人名 21 27 未检出 18 未检出 | 1.5-3m 8.58 0.03 0.029 9.59 , 2 21 27 未检出 18 未检出 | 1.5-3m 8.58 0.03 0.029 9.59 人 21 27 未检出 18 未检出 |

| 表 4.5-28  | (2)  | 土壤监测金里一 | () 表   |
|-----------|------|---------|--------|
| AC 413-40 | 1.00 |         | 210 24 |

|    | -1       | XX.           |               |              |                       |                       | 4         | <b>企</b>                |              |             |             |                  | 116           |
|----|----------|---------------|---------------|--------------|-----------------------|-----------------------|-----------|-------------------------|--------------|-------------|-------------|------------------|---------------|
|    | 系様 し     | 四氯化碳<br>µg/kg | 三氯甲烷<br>μg/kg | 氯甲烷<br>μg/kg | 1,1-二<br>氯乙烷<br>µg/kg | 1,2-二<br>氯乙烷<br>µg/kg | 大佐        | M-1,2-<br>二氯乙烯<br>μg/kg | 氯乙烯<br>μg/kg | 苯<br>µg/kg  | 氯苯<br>µg/kg | 1,2-二氯苯<br>µg/kg | 水文東華<br>Ig kg |
|    | Q-0.5m   | 未检出           | 未检出           | 未检出          | 未检出                   | 未捡少                   | <b>多脸</b> | 未检出                     | 未检出          | 未检出         | 未检出         | 未检此              | <b>未</b> 检出   |
| 75 | 5-1.5m   | 未检出           | 未检出           | 未检出          | 未检出                   | * 620                 | 未捡出       | 未检出                     | 未检出          | 未检出         | 未检出         | 未検出。             | 未检出           |
| X  | 1.5-3m   | 未检出           | 未检出           | 未检出          | 未检出                   | 未检出                   | 未检出       | 未检出                     | 未检出          | 未检出         | 未检出         | 美核出              | 未检出           |
|    | 0-0.5m   | 未检出           | 未检出           | 未检出          | 未检查                   | 沙台山                   | 未检出       | 未检出                     | 未检出          | 未检出         | 未检出         | 未配               | 未检出           |
| 2# | 0.5-1.5m | 未检出           | 未检出           | 未检出          | 表验出                   | 李渝出                   | 未检出       | 未检出                     | 未检出          | 未检出         | <b>寿</b> 溢出 | <b>卡</b> 检出      | 未检出           |
|    | 1.5-3m   | 未检出           | 未检出           | 未检出人         | 未检巴                   | 未检出                   | 未检出       | 未检出                     | 未检出          | 未检出         | (表) 生       | 未检出              | 未检出           |
|    | 0-0.5m   | 未检出           | 未检出           | 未检出入         | 未检出                   | 未检出                   | 未检出       | 未检出                     | 未检出          | 未检出人        | 《磁出》        | 未检出              | 未检出           |
| 3# | 0.5-1.5m | 未检出           | 未检出           | 未給味          | 未检出                   | 未检出                   | 未检出       | 未检出                     | 未检出          | 未被上         | 朱松出         | 未检出              | 未检出           |
|    | 1.5-3m   | 未检出           | 未检出之          | 朱松出          | 未检出                   | 未检出                   | 未检出       | 未检出                     | 未检出          | 、相性出        | 未检出         | 未检出              | 未检出           |
| 4# | 0-0.2m   | 未检出           | 未找此人          | 沫检出          | 未检出                   | 未检出                   | 未检出       | 未检出                     | 未检查          | <b>会超</b> 世 | 未检出         | 未检出              | 未检出           |
| 7# | 0-0.5m   | 未检出           | *             | 未检出          | 未检出                   | 未检出                   | 未检出       | 未检出                     | 7            | 丰捡出         | 未检出         | 未检出              | 未检出           |

第 154 页

| -    | 0.5-1,5m | 未检出   | 未检出  | 未检出 | 、表於出 | 未检出         | 未检出 | 未检出    | 未检出  | 未检出  | 7     | 未检出   | 未检出         |
|------|----------|-------|------|-----|------|-------------|-----|--------|------|------|-------|-------|-------------|
| -    | 1.5-3m   | 未检出   | 未检出  | 未检查 | 光色出  | 未检出         | 未检出 | 未检出    | 未检出  | 未检出、 | 1 St. | 未检出   | 未检出         |
| -    | 0-0.5m   | 未检出   | 未检出  | 丰杨出 | 卡检出  | 未检出         | 未检出 | 未检出    | 未检出  | 未检出  | 1 0 L | 未检出   | 未检出         |
| 8#   | 0.5-1.5m | 未检出   | 未检出  | 未检出 | 未检出  | 未检出         | 未检出 | 未检出    | 未检出  | 未检的  | 未捡出   | 未检出   | 未检出         |
|      | 1.5-3m   | 未检出   | 未检出人 | 果验以 | 未检出  | 未检出         | 未检出 | 未检出    | 未检出  | 1未检出 | 未检出   | 未检出   | 未检出         |
|      | 0-0.5m   | 未检出   | 74/2 | 朱丛出 | 未检出  | 未检出         | 未检出 | 未检出    | 未检出  | 未检出  | 未检出   | 未检出   | 未检出         |
| 9#   | 0.5-1.5m | 未检出   | 1    | 未检出 | 未检出  | 未检出         | 未检出 | 未检出    | 表检出  | 未检出  | 未检出   | 未检出   | 未检出         |
|      | 1.5-3m   | 未检出   | 未後出  | 未检出 | 未检出  | 未检出         | 未检出 | 未检出    | 出数十  | 未检出  | 未检出   | 未检出   | 未检出         |
|      | 0-0.5m   | 未检证   | 木捡出  | 未检出 | 未检出  | 未检出         | 未检出 | 未检サ    | 未进出  | 未检出  | 未检出   | 未检出   | 未检出         |
| 10#  | 0.5-1.5m | 未检查   | 未检出  | 未检出 | 未检出  | 未检出         | 未检出 | 未检出    | - 後出 | 未检出  | 未检出   | 未检出   | 未检出         |
|      | 1.5-3m   | (未检出  | 未检出  | 未检出 | 未检出  | 未检出         | 末检出 | 等。出    | 未检出  | 未检出  | 未检出   | 未检出   | 未核光         |
|      | 0-0.5m   | 未检出   | 未检出  | 未检出 | 未检出  | 未检出         | 未检出 | 7. 金金出 | 未检出  | 未检出  | 未检出   | 未检出   | 未检验         |
| 11=  | 0.5-1.3m | ト 未检出 | 未检出  | 未检出 | 未检出  | 未检出         | 未检出 | 未检出    | 未检出  | 未检出  | 未检出   | 未检出   | 人大物出        |
|      | 132ga    | 未检出   | 未检出  | 未检出 | 未检出  | 未检出。        | 交验出 | 未检出    | 未检出  | 未检出  | 未检出   | 未检出(  | 一、未检出       |
| 1/4/ | (0-0.2m  | 未检出   | 未检出  | 未检出 | 未检出  | 未检查         | 表验上 | 未检出    | 未检出  | 未检出  | 未检出   | 未检此》、 | <b>未</b> 检出 |
| 3    | 1.0.2m   | 未检出   | 未检出  | 未检出 | 未检出  | * 62        | 未检出 | 未检出    | 未检出  | 未检出  | 未检出   | 未検出さ  | 未检出         |
| NE.  | 0-0.2m   | 未检出   | 未检出  | 未检出 | 未检出  | 未检心         | 未检出 | 未检出    | 未检出  | 未检出  | 未检出   | 美毯出   | 未检出         |
| 16≡  | 0-0.2m   | 未检出   | 未检出  | 未检出 | 未校生  | <b>大台</b> 出 | 未检出 | 未检出    | 未检出  | 未检出  | 未检出   | 北金朱   | 未检出         |

| 0 /33  | - L + 2 1 1 大 20 1 L + 1 円 1 | 1164 === |
|--------|------------------------------|----------|
| 18 (3) | 土壤监测结果-                      | 一見な      |

|     |          |                         |      | XX           |               | 监测项目                      |                          |                  |                        |               |                         |
|-----|----------|-------------------------|------|--------------|---------------|---------------------------|--------------------------|------------------|------------------------|---------------|-------------------------|
| Ħ   | 群点位      | 反-1,2-二<br>氯乙烯<br>ug/kg | 二氯甲烷 | 12二氯丙烷 μg kg | 四氯乙烯<br>µg/kg | 1,1,1,2-<br>四氯乙烷<br>ug/kg | 1,1,22-<br>四氯乙烷<br>ng/kg | 11150            | 1,12-三<br>氯乙烷<br>µg kg | 三氯乙烯<br>μg/kg | 1,2,3-三<br>氯丙烷<br>#g/kg |
| 14. | 0-0.5m   | 未检出                     | 未捡出心 | 未检出          | 未检出           | 未检出                       | 未检出《                     | 公未               | 未检出                    | 未检出           | 未检出                     |
| 1=  | 0.5-1.5m | 未检出                     | 46   | 未检出          | 未检出           | 未检出                       | 未被加入                     | Y <sub>未松出</sub> | 未检出                    | 未检出           | 未检出                     |

第 155 页

|     | 1.5-3m   | 未检出 | 未检出      | <b>不检出</b> | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出   | 未检出  | 未检出          | 深级出         | 未检出  | 未检出 |
|-----|----------|-----|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|--------------|-------------|------|-----|
|     | 0-0.5m   | 未检出 | 10       | · COL      | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出   | 未检出  | 未检集          | 多的          | 未检出  | 未检出 |
| 2#  | 0.5-1.5m | 未检出 | 未检出      | 人 未        | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出   | 未检出  | 未捡出          | 未。出         | 未检出  | 未检出 |
| 5   | 1,5-3m   | 未检出 | 未检出了     | 未松出        | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出   | 未检出  | 化丝朱          | 未检出         | 未检出  | 未检出 |
|     | 0-0.5m   | 未检出 | 夫檢达      | 未检出        | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出   | 未检出  | 未检出          | 未检出         | 未检出  | 未检出 |
| 3#  | 0.5-1.5m | 未检出 | 1400     | 未检出        | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出   | 未检出入 | - 朱检出        | 未检出         | 未检出  | 未检出 |
|     | 1.5-3m   | 未检出 |          | 未检出        | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出   | 未燃出了 | 未检出          | 未检出         | 未检出  | 未检出 |
| 4#  | 0-0.2m   | 未检出 | <b>1</b> | 未检出        | 未捡出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出   | 林出   | 未检出          | 未检出         | 未检出  | 未检出 |
|     | 0-0.5m   | 762 | 未检出      | 未检出        | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出   | 福出   | 未检出          | 未检出         | 未检出  | 未检出 |
| 7#  | 0.5-1.5m | 地東点 | 未检出      | 未检出        | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未修出   | 大趾   | 未检出          | 未检出         | 未检出  | 未检出 |
|     | 1.5-3m   | 大参照 | 未检出      | 未检出        | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 大台北   | 未检出  | 未检出          | 未检出         | 未检出  | 未被上 |
|     | 0-0.5m   | 未检出 | 未检出      | 未检出        | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 大家企出  | 未检出  | 未检出          | 未检出         | 未检出  | 来数  |
| 8#  | 0.5-1/5  | 未检出 | 未捡出      | 未检出        | 未检出、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 未检出 | 未检出  | 未检出          | 未检出         | 未检出  | 朱松出 |
|     | (123m    | 未检出 | 未检出      | 未检出        | 未检迟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 松出    | 未检出  | 未检出          | 未检出         | 未检出了 | 未检出 |
| W.  | 30-0.5m  | 未检出 | 未检出      | 未检出        | <b>多数</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 未检出   | 未检出  | 未检出          | 未检出         | 表数出V | 未检出 |
| 9   | 0.5-1.5m | 未检出 | 未检出      | 未检出        | THE STATE OF THE S | 未检出   | 未检出  | 未检出          | 未检出         | 少未能出 | 未检出 |
|     | 1.5-3m   | 未检出 | 未检出      | 未检出        | 未完                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 未检出   | 未检出  | 未检出          | 未检出         | 未检出  | 未检出 |
|     | 0-0.5m   | 未检出 | 未检出      | 未检证        | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出   | 未检出  | 未检出          | 未被出         | 未检出  | 未检出 |
| 10# | 0.5-1.5m | 未检出 | 未检出      | 未检查        | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出   | 未检出  | 未检出          | 未放火         | 未检出  | 未检出 |
|     | 1.5-3m   | 未检出 | 未检出      | 未经出        | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出   | 未检出  | 未检出。         | <b>人</b> 演出 | 未检出  | 未检出 |
|     | 0-0.5m   | 未检出 | 未检出      | 入学检出       | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出   | 未检出  | 未检出。         | 朱龙出         | 未检出  | 未检出 |
| 11# | 0.5-1.5m | 未检出 | 未检出      | ア・朱松出      | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出   | 未检出  | <b>老</b>     | 未检出         | 未检出  | 未检出 |
|     | 1.5-3m   | 未检出 | 未检出入。    | 未检出        | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出   | 未检出  | 井池生          | 未检出         | 未检出  | 未检出 |
| 12# | 0-0.2m   | 未检出 | を結べ      | 未检出        | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出   | 未检出  | <b>学</b> 未被出 | 未检出         | 未检出  | 未检出 |
| 13# | 0-0.2m   | 未检出 | A CAPE   | 未检出        | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出   | 表的   | 未检出          | 未检出         | 未检出  | 未检出 |

第 156 页

| 14# | 0-0.2m | 未检出 | 未检出 | <b>承检</b> 出 | 未检出 | 未检出 | 未检出 | 未检出 | 未發出        | 未检出 | 未检出 |
|-----|--------|-----|-----|-------------|-----|-----|-----|-----|------------|-----|-----|
| 16# | 0-0.2m | 未检出 | 未检出 |             | 未检出 | 未检出 | 未检出 | 未检生 | <b>深岛出</b> | 未检出 | 未检出 |

# 表 4.5-28 (4) 土壤监测结果一览表

|          | Later    |              |             |        | 1                  |                 |            | 监测                   | <b>沙</b> 项目          |              | 12          | 1                    |                           |            |            |            |
|----------|----------|--------------|-------------|--------|--------------------|-----------------|------------|----------------------|----------------------|--------------|-------------|----------------------|---------------------------|------------|------------|------------|
|          | 采样<br>点位 | 硝基苯<br>mg/kg | 苯胺<br>mg/kg |        | アンギンチ(a)芘<br>mg/kg | 苯并(a)蒽<br>mg kg | 蔗<br>mg/kg | 苯并(b)<br>荧蒽<br>mg/kg | 苯并(k)<br>荧菌<br>mg kg | 萘 、<br>mg.kg | Fig. 120 kg | 二苯并<br>(ah)蒽<br>mgkg | 前并(1,23<br>-cd)莊<br>mg/kg | 钒<br>mg/kg | 钴<br>mg/kg | 锑<br>mg kg |
|          | 0-0.5m   | 未检出          | 未此          | 未出     | 未检出                | 未检出             | 未检出        | 未检出                  | 未检出                  | 未出           | 46          | 未检出                  | 未检出                       | 70.5       | 11.2       | 1.3        |
| 1#       | 0.5+1.5m | 未检出          | A 624       | 未检出    | 未检出                | 未检出             | 未检出        | 未检出                  | 未检生                  | 3 TO 1       | 42          | 未检出                  | 未检出                       | 67.9       | 10.9       | 1.3        |
|          | 1.5-3m   | 未检出          | 正像!         | 未检出    | 未检出                | 未检出             | 未检出        | 未检出                  | 朱检出                  | 永进           | 51.         | 未检出                  | 未检出                       | 73.0       | 11.5       | 41         |
|          | 0-0.5m   | 未检出          | 未检出         | 未检出    | 未检出                | 未检出             | 未检出        | 未检查                  | 大大                   | 未检出          | 46          | 未检出                  | 未检出                       | 66.2       | 11.1       |            |
| 2#       | 0.5-1.5ф | 未始出          | 未检出         | 未检出    | 未检出                | 未检出             | 未检出        | 未粉段                  | 未检出                  | 未检出          | 48          | 未检出                  | 未检出                       | 67.6       | 10,8       | 1          |
|          | 1.53m    | 未检出          | 未检出         | 未检出    | 未检出                | 未检出             | 未捡出        | 未松出                  | 未检出                  | 未检出          | 52          | 未检出                  | 未检出                       | 70.2       | 133        | 1.1        |
|          | 0-0 sin  | 未检出          | 未检出         | 未检出    | 未检出                | 未检出             | 未检比        | 未验证                  | 未检出                  | 未检出          | 55          | 未检出                  | 未检出                       | 77.4       | 1224       | 13         |
| 34       | 8 -1.5m  | 未检出          | 未检出         | 未检出    | 未检出                | 未检出             |            | 未检出                  | 未检出                  | 未检出          | 52          | 未检出                  | 未检出                       | 18(2)      | 13.2       | 1.4        |
| <b>~</b> | 1.5-3m   | 未检出          | 未检出         | 未检出    | 未检出                | 未检出             | TO NOTE OF | 未检出                  | 未捡出                  | 未松出          | 50          | 未检出                  | 未检出了                      | 742        | 12.0       | 1.3        |
| 4#       | 0-0.2m   | 未检出          | 未检出         | 未检出    | 未检出                | 表创土             | 未始出        | 未检出                  | 未检出                  | 未检出          | 84          | 未检出                  | 未被比                       | 80.9       | 14.0       | 1.5        |
|          | 0-0.5m   | 未检出          | 未检出         | 未检出    | 未检出                | 7.182           | 未检出        | 未检出                  | 未检出                  | 未检出          | 462         | 未检出                  | 未金米                       | -          |            | -          |
| 7#       | 0.5-1.5m | 未检出          | 未检出         | 未检出    | 未检出、               | THE WAY         | 未检出        | 未检出                  | 未检出                  | 未检出          | 108         | 未校业                  | 未检出                       | -          |            | -          |
|          | 1.5-3m   | 未检出          | 未检出         | 未检出    | 未检验                | 未检出             | 未检出        | 未检出                  | 未检出                  | 未检出          | 114         | 表徵人                  | 出金未                       | -          |            | leni       |
|          | 0-0.5m   | 未检出          | 未检出         | 未检出    | 和鍵                 | 未检出             | 未检出        | 未检出                  | 未检出                  | 未检出          | 125         | 北流出                  | 未检出                       | -          |            | -          |
| 8#       | 0.5-1.5m | 未检出          | 未检出         | 未检出入   | 大松出                | 未检出             | 未检出        | 未检出                  | 未检出                  | 未检出          | 12          | 未多出                  | 未检出                       | 7          |            | -          |
|          | 1.5-3m   | 未检出          | 未检出         | # 13 K | 未检出                | 未检出             | 未检出        | 未检出                  | 未检出                  | 未检出          | N/S         | 捻出                   | 未检出                       | -          | ~          | [mer]      |
| 9#       | 0-0.5m   | 未检出          | 未检出         | 7      | 未检出                | 未检出             | 未检出        | 未检出                  | 未检出                  | 未检验          | 6.          | 未检出                  | 未检出                       | 144        |            | -          |

第 157 页

|     | 0.5-1.5m | 未检出 | 未检出      | 未检出 | 未检出人                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 未检出  | 未检出 | 未检出 | 未检出 | 未检出  | 66   | 未检验  | 未检出 | -        | - 44 | 44    |
|-----|----------|-----|----------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-----|-----|------|------|------|-----|----------|------|-------|
|     | 1.5-3m   | 未检出 | 未检出      | 未检出 | 土林未                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 广夫检出 | 未捡出 | 未检出 | 未检出 | 未检出  | 67   | 沙蘇   | 稳出  | -        | -    | 1,471 |
|     | 0-0.5m   | 未检出 | 未检出      | 未检出 | THE STATE OF THE S | 未检出  | 未检出 | 未检出 | 未检出 | 未检出  | 66   | 委检出  | 末检出 | $\Theta$ | L-   |       |
| 10# | 0.5-1.5m | 未检出 | 未检出      | 未检出 | 未給出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出  | 未检出 | 未检出 | 未检出 | 未检出  | 40   | 来松出  | 未检出 | -        | **   | -4-   |
|     | 1.5-3m   | 未检出 | 未检出      | 未始  | 5.村出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 未检出  | 未检出 | 未检出 | 未检出 | 未检出。 | 234/ | *未检出 | 未检出 | -        | - T- |       |
| L ( | 0-0.5m   | 未检出 | 未检出      | 100 | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出  | 未检出 | 未检出 | 未检出 | 未检出  | 392  | 未检出  | 未检出 |          | -    |       |
| 11# | 0.5-1,5m | 未检出 | 未检出      |     | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出  | 未检出 | 未检出 | 未检出 | 未说此》 | 44   | 未检出  | 未检出 | -        |      |       |
|     | 1.5-3m   | 未检出 | 1 1 AV 1 | 未验出 | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出  | 未检出 | 未检出 | 未检出 | 多用   | 52   | 未检出  | 未检出 | -        |      |       |
| 12# | 0-0.2m   | 未检比 | 中國中      | 未检出 | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出  | 未检出 | 未检出 | 未检出 | 关进   | 686  | 未检出  | 未检出 | -        |      | 4     |
| 13# | 0-0.2m   | 未检验 | 从朱松出     | 未检出 | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出  | 未检出 | 未检出 | 多。  | 未检出  | 143  | 未检出  | 未检出 | -        |      |       |
| 14# | 0-0.2m   | 金出  | 未检出      | 未检出 | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出  | 未检出 | 未检验 | 土金件 | 未检出  | 94   | 未检出  | 未检出 | -        | , 5  |       |
| 16# | 0-0.2m   | 未检出 | 未检出      | 未检出 | 未检出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 未检出  | 未检出 | 未检出 | 末检出 | 未检出  | 94   | 未检出  | 未检出 | -        | 4    | 1-    |
|     | 0/3      | -   |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     |     |     |      |      |      |     |          | _    |       |

| 主 45 00    | (SY)   | 11/4/10/4十年 | 06:ste  |
|------------|--------|-------------|---------|
| 202 4 D-28 | V///54 | 海洲石木        | - D. 20 |

|     | 37     |      |            |             | 1,11,1      |            | 表 4.5-2 |       | 监          | 测项目        | 一览表        |            |            |            | , 45                 |             |
|-----|--------|------|------------|-------------|-------------|------------|---------|-------|------------|------------|------------|------------|------------|------------|----------------------|-------------|
| 典   | 狭位     | pH   | 镉<br>mg/kg | 总汞<br>mg/kg | 总砷<br>mg/kg | 铅<br>mg/kg | 铜       | m, kg | 铬<br>mg/kg | 锌<br>mg/kg | 钒<br>mg/kg | 钴<br>mg/kg | 锑<br>mg/kg | 铑<br>mg.kg | 西海接 C10-C40<br>mg/kg | 甲醇<br>mg/kg |
| 5#  | 0-0.2m | 8.09 | 0.06       | 0.020       | 13.3        | 22         | IN J    | 22    | 51         | 45         | 65.1       | 9.85       | 1.3        | 未检验        | 12                   | 未检出         |
| 6#  | 0-0.2m | 8.13 | 0.09       | 0.073       | 12.5        | 24         | 315     | 22    | 51         | 52         | 63.5       | 9.45       | 1.2        | 专校出        | 21                   | 未检出         |
| 15# | 0-0.2m | 8.61 | 0.09       | 0.059       | 8.93        | 24         | 28      | 27    | 65         | 144        |            |            | - X        | 11-        | 89                   | -           |
| 17# | 0-0.2m | 8.46 | 0.07       | 0.044       | 13.3        | 27.0       | 31      | 25    | 73         | 95         | 75         |            |            | -          | -21                  | 77          |
| 18# | 0-0.2m | 8.40 | 0.04       | 0.079       | 8.48        | 25.4       | 21      | 32    | 84         | 66         |            | -          | V          | (1994)     | 51                   | 140         |

第 158 页

#### 4.5.6.2 土壤环境现状评价

### 1、评价因子

建设用地无 pH、锌、铬、甲醇质量标准,农用地无石油烃、甲醇质量标准, 除上述因子之外,其他评价因子同监测因子。

### 2、评价方法

单因子指数法即计 农度值与评价标准值之比。公式如下:

Si=Ci/Csi

染物的评价标准值,mg/kg。

### 評价标准

根据土壤使用功能和保护目标,1#~3#、7#~14\*流 执行《土壤环境质 建设用地土壤污染风险管控标准(试行) 4#、16#执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》 17#和 18#监测点位执行《土壤 (GB36600-2018) 一类用地标准; 5# \6# 环境质量 农用地土壤污染风险 代行)》(GB 15618-2018)标准。

### 4、评价结果

根据 见表 4.5-29。

| M-4-3     | which in the lat. I advantage on an emily the lat. The sky |
|-----------|------------------------------------------------------------|
| ₹4X-29(1\ | 建设用地土壤环境质量现状评价一览表                                          |

|    | er von er 1 |         |       |        | 1      |       |       | 监测场 | 目              |              | 1/16 |         |          |        |
|----|-------------|---------|-------|--------|--------|-------|-------|-----|----------------|--------------|------|---------|----------|--------|
| 采  | 样点位         | 镉       | 总汞    | 學唯一    | 钼      | 铜     | 镍     | 六价铬 | 石油烃<br>C10-C40 | 四氯化碳         | 王凱甲烷 | 氯甲烷     | 1,1-二氯乙烷 | 钒      |
|    | 0-0.5m      | 0.001   | 0.001 | (Q.20  | 0.025  | 0.001 | 0.027 | 未检出 | 0.002          | 未检节          | 未检出  | 未检出     | 未检出      | 0.094  |
| 1# | 0.5-1.5m    | 0.001   | 0.50  | 0.242  | 0.025  | 0.001 | 0.026 | 未检出 | 未检出            | 未验出          | 未检出  | 未检出     | 未检出      | 0.09   |
|    | 1.5-3m      | 0.001   | 0.001 | 0.2200 | 0.026  | 0.001 | 0.027 | 未检出 | 0.002          | 未检出          | 未检出  | 未检出     | 未检出      | 0.097  |
|    | 0-0.5m      | 0.001   | NOON. | 0.215  | 0.025  | 0.001 | 0.024 | 未检出 | 0.62           | 未检出          | 未检出  | 未检出     | 未检出      | 0.088  |
| 2# | 0.5-1.5m    | 0.00    | 10.1  | 0.202  | 0.026  | 0.001 | 0.026 | 未检出 | VAV            | 未检出          | 未检出  | 未检出     | 未检出      | 0.00   |
|    | 1.5-3m      | (0,80)  | 0.001 | 0.227  | 0.026  | 0.001 | 0.029 | 未发发 | 未松出            | 未检出          | 未检出  | 未检出     | 未检出      | 1000   |
|    | 0-0.5m      | 0.001   | 0.001 | 0.233  | 0.029  | 0.001 | 0.029 | 人   | 0.002          | 未检出          | 未检出  | 未检出     | 未检出,     | AU (A) |
| 3# | 0.5-1/5     | 0.001   | 0.001 | 0.240  | 0.028  | 0.001 | 0.031 | 未检出 | 0.003          | 未检出          | 未检出  | 未检出     | 未检出      | 0.104  |
|    | \$125m      | 0.001   | 0.001 | 0.235  | 0.0250 | 0.001 | 0.00  | 宋业  | 0.006          | 未检出          | 未检出  | 未检出     | 未经       | 0.099  |
| 45 | 30-0.2m     | 0.002   | 0.001 | 0.240  | 0.036  | 0.000 | (03)  | 未检出 | 0.035          | 未检出          | 未检出  | 未检出     | 公林松出     | 0.427  |
|    | 0-0.5m      | 0.001   | 0.001 | 0.190  | 0.064  | 0.000 | 4.00  | 未检出 | 0.008          | 未检出          | 未检出  | 未检出     | 米松出      |        |
| 4  | 0.5-1.5m    | < 0.001 | 0.001 | 0.141  | 0.039  | 0.001 | 0.034 | 未检出 | 0.004          | 未检出          | 未检出  | 未检查     | 未检出      | **     |
|    | 1.5-3m      | 0.002   | 0.001 | 0.156  | 0.031  | df di | 0.034 | 未检出 | 0.003          | 未检出          | 未检出  | Sign is | 未检出      | -      |
|    | 0-0.5m      | 0.001   | 0.002 | 0.162  | 0.000  | 0.03  | 0.034 | 未检出 | 0.010          | 未检出          | 未处   | 未允      | 未检出      |        |
| 8# | 0.5-1.5m    | 0.001   | 0.002 | 0.119  | \$128  | 0.003 | 0.032 | 未检出 | 0.009          | 未检出          | # 1  | 未检出     | 未检出      |        |
|    | 1.5-3m      | 0.001   | 0.002 | 0.142  | 0.096  | 0.003 | 0.033 | 未检出 | 0.008          | 未检出          | (金)  | 未检出     | 未检出      | 140    |
|    | 0-0.5m      | 0.001   | 0.001 | 0.152  | 0.029  | 0.001 | 0.027 | 未检出 | 0.013          | 未松比          | 主物出  | 未检出     | 未检出      | J. W.  |
| 9# | 0.5-1.5m    | 0.002   | 0.001 | 0.193  | 0.026  | 0.001 | 0.027 | 未检出 | 0.009          | <b>人表验</b> 基 | 未检出  | 未检出     | 未检出      | , A.,  |
|    | 1.5-3m      | 0.001   | 0.001 | 180    | 0.027  | 0.001 | 0.028 | 未检出 | 0.007          | ()           | 未检出  | 未检出     | 未检出      | -      |

第 160 页

|     | 0-0.5m   | < 0,001 | 0.001   | 0.192   | 200         | 0.801 | 0.029      | 未检出 | 0,018    | 未检出      | 未拉拉     | 未检出     | 未检出   |       |
|-----|----------|---------|---------|---------|-------------|-------|------------|-----|----------|----------|---------|---------|-------|-------|
| 10# | 0.5-1.5m | <0.001  | 0.001   | 0.197   | E ALB       | 0.001 | 0.023      | 未检出 | 0.005    | 未捡出      | A COL   | 检出      | 未检出   | ~     |
|     | 1.5-3m   | < 0.001 | 0.001   | 0.100   | 0.022       | 0.001 | 0.030      | 未检出 | 0.004    | 未检出人     | 大台上     | 未检出     | 未检出   |       |
|     | 0-0.5m   | < 0.001 | 0.001   | 0159 -  | 0.022       | 0.001 | 0.033      | 未检出 | 0,007    | 未捡出入     | 朱检出     | 未检出     | 未检出   |       |
| 11# | 0.5-1.5m | 0.001   | < 0.001 | (8) 95  | 0.023       | 0.001 | 0.029      | 未检出 | 0.006    | 未检证      | 未检出     | 未检出     | 未捡出   |       |
|     | 1.5-3m   | 0.001   | <0.05   | 0.183   | 0.024       | 0.001 | 0.034      | 未检出 | 0.005    | 未验出      | 未检出     | 未检出     | 未检出   | - 77  |
| 12# | 0-0.2m   | 0,001   | 0.001   | 7.137   | 0.047       | 0.005 | 0.034      | 未检出 | 0.04     | 未检出      | 未检出     | 未检出     | 未检出   |       |
| 13= | 0-0.2m   | 0.002   | 0,000   | 0.175   | 0.039       | 0.002 | 0.073      | 未检出 | 0/12     | 未检出      | 未检出     | 未检出     | 未检出   | 44    |
| 14# | 0-0.2m   | 0.00    | 104     | 0.431   | 0.082       | 0.013 | 0.273      | 未检出 | M        | 未检出      | 未检出     | 未检出     | 未检出   | 1     |
| 16# | 0-0.2m   | 2,000   | 0.005   | 0.605   | 0,050       | 0.015 | 0.213      | 未会  | 0,039    | 未检出      | 未检出     | 未检出     | 未检出   |       |
|     | - 2      | 1       |         |         |             |       |            | 如此  | 自        |          |         |         | , (   |       |
| 採   | 続位し      | 1,2-    | 1,1-    | 顺-1,2-二 | 反-1,2-      | 二氯    | 1,2-       | 中原  | 1,1,1,2- | 1,1,2,2- | 1,1,1,= | 1,1,2-Ξ | 三氯人   | 钴     |
|     | Day      | 氯乙烷     | 氯乙烯     | 氯乙烯     | 二氯乙烯        | 甲烷    | 氯丙烷        | 786 | 四氯乙烷     | 四氯乙烷     | 氯乙烷     | 氯乙烷     | ( 報   | +0    |
| 17  | 0-0.5m   | 未检出     | 未检出     | 未检出     | 未检出         | 未检出   | · 美國山      | 未检出 | 未检出      | 未检出      | 未检出     | 未检出     | 大松田   | 0.16  |
| X   | 0.5-1.5m | 未检出     | 未检出     | 未检出     | 未检出         | 未检查   | <b>分</b> 建 | 未检出 | 未检出      | 未检出      | 未检出     | 未检出,    | 出金銭   | 0.156 |
|     | 1.5-3m   | 未检出     | 未检出     | 未检出     | 未检出         | 未检上   | 专出         | 未检出 | 未检出      | 未检出      | 未检出     | 未金光     | ○ 未检出 | 0.164 |
| 1.  | 0-0.5m   | 未检出     | 未检出     | 未检出     | 未检出         | 0.00  | 未检出        | 未检出 | 未检出      | 未检出      | 未检出。    | 李汉王     | 未检出   | 0,159 |
| 2=  | 0.5-1.5m | 未检出     | 未检出     | 未检出     | 未检纸         | 未会生   | 未检出        | 未检出 | 未检出      | 未检出      | 未检出     | **      | 未检出   | 0.156 |
|     | 1.5-3m   | 未检出     | 未检出     | 未检出     | 李扬的         | 未检出   | 未检出        | 未检出 | 未检出      | 未检出      | 未验》     | 未检出     | 未检出   | 0.187 |
|     | 0-0.5m   | 未检出     | 未检出     | 未检出、    | 未验出         | 未检出   | 未检出        | 未检出 | 未检出      | 未检出      | TALL.   | 未检出     | 未检出   | 0,177 |
| 3=  | 0.5-1.5m | 未检出     | 未检出     | 未检出     | <b>/未检出</b> | 0,014 | 未检出        | 未检出 | 未检出      | 未松半      | 未检出     | 未检出     | 未检出   | 0.189 |
|     | 1.5-3m   | 未检出     | 未检出     | 未给了     | 未检出         | 未检出   | 未检出        | 未检出 | 未检出      | 表核出      | 杨出      | 未检出     | 未检出   | 0.171 |
| 4#  | 0-0.2m   | 未检出     | 未检以     | **松出    | 未检出         | 未检出   | 未检出        | 未检出 | 未检出      | <b>从</b> | 未检出     | 未检出     | 未检出   | 0.700 |
| 7=  | 0-0.5m   | 未检出     | 未必出     | 茅丛出     | 未检出         | 未检出   | 未检出        | 未检出 | 未捡出      | 4-17H    | 未检出     | 未检出     | 未检出   | ++    |

第 161 页

|    | 0.5-1.5m | 未检出            | 未检出  | 未检出         | 林地  | 老丛出  | 未检出      | 未检出  | 未检出      | 未检出         | 未拉出    | 未检出   | 未检出    |     |
|----|----------|----------------|------|-------------|-----|------|----------|------|----------|-------------|--------|-------|--------|-----|
|    | 1.5-3m   | 未检出            | 未检出  | 未检出         |     | 未检出  | 未检出      | 未检出  | 未检出      | 未检出         | A SOFT | 一脸出   | 未检出    | ~~  |
|    | 0-0.5m   | 未检出            | 未检出  | 未检出人        | 朱利出 | 未检出  | 未检出      | 未检出  | 未检出      | 未检出人        | 大國大    | 未检出   | 未检出    |     |
| 8# | 0.5-1.5m | 未松出            | 未检出  | 未從人         | 未检出 | 未检出  | 未检出      | 未检出  | 未检出      | 未检出入        | 朱检出    | 未检出   | 未检出    |     |
|    | 1.5-3m   | 未检出            | 未检出  | 188         | 未检出 | 未检出  | 未检出      | 未检出  | 未检出      | 未检证         | 未检出    | 未捡出   | 未检出    |     |
|    | 0-0.5m   | 未松出            | 未经   | <b>未检</b> 出 | 未检出 | 未检出  | 未检出      | 未检出  | 未检出。     | <b>未</b> 私出 | 未检出    | 未检出   | 未检出    | -   |
| 9# | 0.5-1.5m | 未检出            | 未检查  | <b></b>     | 未检出 | 未检出  | 未检出      | 未检出  | 表述       | 未检出         | 未检出    | 未检出   | 未检出    |     |
|    | 1.5-3m   | 未检出            | # 25 | 未检出         | 未检出 | 未检出  | 未检出      | 未检出  | * KE     | 未检出         | 未检出    | 未检出   | 未检出    | 4-  |
|    | 0-0.5m   | 未掺             | *    | 未检出         | 未检出 | 未检出  | 未检出      | 未检出  | * COUNTY | 未检出         | 未检出    | 未检出   | 未检出    | -   |
| 0# | 0.5-1.5m | (***)          | 未检出  | 未检出         | 未检出 | 未检出  | 未检出      | 未会   | 未核出      | 未检出         | 未检出    | 未检出   | 未检出    | 1   |
|    | 1.5-3m   | 米松出            | 未检出  | 未检出         | 未检出 | 未检出  | 未检出      | A SE | 未检出      | 未检出         | 未检出    | 未检出   | 未检出,   |     |
|    | 0-0.5th  | 未检出            | 未检出  | 未检出         | 未检出 | 未检出  | 未给牛      | 未检出  | 未检出      | 未检出         | 未检出    | 未检出   | 未检出入   | 1/1 |
| 1= | 03-55m   | 未检出            | 未检出  | 未检出         | 未检出 | 未检出  | 表检查      | 茅鉱出  | 未检出      | 未检出         | 未检出    | 未检出   | 未经     | -   |
| V. | 1.5-3m   | 未检出            | 未检出  | 未检出         | 未检出 | 未检出  | 大台出      | 未检出  | 未检出      | 未检出         | 未松出    | 未检出   | 2 × 34 | 1   |
|    | 0=0.2m   | 未检出            | 未检出  | 未检出         | 未检出 | 未检验  | <b>全</b> | 未检出  | 未检出      | 未检出         | 未检出    | 未检出了  | 人米松出   | Le  |
| 4  | 0-0.2m   | 未检出            | 未检出  | 未检出         | 未检出 | 法総出  | 未愈出      | 未检出  | 未检出      | 未检出         | 未检出    | 未验    | 未检出    |     |
| 4# | 0-0.2m   | 未检出            | 未检出  | 未检出         | 未检计 | *    | 未检出      | 未检出  | 未检出      | 未检出         | 未检出    | EN L  | 未检出    | -   |
| 6= | 0-0.2m   | 未检出            | 未检出  | 未检出         | 未核类 | 未出   | 未检出      | 未检出  | 未检出      | 未检出         | 未火     | 未金    | 未检出    |     |
|    |          |                |      |             | XI  |      |          | 监测项  | 目        |             |        |       |        | _   |
| 采  | 羊点位      | 1,2,3-三<br>氯丙烷 | 氯乙烯  | 業川          | 蘇苯  | 1,2二 | 1.4二     | 乙苯   | 苯乙烯      | 職し          | 工甲苯    | 邻二 甲苯 | 硝基苯    | #   |
|    | 0-0.5m   | 未检出            | 未检出  | 来台          | 未检出 | 未检出  | 未检出      | 未检出  | 未检出      | 裁出          | 参出     | 未检出   | 未检出    | 0.0 |
| #  | 0.5-1.5m | 未检出            | 未检达人 | 未松出         | 未检出 | 未检出  | 未检出      | 未检出  | 未检出      | 未经出         | 未检出    | 未检出   | 未检出    | 0,0 |
|    | 1.5-3m   | 未检出            | 未企业  | 对 國出        | 未检出 | 未检出  | 未检出      | 未检出  | 未捡出      | ANT         | 未检出    | 未检出   | 未检出    | 0.0 |

第 162 页

|               | 0-0.5m   | 未检出  | 未检出        | 未检出         | 表。         | 未出  | 未检出   | 未检出    | 未检出         | 未检出          | 未拉出        | 未检出   | 未检出    | 0.006 |
|---------------|----------|------|------------|-------------|------------|-----|-------|--------|-------------|--------------|------------|-------|--------|-------|
| 2=            | 0.5-1.5m | 未检出  | 未检出        | 未检出         |            | 未检出 | 未检出   | 未检出    | 未检出         | 未检出          | A SAL      | 一脸出   | 未检出    | 0.006 |
|               | 1.5-3m   | 未检出  | 未检出        | 未检出个        | 朱祖出        | 未检出 | 未检出   | 未检出    | 未检出         | 未检出人         | 大國大        | 未检出   | 未检出    | 0.006 |
|               | 0-0.5m   | 未检出  | 未检出        | 未处了         | 未检出        | 未松出 | 未检出   | 未检出    | 未检出         | 未检出入         | 朱检出        | 未检出   | 未检出    | 0,007 |
| 3=            | 0.5-1.5m | 未检出  | 未检出        | 多进          | 未检出        | 未检出 | 未检出   | 未检出    | 未检出         | 未检证          | 未检出        | 未检出   | 未检出    | 0.008 |
|               | 1.5-3m   | 未检出  | 未经验        | 木絵出         | 未检出        | 未检出 | 未检出   | 未检出    | 未检出。        | <b>未</b>     | 未检出        | 未检出   | 未检出    | 0.007 |
| 4≓            | 0-0.2m   | 未检出  | 未检查        | <b>茅</b> 磁出 | 未检出        | 未检出 | 未检出   | 未检出    | <b>寿</b> 盆( | 未检出          | 未检出        | 未检出   | 未检出    | 0.075 |
|               | 0-0.5m   | 未检出  | <b>在松出</b> | 未检出         | 未检出        | 未检出 | 未检出   | 未检出    | FAR         | 未检出          | 未检出        | 未检出   | 未检出    | **    |
| 7#            | 0.5-1.5m | 未检查  | **         | 未检出         | 未检出        | 未检出 | 未检出   | 未检出    | * Ott       | 未检出          | 未检出        | 未检出   | 未检出    | 1     |
|               | 1.5-3m   | ANW. | 未检出        | 未检出         | 未检出        | 未检出 | 未检出   | 未金     | 未被出         | 未检出          | 未检出        | 未检出   | 未检出    |       |
|               | 0-0.5m   | 米松出  | 未检出        | 未检出         | 未检出        | 未检出 | 未检出   | A SURF | 未检出         | 未检出          | 未检出        | 未检出   | 未检出,   |       |
| 8#            | 0,5-1/5  | 未检出  | 未检出        | 未检出         | 未检出        | 未检出 | 未检出   | 未检出    | 未检出         | 未检出          | 未检出        | 未检出   | 未检出入   | 1     |
|               | (35m     | 未检出  | 未检出        | 未检出         | 未检出        | 未检出 | 表绘的   | 罗础     | 未检出         | 未检出          | 未检出        | 未检出   | 未      |       |
| VA            | 3.0-0.5m | 未检出  | 未检出        | 未检出         | 未检出        | 未检出 | 大台出   | 未检出    | 未检出         | 未检出          | 未检出        | 未检出   | Z ROLL |       |
|               | 0.5-1.5m | 未检出  | 未检出        | 未检出         | 未检出        | 未被  | A STE | 未检出    | 未检出         | 未检出          | 未检出        | 未检出了  | 人米松出   |       |
| $\mathcal{N}$ | 1.5-3m   | 未检出  | 未检出        | 未检出         | 未检出        | 法総出 | 未念出   | 未检出    | 未检出         | 未检出          | 未检出        | * SAN | 未检出    | 1-    |
|               | 0-0.5m   | 未检出  | 未检出        | 未检出         | 未检算        |     | 未检出   | 未检出    | 未检出         | 未检出          | 未检出        | 老数比   | 未检出    |       |
| 10=           | 0.5-1.5m | 未检出  | 未检出        | 未检出         | 未检集        | 专业出 | 未检出   | 未检出    | 未检出         | 未检出          | 末级出        | 未給上   | 未检出    | ė.    |
|               | 1.5-3m   | 未检出  | 未检出        | 未检出         | <b>ACC</b> | 未检出 | 未检出   | 未检出    | 未检出         | 未检出          | <b>AND</b> | 未检出   | 未检出    | lea"  |
|               | 0-0.5m   | 未检出  | 未检出        | 未检出了        | 未检出        | 未检出 | 未检出   | 未检出    | 未检出         | 未检出          | (金)        | 未检出   | 未检出    |       |
| 11=           | 0.5-1.5m | 未检出  | 未检出        | 未始此         | 未检出        | 未检出 | 未检出   | 未检出    | 未检出         | 未拉比          | 表绘出        | 未检出   | 未检出    | 66,   |
|               | 1.5-3m   | 未检出  | 未检出        | 未能          | 未检出        | 未检出 | 未检出   | 未检出    | 未检出         | <b>*****</b> | 未检出        | 未检出   | 未检出    |       |
| 12=           | 0-0.2m   | 未检出  | 未检生        | 後出          | 未检出        | 未检出 | 未检出   | 未检出    | 未检出。        | 中。华          | 未检出        | 未检出   | 未检出    |       |

第 163 页

| 13# | 0-0.2m   | 未检出 | 未检出  | 未检出  | <b>未改</b> 世 | 未必出 | 未检出         | 未检出         | 未检出               | 未检出          | 未拉出   | 未松出   | 未检出      | - 4- |
|-----|----------|-----|------|------|-------------|-----|-------------|-------------|-------------------|--------------|-------|-------|----------|------|
| 14# | 0-0.2m   | 未检出 | 未检出  | 未检出  |             | 未检出 | 未检出         | 未检出         | 未检出               | 未检出          | 40th  | 检出    | 未检出      | 7    |
| 16# | 0-0.2m   | 未检出 | 未检出  | 未检出人 | 朱春出         | 未检出 | 未检出         | 未检出         | 未检出               | 未检出人         | 未極火   | 未检出   | 未检出      |      |
|     |          |     |      | 117  |             |     |             | 监测好         | 目                 |              | 1     |       |          |      |
| **  | 样点位      | 苯胺  | 2-氯酚 | 流    | 苯并<br>(a)蒽  | 蒧   | 苯并(b)<br>荧蒽 | 苯并(k)<br>荧菌 | 茚并(1,2,<br>3-cd)芘 | (4.0) 蔥      | 萘     | γ     | 1.       | 1    |
|     | 0-0.5m   | 未检出 | 未被   | * 3出 | 未检出         | 未检出 | 未检出         | 未检出         | 未捻出了              | 米松出          | 未检出   | 15    | 1        | 1    |
| 1#  | 0.5-1.5m | 未检出 | 未始出  | 未检出  | 未检出         | 未检出 | 未检出         | 未检出         | ***               | 未检出          | 未检出   | 7     | 1        | 7    |
|     | 1.5-3m   | 未检光 | 6 B  | 未检出  | 未检出         | 未检出 | 未检出         | 未检出         | 海魚                | 未检出          | 未检出   | - 2   | 1.       | 7    |
|     | 0-0.5m   | 未数本 | 北北   | 未检出  | 未检出         | 未检出 | 未检出         | 未捡么         | 未松出               | 未检出          | 未检出   | 15    | - (      | 7//  |
| 2#  | 0.5-1.5m | 大松出 | 未检出  | 未检出  | 未捡出         | 未检出 | 未检出         | 表彰的         | 未检出               | 未检出          | 未检出   | 7.    | / :      |      |
|     | 1.54 pr  | 朱松出 | 未检出  | 未检出  | 未检出         | 未检出 | 未检出         | 中國          | 未检出               | 未检出          | 未检出   | 7     | 1 1      | 10   |
|     | 2005m    | 未检出 | 未检出  | 未检出  | 未检出         | 未检出 | 未拉比         | 末始出         | 未检出               | 未检出          | 未检出   | 7     | .27      | 1    |
| 75% | 0.3-1.5m | 未检出 | 未检出  | 未检出  | 未检出         | 未检出 | *           | 未检出         | 未捡出               | 未检出          | 未检出   | -75.1 | AV       | 1    |
|     | 1.5-3m   | 未检出 | 未检出  | 未检出  | 未检出         | 未检查 | A           | 未检出         | 未检出               | 未检出          | 未松出   | 7     | 45       | 1    |
| A   | 0-0.2m   | 未检出 | 未检出  | 未检出  | 未检出         | 未检上 | 专出          | 未检出         | 未检出               | 未检出          | 未检出   | TV.   | 21       | -7.  |
| 1   | 0-0.5m   | 未检出 | 未检出  | 未检出  | 未检出         |     | 未检出         | 未检出         | 未检出               | 未检出          | 未检出。  |       | 1        | 1    |
| 7#  | 0.5-1.5m | 未检出 | 未检出  | 未检出  | 未检纸         | 来会生 | 未检出         | 未检出         | 未检出               | 未检出          | 未检出   |       | 1        | -1   |
|     | 1.5-3m   | 未检出 | 未检出  | 未检出  | 老粉的         | 未检出 | 未检出         | 未检出         | 未检出               | 未检出          | * SEX |       | -1       | 1    |
|     | 0-0.5m   | 未检出 | 未检出  | 未检出、 | 未松出         | 未检出 | 未检出         | 未检出         | 未检出               | 未检出。         | TAR.  | 1-7-  | 1        | -/   |
| 8#  | 0.5-1.5m | 未检出 | 未检出  | 未检出  | 大松出         | 未检出 | 未检出         | 未检出         | 未捡出               | 未检出          | 未检出   | -1-   | 1        | 1    |
|     | 1.5-3m   | 未检出 | 未检出  | 来    | 未检出         | 未检出 | 未检出         | 未检出         | 未检出               | 表线出          | 表绘出   | 1     | 1        | 1    |
| b   | 0-0.5m   | 未检出 | 未检验  | * 松出 | 未检出         | 未检出 | 未检出         | 未检出         | 未检出               | <b>/</b> 未经出 | 未检出   | 1     | 1        | 1    |
| 9#  | 0.5-1.5m | 未检出 | 未於北  | 未应出  | 未检出         | 未检出 | 未检出         | 未检出         | 未捡出               |              | 未检出   | -7    | <i>†</i> | -1   |

第 164 页

|     |          |     |      |      |     |     |     |             |           |          |      |     |     | _   |
|-----|----------|-----|------|------|-----|-----|-----|-------------|-----------|----------|------|-----|-----|-----|
|     | 1.5-3m   | 未检出 | 未检出  | 未检出  | 木料出 | 未必出 | 未检出 | 未检出         | 未检出       | 未检出      | 未拉出  |     | 1   | -7  |
|     | 0-0.5m   | 未检出 | 未检出  | 未检出  |     | 未检出 | 未检出 | 未检出         | 未检出       | 未检出      | Agt. | 1   | -1. | - / |
| 10# | 0.5-1.5m | 未检出 | 未检出  | 未检出人 | 朱杜出 | 未检出 | 未检出 | 未检出         | 未检出       | 未检出人     | 火燃炸。 | 15  | 1   | 1   |
|     | 1,5-3m   | 未检出 | 未检出  | 未批   | 未检出 | 未检出 | 未检出 | 未检出         | 未检出       | 未捡出入     | 朱检出  | -J  | -/- | -1  |
|     | 0-0.5m   | 未检出 | 未检出  | 多姓   | 未检出 | 未检出 | 未检出 | 未检出         | 未检出       | 大松田      | 未检出  | /   | 1   | 1   |
| 11# | 0.5-1.5m | 未检出 | 未找成  | 大台出  | 未检出 | 未检出 | 未检出 | 未检出         | 未检出。      | <b>未</b> | 未检出  | 1   | -1  | j.  |
|     | 1,5-3m   | 未检出 | 未检10 | *    | 未检出 | 未检出 | 未检出 | 未检出         | 未始人       | 入未检出     | 未检出  | J   | - / | 1   |
| 12# | 0-0.2m   | 未检出 | 赤部出  | 未检出  | 未检出 | 未检出 | 未检出 | 未检出         | <b>李承</b> | 未检出      | 未检出  | V   | 1   | 1   |
| 13# | 0-0.2m   | 未掺造 | **   | 未检出  | 未检出 | 未检出 | 未检出 | 未检出         | **        | 未检出      | 未检出  | 1   | -1  | 1   |
| 14# | 0-0.2m   | (A) | 未检出  | 未检出  | 未检出 | 未检出 | 未检出 | 未会出         | 未核出       | 未检出      | 未检出  | 7   | -/- |     |
| 16# | 0-0.2m   | 米松出 | 未检出  | 未检出  | 未检出 | 未检出 | 未检出 | <b>****</b> | 未检出       | 未检出      | 未检出  | _ 7 | 1 , | 1   |

| THE PARTY      |        |       |        | NO.   | 监测    | 项目    |       |        | V     |
|----------------|--------|-------|--------|-------|-------|-------|-------|--------|-------|
| 采样点位           |        | 镉     | 汞      |       | 铅     | 铜     | 镍     | 絡る     | 锌     |
| 学化》署以北 400m 农田 | 0-0.2m | 0.100 | 0.000  | V 432 | 0.129 | 0.188 | 0.116 | V0:204 | 0.15  |
| 法化厂界以北 50m 林地  | 0-0.2m | 0.150 | 1000   | 0.500 | 0.141 | 0.205 | 0.116 | 0 204  | 0.173 |
| 15#南厂界南 100m   | 0-0.2m | 0.150 | Z 1017 | 0.357 | 0.161 | 0.280 | 0.142 | 0.260  | 0.480 |
| 17#西厂界以西 500m  | 0-0.2m | 0.117 | 10.01  | 0.532 | 0.159 | 0.310 |       | 0.292  | 0.317 |
| 18#墨子森林公园      | 0-0.2m | 0.067 | 0.023  | 0.379 | 0.149 | 0.210 | 8 88  | 0.336  | 0.220 |

根据表 4.5-30、1#-3#、7#-14#监测点各项监测因子均可满足《土壤环境质量 地土壤污染风险管控标准(试行)》 (GB36600-2018)二类用地筛选值标准、4、16#点位各因子满足《土壤环境质量 建设用地 控标准(试行)≥(GB36600-2018) 子满足《土壤环境质量 农用地》《李风险管控标准(试行)》(GB15618-2018)。 类用地筛选值标准,5#、64

第 165 页

### 4.5.7 生态环境质量现状调查

根据《环境影响评价技术导则 生态影响》(HJ19-2022)中"6.1.8 符合生态 环境分区管控要求且位于原厂界(或水及用地)范围内的污染影响类改扩建项目, 位于已批准规划环评的产业园区内互符合规划环评要求、不涉及生态敏感区的污染影响类建设项目,可不够在评价等级,直接进行生态影响简单分析。"

拟建项目属于次扩建项目。位于滕州市木石镇鲁南高科技化工园区兖矿鲁南 化工有限公司现在区内,符合园区规划环评要求,且项目占地不涉及生区数域 区,因此项目集态影响评价等级为简单分析。

鲁南高平方心工园区目前开发程度较高,有较多的工业企业分布,本次生态 设置。 鲁南高科技化工园区环境影响跟踪评价报告书》,简要了解区域现状 生态是。

### 7.1 区域植被调查

项目所在区域属于暖温带大陆性季风气候区、原生地带性植物以华北成分为主,代表性植被是暖温带落叶阔叶树。由于《类不断地反复破坏活动,原始植被现存的已经很少。目前,区域绝大多数是大为植被,生态系统类型主要为景观绿化生态系统和少量片状农田生产系统》

常见和比较常见的乔才有事体、刺槐、毛白杨等;灌木有紫叶李、迎春、海棠、月季、沙地柏、紫叶儿童、黄杨、木槿、丁香等;草本植物有羊胡子草、狼尾草、黄背草、柴胡、田杨草、白莲蒿、狗尾草、大油芒、结缕草、香蒲、盆凉、水葱、芦苇等;粮食作物有小麦、玉米等;果树有冬枣、石榴等。经调查、价价区内无重条保护植物与珍稀濒危植物分布。评价区人类于扰较严重、生物组分异质、移食较低,阻抗性较差。

多之,区域以草本植物为主,植物种类为常见种、黄生物、神食作物主要为 小麦、玉米等,产量较低。评价区内无重点保护植物与扩烧植物;植物物种多样 性不高。

### 4.5.7.2 区域陆生动物调查

在长期和频繁的人类活动影响下,区域对土地资源的利用已达到了较高的程度,自然生态环境已遭到破坏,更生动物失去了较适宜的栖息繁衍场所。目前该

地区常见的野生动物主要有昆虫类、鼠类、虾类、蜂类、蛙和喜鹊、麻雀等鸟类, 评价区内无珍稀动物。区域主要动物资源情况见表 4.5-30。

表 4.5-30 区域主要动物资源情况一览表

|       | The state of the s |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 鸟类    | 山斑鸠、普通夜莺、普通翠鸟、啄木鸟、百灵、喜鹊、大山雀、大杜鹃、桃燕、家燕、八哥、太苇鹭、鹌鹑、雀鹰、乌鸦、黄雀、灰雁、黄眉柳莺等                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 兽类    | 黄鼠狼、野兔、刺猬、老鼠等                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 软体动物  | 蜗牛等                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 两栖动物  | 青蛙、蟾蜍、棘胸蛙等                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 爬行动物  | 壁虎、蛇等                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 蠕动动物  | 蚯蚓、白线蚓、山蛭等                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 节肢动物、 | 室蜂、蜻蜓、螳螂、蚱蜢、蝉、蚊、蝴蝶、萤火虫、臭虫、黄蜂等                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

### 4.5.7% 区域生态现状调查

### 地利用现状分析

拟建项目位于鲁南高科技化工园区内,区域土地开发程度较高。根据木石镇 上地利用规划,拟建项目区域不涉及基本农田。

### 2、土壤分布及水土流失现状分析

区域土壤侵蚀类型主要以水力侵蚀五主,水上流失形式以面蚀为主,属于轻度侵蚀区。根据山东省人民政府公告的水土流失"三区"划分,该区属于水土流失重点监督区。根据枣庄土壤侵蚀为产资料,结合《土壤侵蚀强度分级标准》确定的各单元数据,各分区土壤侵蚀及数背景值如下。地山丘陵区 1000t/km²-a,本次评价土壤侵蚀模数背景值以 1000t/km²-a 计,经初步分析估算,厂区范围内现状水土流失量 61 3 va

# 3、植被现状分析

根据现场调查,项目用地范围地面已被生产装置覆盖,厂区周边流面为主要植成的草。

### 野生动物现状分析

根据现场调查,厂区在长期和频繁的人类活动影响了,自然生态环境已遭到破坏,常见的野生动物主要有昆虫类、鼠类、蛇类、蟾蜍、蛙和喜鹊、麻雀等鸟类,无珍稀动物。

167 市

# 第5章 环境影响恢复字评价

- 5.1 施工期环境影响预测与评价
- 5.1.1 施工期环境影响分析
- 5.1.1.1 施工期环境影响因素

现状建筑物以及生产设备拆除过程中,为减少项目占地原有生产设施拆除所产生的环境影响,拆除活动须严格按照《企业拆除活动污染防治技术规定(试行)》 2017年第78号公告)进行,将对周边区域环境影响程度降到最低。

企业拆除活动污染防治方案应当包括被拆除生产设施设备、构筑物和污染治建设施的基本情况、拆除活动全过程土壤污染防治的技术要求、针对周边环境的污染防治要求等内容。

拆除活动应当严格按照有关规定实施残2个料和污染物、污染设备和设施的安全处理处置,并做好拆除活动相关证据,防范拆除活动污染土壤和地下水。拆除活动相关记录应当长期保存。

拟建项目施工期主要环境影响因素来自设备和建筑材料的运输、土地平整、 开挖、土方回填、厂房建设及设备的安装等环节。在施工期间各项施工活动对周围环境的影响因素主要有 运输噪声、机械噪声、弃土、扬尘等。

5.1.1.2 施工期环境空气影响分析

施工期的大气污染主要是露天堆场、裸露场地风力扬尘和车辆动力起尘。

14. 露天堆场风力扬尘

Q=2.1(V50-V0)3e

其中: Q---起尘量, kg/t-a;

V50——距地面 50m 高处风速, m2's;

V₀——起尘风速, m/

### w---尘粒的含水率,%;

由上式可知,起尘量与露天堆放量、全粒性质、尘粒含水率有关,可见减少露天堆放和裸露场地、保持尘粒含水率可有效控制起尘量;而尘粒在空气中的传播扩散与风速、尘粒本身的沉降速度有关(见表 5.1-2),粒径越大、沉降越快。

| - 1 | 1     | 1/12 |       | and division |        |      |
|-----|-------|------|-------|--------------|--------|------|
| 表点  | (12   |      | 同粒    | 经少粒          | AUT IN | 降速度  |
| 200 | - 4/2 |      | 1-147 | T 12         | MINDE  | 十九二又 |

| 粒径(µm)    | 10    | 2     | 30    | 40    | 50    | 60    | 70    |
|-----------|-------|-------|-------|-------|-------|-------|-------|
| 沉降速度(m/s) | 0.003 | 0.012 | 0.027 | 0.048 | 0.075 | 0.108 | 0.147 |
| 粒径(µm)    |       | 90    | 100   | 150   | 200   | 250   | 200   |
| 沉降速度(m/s) | 0 158 | 0.170 | 0.182 | 0.239 | 0.804 | 1.005 | 10/3  |
| 粒径(四)     | 450   | 550   | 650   | 750   | 850   | 950   | 1050  |
| 沉吟速度中     | 2.211 | 2.614 | 3.016 | 3.418 | 3.820 | 4.122 | 4.624 |

对 250μm 时,沉降速度 1.005m/s,扬尘可在短时间沉降到地面,因此可认为 3 尘粒大于 250μm,主要影响范围在扬尘点下风户场距离范围,而真正对外 环境产生影响的是一些微小尘粒,其影响范围随现场 2 气候情况也有所不同。

根据北京市环境保护科学研究院在建筑很大源场的实测资料,对施工扬尘未采取污染防治措施时,正常情况下在施工作业场地处近地面总悬浮颗粒物(TSP)最大日均浓度可达 0.58~11.56mg/Nmg/ 而存距施工现场下风向 500m 处,近地面总悬浮颗粒物(TSP)日均浓度发光之~0.29mg/Nm³,基本满足 GB3095-201%环境空气质量标准》中的二级标准、在一般气象条件下,平均风速在 2.5m/s 左右时,建筑施工扬尘的影响范围存其下风向可达 85m; 当施工场界有围墙且施工楼体四周设置密目网的心在相同气象条件下,其影响距离可缩至 30m-40m,

根据滕州市气象资料,当地多年平均风速大约在 1.8m/s。依据上述施工执尘 影响距离。我们可以大体估测拟建项目在此气象条件及施工楼体全部设置防尘密 目的设备况下,其扬尘影响范围应该在 40m 之内。

为上对大气环境质量的不利影响是偶然的、可逆的、将随波工划结束而消失。

2、车辆行驶动力起尘

在尘土完全干燥的情况下,车辆行驶产生的场往可按下列经验公式计算:

Q=0.123(V/5)(W/6.8)0,85(P/0.5)0.75

其中: Q—汽车行驶时的扬尘。1881cm 辆;

V---汽车车速, km/h;

169 7

#### W---汽车载重量, t;

P---道路表面粉尘量, kg/m2。

由上式可知,车辆行驶扬尘与汽车类型、车速、地面清洁程度有关。

表 5.1-3 为一辆 10t 卡车以不同速度通过不同清洁程度路面时产生的扬尘量。

| 表 5.1-3 | 在不同分享和地面清洁程度的汽车扬尘 | (kg/km·辆) |
|---------|-------------------|-----------|
|---------|-------------------|-----------|

|        |       |       |       | -     |       |       |
|--------|-------|-------|-------|-------|-------|-------|
| 车速P    | 0.1   | 7 / 2 | 0.3   | 0.4   | 0.5   | 1.0   |
| 5km/h  | 0.051 | 0.145 | 0.116 | 0.144 | 0.171 | 0.287 |
| 10km/h | 7.10  | 0.171 | 0.232 | 0.289 | 0.341 | . \$4 |
| 15km/h | QX(3  | 0.257 | 0.349 | 0.433 | 0.512 | CHAT  |
| 20km/h | 0.255 | 0.429 | 0.582 | 0.722 | 0.853 | 1.435 |

综上所述,扬尘的产生量与施工队的文明作业程度和管理水平密切相关,同 对也受当时的风速、湿度、温度等气象要素影响。在自然风作用下,施工场地扬 尘的影响范围在 100m 以内,如果实施洒水和之心每天洒水 4~5 次),可使扬尘 减少 70%左右,将 TSP 的污染距离缩小至 20-50m 范围。

表 5.1-4 为施工场地洒水抑尘的战 验结果,可见每天洒水 4~5 次进行抑尘,可有效地控制施工扬尘,将扬光。

表 1.4 施工场地洒水抑尘实验结果

| 距离(m)       | / 5     | 20   | 50   | 100  |
|-------------|---------|------|------|------|
| TSP 平均浓度 7  | 10.14   | 2.89 | 1.15 | 0.80 |
| (mg/m³)     | 西水 2.01 | 1.40 | 0.67 | 0.0  |
| TSP 标准限值(mg | m³)     | 0.   | 90   | T.   |

拟建筑目在文明施工、加强管理的前提下,采取减少露天堆放置挡、洒水等加速的流,可将施工扬尘污染控制在 20~50m 范围内。项内流过场地到尖山村距离 X 140m,因此施工过程中对其邻近的敏感点影响较小。

# 3、机械设备尾气影响分析

拟建项目土建阶段现场施工机械虽较多,但主要以电力为能源,无废气的产生,只有打桩机和运输车辆以汽、柴油为燃料,有机械尾气的排放,但它们的使用期短,尾气排放量也较少,再加上周围地形开阔,风速较大,不会引起大气环境污染,对区域大气环境影响较少。

#### 5.1.1.3 施工期噪声影响分析

拟建项目在施工期间,挖掘机、推土机、 混凝土搅拌机以及吊车、 升降机和各种装载车辆运行,必然会加太施工场地周围环境噪声。据有关测试资 料,各种机械运行中的噪声水平观表5.1-5。

| 权 3.   | 1-3 建为以验切土安 | 施上噪声源情况[早 | У: dB(A)] |
|--------|-------------|-----------|-----------|
| 机械名称   | 噪声级 (平均)    | 机械名称      | 噪声级 (平均)  |
| 推土机    | 8/8         | 挖土机       | 80-93     |
| 搅拌机 ,  | 75-88       | 运土卡车      | 85-94     |
| 气锤、风钻  | 82-98       | 空气压缩机     | 75-88     |
| 混凝土破碎机 | 85          | 钻机        | 36/       |
| . 無採血  | 75-88       |           | 115       |

表可知,目前常用施工机械或车辆噪声级在78~288B(A)之间,参考同 L机械噪声影响预测结论,昼间施工影响范围的 60m, 夜间为 180m。

04. 由此可见,白天,施工机 距离厂界最近的敏感点为尖山村, 距离约 4 械噪声对厂址周围的敏感点产生影响,但随着加工期结束,影响也消失。为了进 一步降低对周围环境的影响,项目建设反禁止在夜间施工并避开午休时间。

另外,施工运输过程中对交通。 定的影响,由于厂区与外面公路紧连, 自此对噪声环境的影响不大。 且工程运输量不大,运输时间,

# 5.1.1.4 施工期固体废物。

施工期固体废物主要是施工人员的生活垃圾、土石方施工时开挖的渣 石等;物料运送过程中的物料损耗,包括砂石、混凝土;铺路修整阶段 渣、建材美的损耗与遗弃。工程对固体废弃物定点堆放、管理,均图 死以做到"零"排放,不会对周围环境造成二次污染。

### 正期水环境影响分析

超工期产生废水主要包括施工人员的生活污水和 北水以及各种车辆冲洗 水主要包括土方阶段降水井排水、结构阶段混凝水等 水。由于施工期废水排放量较少,水质简单,大大成不了地表水径流,对水环境 不会产生明显的影响。

#### 5.1.2 施工期污染控制措施

#### 5.1.2.1 施工期水污染防治措施

施工期产生废水主要有工程废水和生活污水,拟根据废水性质和绿色施工导则要求采取以下防治措施,

- (1) 在施工期间必须制度严格的施工环保管理制度,使施工人员自觉遵守规章制度,并加以严格监督和管理;
- (2) 对于旅客、员的吃住等生活地点应统一安排。禁止向项目区域外加强 一切废弃物、包括施工和生活废水、建筑和生活垃圾等;
- (3) 加强加工期管理,在施工现场建造沉淀池等污水临时设施、对各类废水淀后,回用于道路洒水和车辆清洗,沉淀物干燥后与直体废物一起处置;
  - 3/水泥、黄沙、石灰类的建筑材料集中堆放,并又取一定的防雨措施,
- 及对清扫施工运输过程中抛洒的上述建筑材料,以避免基殖雨水流入小沂河而对 水环境的质量造成影响;
- (5) 施工优先采用环保型设备,在施工工程中还应加强对机械设备的检修 和维护,以防止设备漏油现象的发生,施工机械设备的维修应在专业厂家进行。
- 以上措施简便易行,为建设定置用增施;通过运行实践,在采取以上措施后,施工期废水将不会对周围来发产上影响。
- 5.1.2.2 施工期大气污染位分类施

施工期间废气支要包括施工扬尘、汽车尾气和装修废气。

- 1、施工扬尘、在施工期间挖掘地基、土地平整等将导致泥土裸露、原、料的大量堆存、会造成地面扬尘污染环境,其扬尘量的大小因施工现场工作条件、施工阶段、管理水平、机械化程度及施工季节、土质和天气条件、高而复异较大。
  - 而尘污染控制措施
  - 施工场地每天洒水,防止浮尘产生,在大风日和大板水量及洒水次数。
  - b.施工场地内运输通道及时清扫、冲洗,以减少汽车行驶扬尘。
  - c.运输车辆进入施工场地应低速行驶,或使速行驶,减少扬尘产生量。
  - d.施工渣土外运车辆应加盖篷布,减少沿路遗洒。
  - e.避免起尘原材料的露天堆放



£所有来往施工场地的多尘物料应用帆布覆盖。

g.施工过程中, 应采用商品(湿)水泥和水泥预制件, 尽量少用干水泥。

拟建项目采取上述措施后,满足《关于印发山东省扬尘污染综合整治方案的通知》(鲁环发〔2019〕112号《中的要求,拟建项目与《关于印发山东省扬尘污染综合整治方案的通知》(各性分析详见表 5.1-6。

表 5.1-6 项目与《关子印发山东省扬尘污染综合整治方案的通知》符合性

| 《关于印发山东省派》方染综合整治方案的通知》                                                                                                                                                                   | 拟建项目采取的措施                                                                                |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------|
| 7个传输通道城市是负施工工地、其他城市和县城规划区内规模以上、建筑面积1万平方米以上)建筑施工工地全面将突生地周边围挡、产尘物料堆放覆盖、土方平透过法作业、路面硬化、出入车辆清洗、渣土车辆冷冷运输、六项措施",规模以下建筑施工工地按照发展的建设部办公厅《关于进一步加强施工工地按和道路分全管控工作的通知》(建办质〔2019〕23号)等求,严格落实各项防尘降尘管控措施。 | 项目位于鲁南高科技化工。园,不属于 7 个传输通道城市,在施工过程中严格落实建筑施工工地周边围挡了产尘物料堆放覆盖。土方开挖湿法作业。路面硬化、出入车辆清洗,管工车辆密闭运输。 | 符合要求     |
| 城市建成区内施工现场禁止现场搅拌混凝土、现场配制砂浆;高层建筑施工单位应当采用容器或者搭设专用封闭式垃圾道方式清运施工垃圾,禁止高空抛撒施工垃圾。                                                                                                                | 沙克项目不在现场进行搅拌                                                                             | 符合要求     |
| 各类土石方开挖施工,必须采取有效抑尘措施,确保<br>不产生扬尘污染。                                                                                                                                                      | 推建项目石方开挖过程采用<br>湿法作业。                                                                    | 符合<br>要求 |
| 暂时不能开工的裸露空置建设用地和两份域改造 城中村改造、违法建筑拆除等产生的保护、凭地块要及时全部进行覆盖或者绿化。                                                                                                                               | 拟建项目无裸露空置的建设<br>用地。                                                                      | 符合<br>要求 |
| 重污染天气应急期间,按要求严格落寞音项应急减排<br>措施。                                                                                                                                                           | 拟建项目编制重污染天气应<br>急减排方案,并严格落实。                                                             | 符合<br>要求 |

由上表可见,拟建筑已符合《关于印发山东省扬尘污染综合整治方案的通知 (鲁环发[2019]1X2号)要求。

该建设项目施工期的扬尘污染属于局部和短期的影响,同时若建设单位在施工期间交明施工,采取有效的防尘、降尘措施,引入处理系统,能使扬尘污染对了项目对在地的大气环境不产生太大的影响。

8、汽车尾气,运输车辆及施工机械在运行中将产生机动车尾气,其中主要含有 CO、NOx、THC 等污染物。这些废气排放局极于放了现场和运输沿线,为非连续性的污染源。

4、装修废气:装修过程废气主要来自装修中使用的大量胶、白灰、石材、 地砖、木材等材料,属于无组织的面源、由于装饰工程基本上在室内、界内分散 进行,且建设时间较长,住宅装修时间不确定,为办交长,对界外影响甚小。5.1.2.3 施工期噪声防治措施

施工期的噪声影响是短期的,拟建项自建成后,施工期噪声的影响也就此结束。但是由于施工机械均为强噪声源,施工期间噪声影响范围较大,因此必须采取以下具体防治措施,严格

- (1) 合理安排施工时间、制订科学的施工计划,应尽可能避免大量的高噪声设备同时施工、设施周围环境对噪声的敏感时间,严禁夜间(22:00~600)好桩、风镐。尽量加快施工进度,缩短整个工期;
- 在高噪声设备附近加设可移动的简易隔声屏。及可能减少设备噪声对外境的影响:
- (4) 合理布局施工现场,避免在同一地点等排大量动力机械设备,以避免局部声级过高;同时还应考虑搅拌机等高噪声设备安置在离敏感点相对较远的西侧,运输车辆的进出口也安排在西侧,并规定进、出路线,使行驶道路保持平坦,减少车辆的颠簸噪声和产生振动。
  - (5) 加强施工区附近交通 避免交通堵塞而增加的车辆鸣笛;
  - (6) 降低设备声级
- ①设备选型上尽量采用减噪声设备,如以液压机械代替燃油机械,低频疾捣器采用高频振捣器等;
- ②固定机械设备与挖土、运土机械,如挖土机、推土机等,可以通过排气管消费器和隔离发机振动部件的方法降低噪声;
- (水) 动动力机械设备进行定期的维修、养护,维护不良的 (水) 常因松动部件的振动或消声器的损坏而增加其工作噪声级;
  - ④对高噪声施工机械的某些声源部位尽可能进行隔声屏蔽处理;
  - ⑤闲置不用的设备应立即关闭;
  - ⑥运输车辆进入现场应减速, 并禁止鸣笛。
  - (7) 降低人为噪声:按照规定操作机械设备,在挡板、支架拆卸过程中,

遵守作业规定,减少碰撞;尽量少用哨子、电影等方体业,而采用现代化设备。

由以上分析可以看出,对施工场地噪声除来取以上减噪措施以外,还应与厂区周围学校、单位、居民建立良好的关系,对受施工干扰的学校、单位和居民应在作业前予以通知,并随时向他们还报施工进度及施工中对降低噪声采取的措施,求得公众的共同理解。此外,施工期间应设热线投诉电话,接受噪声扰民的投诉,并对投诉情况进行积极发现。严施工期的噪声影响减至最小。

#### 5.1.2.4 施工期因 水波 物防治措施

施工单位位按照国家和有关建筑垃圾和工程渣土处置管理的规定。在地下的固体废物的处置过程中,拟采取如下管理措施。

- (2)施工期建筑垃圾集中堆放, 在在建筑材料堆放地及建筑垃圾堆放地周围建立简易的防护围带,以防止及投资制度,并及时回用于工程自身建设;
- (3) 清运处置城市建筑域及销单位应做好建筑垃圾运输途中的有关保洁工作。出现清运途中抛撒等方差道路现象,由建设行政主管部门下达限期整改通知, 拒不整改或不及时保持的,由市环境卫生管理处实行有偿保洁服务,有偿服务费 由抛撒或污染道路的责任单位承担;
- (4) 施工单位应按照建筑垃圾处置核准文件和《环境卫生责任书》进行清 运处置。不得将建筑垃圾交给个人或者未经核准从事建筑垃圾逐输的单位运输;
- 运输车辆具备全密闭运输装置或密闭苫盖装置、发生行及装卸记录仪和相应的建筑垃圾分类运输设备;
- (6)建筑垃圾处置场地由建设行政主管部门线 块定,任何单位和个人未 经批准不得擅自设置建筑垃圾处置场地;
- (7) 任何单位和个人不得将建筑垃圾混入生活垃圾,不得将危险废物混入 建筑垃圾,不得擅自设立弃置场更纳建筑垃圾;

(8) 建筑施工企业应强化施工现场及周边,发了生管理,加强对出入建筑施工现场工程运输车辆的监控管理,根据建设规模等情况配齐配足车辆冲洗设备,对出入施工现场的车辆应进行除泥除工处理,确保驶出工地的车辆不带泥出场、无抛洒及保持车厢板整洁。实施投转作业、封闭施工,硬化工地出入口道路。

运输建筑垃圾和渣土的本辆必须符合交通、公安交警及其他管理部门的规定要求,做到证照齐全,从被推正良好,同时应随车携带建设局统一印制并加盖建设局建筑垃圾管理金属章、公安局交警大队印章的《城市建筑垃圾准运证》建筑垃圾处置核准文件,并自觉接受公安交警、建设、城市管理行政执法等的管理部门的直检。

1/2/ 多工期水土流失防治措施与对策建议

- 为了减轻本工程施工期生态、景观影响,建议采取以下控制措施:
- (1) 为减少施工期水土流失,建设单位应精心组织 合理安排施工计划, 采取合理防护措施,减少雨季施工,土石方按遵方案选择水土流失较少的方案, 抓紧施工进度,减少对周围环境的破坏;
- (2) 开挖建设中,应尽量避开雨季、场地周围应设置截洪沟,拦截的雨水、 洪水通过截洪沟送至场外排水至多。该措施应作为施工期水保的导水主导方案;
- (3)施工期要注意防止水水流炉,要尽量做到挖、填方的平衡,减少借方和弃方,开挖的土方尽量炸水施工场地平整回填之用,其覆盖土堆放场地须采取防止水土流失措施、加益土地等;
  - (4) 施工中所用材料统一堆放管理,设置专门的材料场;
- (5) 合理及置施工现场临时排水系统,及时疏导雨水,以减火雨水对场地表层土壤或废土石方的冲刷;
- 6 施工中应采取严格的措施保护表土,避免造成不及发复的影响。施工 开热时,将表层土(建议厚度 30~50cm)单独收集堆成 关采取水土流失防治措施。施工结束后,先将地下土回填,之后再将表式过了覆盖于表面,将场地进行平整,以减轻对土地质量的影响;
- (7) 对施工人员加强教育和管理, 利用最佳的操作流程。施工中临时踏压硬化、板结的土地, 在施工结束后应立即清理、松土、整平, 恢复其疏松状态;

- (8) 防止施工过程中的水土流失现象。自为50 能缩短工期,对施工现场 采取合适的围堰方式,加强对施工单位和众员的管理,最大限度减少水土流失;
- (9) 加强对临时弃土场的管理,首先确保弃土及时得到清运,临时渣土场只考虑回填土的堆放;

# 5.1.3 施工期入境管理

在施工期间,拟建项目单位和施工单位应相互合作,共同担负起施工期的环境管理,并由施工单位建立相应的环境管理机构,其主要职责在开组织和实施施工资资单的"三同时"和污染防治,监督和检查各个施工单元的环境保护措施落实情况人及扬尘污染防治情况,加强对施工期环境管理的指导,尽量避免施工期各类活动对环境的影响,促进该项目施工的顺利进行。

由枣庄市生态环境局滕州分局依据职责对规模项目施工期环境管理工作实施统一的监督管理。

拟建项目施工期环境管理的主要

- 1、项目占地与建设期施工程,更重视对外围生态环境的影响,项目建设施工严格限定在厂区范围内。
- 2、项目建设执行环保工存招投标制度。主体工程标书中应有环境工程的施工要求,并列入招标合同本、明确施工单位环境保护责任。施工单位须具备在交资质,承包商具有保护环境的责任,对施工中造成的污染,负责临时防护及合理。

此外。起建项目建设必须严格执行"三同时"制度与竣工验收制度、环境保护工程探察将纳入主体工程建设概算,并按照基本建设程序和流光模求安排,进行

# 5.1.4 小结

在施工期间各项施工活动产生扬尘、废水、**噪声和**固废,可能对周围环境产生短期的、局部的影响。由于拟建项目于现有一区范围内建设,且工程规模较小, 土建工程量相对较少,施工期较短,再加上周围环境不敏感,经采取相应污染控制措施后,对周围环境影响较少。

# 5.2 运营期环境空气影响预测与评价

### 5.2.1 评价等级及评价范围确定

根据《环境影响评价技术导则 州气环境》(HJ2.2-2018)中"5.3 评价等级判定",由项目各大气污染源排放污染物情况确定拟建项目环境空气的评价等级。5.2.1.1 环境影响识别与评价等级。

评价因子选取项目存储积和无组织排放的基本污染物和其他污染物中有环境质量标准的所有区分。本项目评价因子为 PM<sub>10</sub>、PM<sub>2.5</sub>、SO<sub>2</sub>、NO<sub>2</sub>、GO、多、硫化氢、硫酸、甲酮、VOCs,评价标准详见表 1.6-2。

以建项目 902和 NOx 排放量 < 500t/a, 无需进行二次污染物预测

### x平价等级确定

快居拟建项目排放的污染物情况,按照《环境影响评价技术导则 大气环境》 HJ2.2-2018)中"5.3评价等级判定"来确定本项目环境》(的评价等级。

大气评价工作等级划分原则见表 5.2-1。

表 5.2-1 评价工作等级划分原则

| 评价工作等级 | 评价工作分级判定    |
|--------|-------------|
| 一级     | Pmax≥10%    |
| 二级     | 1%≤Pmax<10% |
| 三级     | Pmax<1%     |

### (1) 参数选取

采用《环境景》(HJ2.2-2018)中要求的 AERSCREEN 估算软件对项目污染物的排放进行估算,估算时考虑地形象数

参照在12.2-2018 附录 C, 本次评价选取的估算模型参数见表。

表 5.2-2 估算模型参数及选取依据

|        | 参数     | 取值     | 取值                                         |
|--------|--------|--------|--------------------------------------------|
| 城市农村   | 城市/农村  | 城市     | 项目周边 3km 大力围内一半以上属于城市                      |
| 选项     | 人口数    | 3万     | 来源于鲁南高利技化工园区规划环评                           |
| 最高     | 环境温度/℃ | 37.48  | X 20 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| 最低     | 环境温度/℃ | -11.65 | 近 20 年气象资料统计                               |
| 土地利用类型 |        | 城市     | 〉项目周边 3km 半径范围内一半以上属于城市                    |
| t⊠     | 或湿度条件  | 中等湿度   | 根据中国干湿状况划分情况判定                             |

| 是否考虑     | 考虑地形      | 考虑   | 报告并项目,根据导则要求考虑地形       |
|----------|-----------|------|------------------------|
| 地形       | 地形数据分辨率/m | 90   | SRIMOX IM 90m分辨率数字高程数据 |
| W-1.0    | 考虑岸线熏烟    | 不考虑  | X                      |
| 是否考虑岸线熏烟 | 岸线距离m     | 72   | 污染源附近 3km 范围内<br>无大型水体 |
| T-AMA    | 岸线方向。     | 1,50 | 70八至八件                 |

### (2) 评价等级的判定

根据《环境影响评价技术导则-大气环境》(HJ2.2-2018)评价工作分级方法,采用附录 A 推荐模型中的估算模型,分别计算主要污染物的最大地面空气质量浓度占标率,及第 i 个污染物的地面空气质量浓度达到标准值的 10%时所效应的最远跟离 51%。其中 Pi 定义见公式:

$$P_i = \frac{C_i}{C_{oi}} \times 100\%$$

式中: P--第 i 个污染物的最大地面空气质量浓度点标率, %;

C一第i个污染物的最大1h地面不复量浓度, $\mu g/m^3$ ;

 $C_0$ 一第i个污染物的环境空气质量浓度标准, $\mu g/m^3$ 。

经 AERSCREEN 估算软件进行计算 / 次月评价等级确定情况见表 5.2-3。

表 5.2-3 整体 百大气评价等级确定一览表

| 污染源及排气筒编号        | 沙鸡皮子              | Cmax (µg/m³) | Pmax (%) | D10% (m) |
|------------------|-------------------|--------------|----------|----------|
| ns EMANNO        | PATO              | 2.74E-03     | 0.61     | 0        |
| P1-原煤仓放空         | TM2.5             | 1.37E-03     | 0.61     | 0,4      |
| X                | PM10              | 1.72E-03     | 0.38     | 0, 1     |
| P2-磨煤干燥放空        | PM <sub>2.5</sub> | 8.58E-04     | 0.38     | 26       |
| Do               | NOx               | 8.58E-03     | 4.29     | 1        |
| THE INCHES       | PM10              | 1.04E-03     | 0.23     | 65 0     |
|                  | PM2.5             | 5.20E-04     | 0.6      | 0        |
| P3 份素预斗泄压        | H <sub>2</sub> S  | 5.20E-05     | 0.52     | 0        |
| <b>\</b> '       | CH <sub>4</sub> O | 2.81E-03     | 1000     | 0        |
| n.4 +#:本+D ÷bo*p | NH <sub>3</sub>   | 1.01E-03     | 0.50     | 0        |
| P4-捞渣机放空         | H <sub>2</sub> S  | 6.72E-05     | 0.67     | 0        |
|                  | H <sub>2</sub> S  | 4.19E-04     | 4.19     | 0        |
| P5-低温甲醇洗         | CH4O              | 2.841-02     | 0.95     | 0        |
|                  | VOCs              | 2-34E-02     | 1.42     | 0        |
| P6-硫回收尾气         | SO <sub>2</sub>   | 6.21E-03     | 1.24     | 0        |



|                | NOx              | 8.89E-03         | 4.44  | 0    |
|----------------|------------------|------------------|-------|------|
|                | 硫酸雾              | 8.89E%           | 0.30  | 0    |
|                | NH <sub>3</sub>  | 4.445-04         | 0.22  | 0    |
|                | PM <sub>10</sub> | 1.60E-03         | 0.71  | 0    |
|                | PM <sub>25</sub> | 9.63E-03         | 0.71  | 0    |
| C. 1 - 11100   | SO27/1           | 1.12E-02         | 2.25  | 0    |
| P7-辛醇废气        | NON              | 1.28E-02         | 6.42  | 0    |
| 废液焚烧炉          | 700              | 2.57E-02         | 0.26  | 0    |
|                | VA               | 1.93E-03         | 0.96  | 0    |
|                | VOCs             | 9.63E-03         | 0.48  |      |
|                | PM10             | 9.44E-04         | 0.21  | 1.84 |
| Do #5 HARDE    | PM2.5            | 4.75E-04         | 0.21  | 7/0  |
|                | SO <sub>2</sub>  | 3.31E-03         | 0.66  | V 0  |
|                | NO <sub>2</sub>  | 4.73E-03         | 2.37  | 0    |
| <b>公司</b> 波源   |                  |                  | XD.   |      |
| 1              | co               | 3.98E-02         | 20    | 0    |
| M1气化装置         | H <sub>2</sub> S | 2.22E-04         | 1/17  | 0    |
|                | NH <sub>3</sub>  | 4.94E-0          | 0.00  | .0   |
| 97.00000       | CO               | 1.12E-01         | 1.12  | 0    |
| M2变换热回收        | H <sub>2</sub> S | 7-15E-04         | 7.73  | 0    |
|                | NH3              | 1. PE-10         | 0.00  | .0   |
|                | VOCs             | ₹2.6 <b>∠-02</b> | 1.31  | 0    |
| MB低温甲醇洗        | CO               | 2.35E-03         | 0.02  | 0    |
|                | AS               | 5.23E-04         | 5.23  | 0    |
| M4CO 深冷分离      |                  | 2.15E-01         | 2.15  | 0    |
| M5PSA制氢 🔌      | 1200             | 1.15E-03         | 0.01  | 0    |
| M6硫回收制酸        | 硫酸霉              | 2.12E-03         | 0.71  | 0    |
| MOINCELLY HIER | H <sub>2</sub> S | 6.82E-04         | 6.82  | 1    |
| M7亲醇装置         | VOCs             | 2.24E-01         | 11.18 | 250  |

根据项目排放的主要污染物预测结果,Pmax(VOCs)1/16% ≥ 10%,根据 环境影响评价技术导则—大气环境 ≥ (HJ2.2-2018)要求 ≥ 项目为化工项目, 组编制环境影响报告书,评价等级应提高一级,确定 ≠ 5.平价等级为一级。

# 5.2.1.3 评价范围

根据导则规定,一级评价项目根据建设项目排放污染物的最远影响距离 (D10%)确定大气环境影响评价范围。即以项目厂址为中心区域,自厂界外延 D10%的矩形区域作为大气环境影响评价范围。当 D10%超过 25km 时,确定评

价范围为边长 50km 的矩形区域; 当 D10%小子之为m 时,评价范围边长取 5km。

拟建项目最远 D10%为 250m,因此项目大环境影响评价范围为以项目厂址为中心区域,自厂界外延边长为 5mm 的矩形区域作为大气环境影响评价范围。

# 5.2.2 评价区气候、气象特征公

滕州气象站(54927)依于 X 608°E, 35°10′N, 海拔 74.90m。台站类别属一般站, 距项目位置约 44.8km、傅调查, 该气象站周围地理环境与气候条件与本项目周围基本一致、发生象站气象资料具有较好的适用性。

本次评价基准年气象特征选取滕州气象站 2022 年观测资料,区域多年气候 特征分析根据影州气象站近 20 年(2003-2022 年)年气象统计数据分析。

#### 义域多年气候特征

#### 气象概况

滕州市属于大陆性季风气候,具有明显的暖温带半透消季风气候特征。 滕州气象站 2003~2022 年气象要素统计及表 2-4。

表5.2-4 滕州市气象站常规气象项目统计(2003~2022年)

|      | 统计项目              | 统计值       | 极值出现时间     | 极值       |
|------|-------------------|-----------|------------|----------|
| \$   | 多年平均气温(℃)         | 4.93      |            |          |
| 累全   | F极端最高气温(℃)        | 37.48     | 2022/06/19 | 39.2     |
| 累全   | ∓极端最低气温(℃)        | -11.65    | 2021/01/07 | -15.3    |
| 多    | 5年平均气压(104)       | 1007.97   |            |          |
| 多:   | 年平均水汽压XiPO        | 13.44     |            | 1        |
| 多    | 年平均相对湿度(%)        | 66.21     |            |          |
| 3    | 9年平均降雨量(mm)       | 839.11    | 2020/08/07 | 1325     |
|      | 多年平均沙暴日数(d)       | 0.1       | 41         |          |
| 灾害   | 多年平均雷暴日数(d)       | 23.05     | 1/2        | 77       |
|      | 多年平均冰雹日数(d)       | 0.15      |            | V        |
|      | 多年平均大风日数(d)       | 1.1       |            |          |
| 多年实测 | 极大风速(m/s)、相应风向    | 18.52     | 2015/06 N  | 22.7 WNW |
| 3    | 5年平均风速(m/s)       | 1.81      |            |          |
| 多年   | 主导风向、风向频率(%)      | ENE 10.53 | Z          |          |
| 多年前  | 风频率(风速<0.2m/s)(%) | 48K       |            |          |

181 页

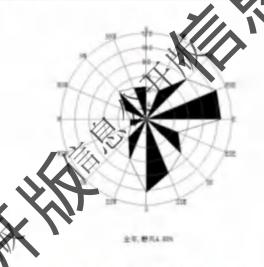



图5.2-1 滕州风向玫瑰图 (静风频率4.88%)

5.2.2.2 孫价基准年气象资料分析

#### 江)温度

月平均气温与极端气温

滕州气象站 07 月气温最高(27.29℃),02 月气温最低(0.26℃),近 20 年极端最高气温出现在 20220619(39.2℃),近 20 年极端最低气温出现在 20210107(-15.3℃)。

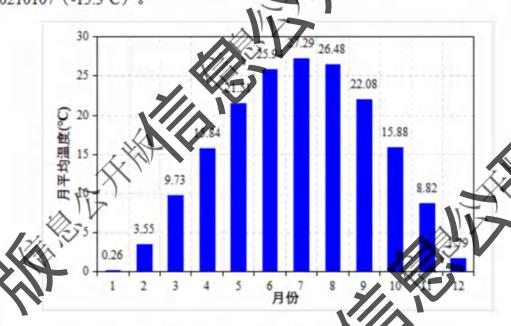
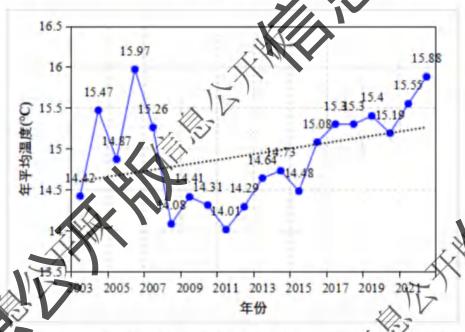




图5.2-2 滕州月平均气温(单位:

# ②温度年际变化趋势

滕州气象站近 20 年气温表现出上升趋势, 2006 年年平均气温最高(15.97℃), 2011 年年平均气温最低(14.01) 元明显周期。



♠5)2-3 滕州 (2003-2022) 年平均气温(单位: %、煮线为趋势线)

2) 风观测数据

#### ①月平均风速

滕州气象站月平均风速如表 5.2-5, 3 月平 (风速最大 (2.24m/s), 9 月风速最小 (1.44m/s)。

表 5.2-5 滕州久蒙郊月平均风速统计(m/s)

| 月份   | 1    | 2    | 3    |           | 6    | 7    | 8    | 9    | 10   | 11  | 12   |
|------|------|------|------|-----------|------|------|------|------|------|-----|------|
| 平均风速 | 1.62 | 1.88 | 2.24 | 2.27 2.99 | 1.97 | 1.82 | 1.59 | 1.44 | 1.45 | 1.6 | 1.69 |

# ②风向特征

近 20 年资料分析的风向玫瑰图如图 5.2-4 所示,其中以 ENE 为主风户 到全年 10.53%左右。

### 表 5.2-5 滕州气象站年风向频率统计(%)

| ME X NIENE            | ENE   | E     | ESE  | SE  | SSE | S     | SSW  | sw  | WSW  | W     | W  | XXW  | C    |
|-----------------------|-------|-------|------|-----|-----|-------|------|-----|------|-------|----|------|------|
| □ X NY NE NE 1 31 7.9 | 10.53 | 10.42 | 4.75 | 6.8 | 8.1 | 10.24 | 6.11 | 3.6 | 2.42 | 2 4 6 | 43 | 4.73 | 4.88 |

达 20 年各月风向频率见表 5.2-6。

#### 表 5.2-6 滕州气象站月风向频率统计

|     |      |      |      |      | 444  |      |      |      |      |      |      |      |
|-----|------|------|------|------|------|------|------|------|------|------|------|------|
| 剛   | 1    | 2    | 3    | 4    | 5    | 6    | XX   | 18   | 9    | 10   | 11   | 12   |
| N   | 5.75 | 5.19 | 4.23 | 4.57 | 3.58 | 3.30 | 3.04 | 4.51 | 4.95 | 4.78 | 5.34 | 5.65 |
| NNE | 4.87 | 4.82 | 4.23 | 3.83 | 3.01 | 200  | 2.61 | 5.06 | 4.7  | 5.08 | 4.99 | 4.85 |
| NE  | 9.21 | 8.26 | 7.39 | 5.81 | 4.9% |      | 6.01 | 8.71 | 9.18 | 9.39 | 8.68 | 8.95 |

|      |       |       |       |      |       |       |       | A .  |       |             |       |       |
|------|-------|-------|-------|------|-------|-------|-------|------|-------|-------------|-------|-------|
| ENE  | 11.37 | 10,14 | 9.23  | 8.8  | 8.67  | 8     | 242   | 11.8 | 12.55 | 12.89       | 12.02 | 12.07 |
| Е    | 10.42 | 12.58 | 9.88  | 9.99 | 9.39  | 9.66  |       | 9.17 | 10.69 | 10.96       | 10.41 | 10.46 |
| ESE  | 4.93  | 5.33  | 4.99  | 4.29 | 4.55  | 5.1   | 3.42  | 4.63 | 5.39  | 4.73        | 4.8   | 4.82  |
| SE   | 6.33  | 6.93  | 7.35  | 6.12 | 6.6   | 8.63  | 8.65  | 7.38 | 6.68  | 5.97        | 6.08  | 5.79  |
| SSE  | 6.17  | 7.39  | 8.74  | 7.94 | 883   | 12.34 | 10.32 | 8.81 | 7.61  | 6.34        | 6.05  | 5.39  |
| S    | 7.2   | 8.3   | 10.41 | 11,6 | 13.59 | 14.89 | 13.8  | 9.74 | 8.26  | 8.37        | 8.04  | 7.53  |
| SSW  | 434   | 5.46  | 7.17  | 8.4  | 8.44  | 7.59  | 8.06  | 4.97 | 4.04  | 4.62        | 4.44  | 4.73  |
| SW   | 3.11  | 3.49  | 4.25  | 4.6  | 3.32  | 3.98  | 3.86  | 2.98 | 2.97  | 2.98        | 3.04  | 2.93  |
| WSW  | 2.2   | 2.27  | 2.81  | 37   | 3.57  | 2.73  | 2.88  | 2.3  | 2.23  | 2.28        | 2.25  | 203   |
| W    | 2.52  | 42    | 4.14  | 2.66 | 2.75  | 2.12  | 2.38  | 1.97 | 2.17  | 2.44        | 2.5   | 25    |
| WNW  | 4.2   | 1334  | 3.37  | 3.34 | 3.14  | 2.39  | 2.67  | 2.87 | 2.81  | 3.3         | 4.02  | 13.08 |
| NW   | 689   | 5.64  | 5.2   | 5.67 | 4.97  | 3.79  | 3.69  | 4.68 | 5.1   | 4.94        | 0.19  | 7.23  |
| NNW. | 6002  | 4.87  | 4.65  | 5.05 | 4.56  | 3.66  | 3.44  | 4.79 | 5.2   | 4.8         | 5.59  | 6.56  |
| 15/1 | 183   | 4.04  | 3.62  | 4.22 | 43    | 4.02  | 4.1   | 5.33 | 5.75  | <b>26</b> A | 5.86  | 4.76  |

# 风速年际变化特征

根据近 20 年资料分析,滕州气象站风速呈下降趋势,滕州气象站风速在 2004-2005 年间突增,风速平均值由 1.80 米承增 到 2.15 米/秒, 2005 年年平均 风速最大(2.15 米/秒), 2020 年年平均风速最小(1.58 米/秒), 无明显周期。

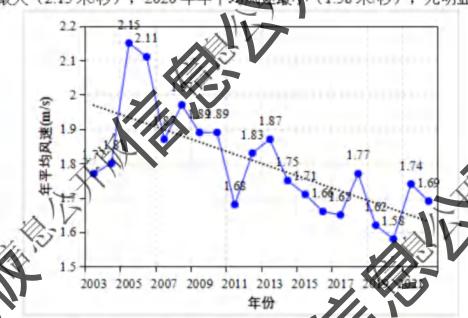



图 5.2-4 滕州 (2005-2022) 年平均风速 (单位、m、 虚线为趋势线)

(3) 降水分析

①月总降水与极端降水

滕州气象站 7 月降水量最大 (248.4 mm), 1 月降水量最小 (9.52mm), 近 20 年极端最大日降水出现在 (248.4 mm)。

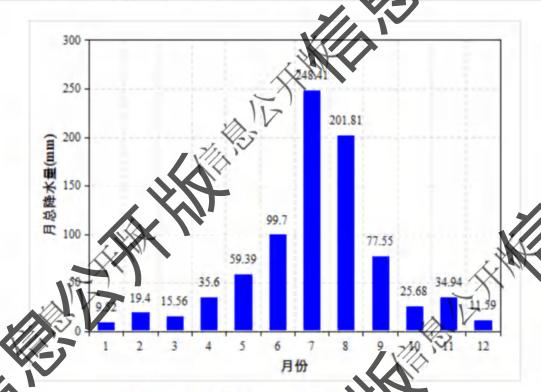



图 5.2-5 滕州月平均降水量 / 单位: wm

②降水年际变化趋势与周期分析

滕州气象站近20年年降水总量无明显变化趋势,2003年年总降水量最大



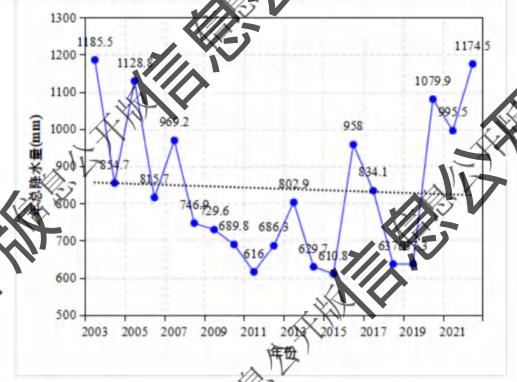



图 5.2-6 滕州 (2003-2022) (年总降水量 (单位: mm, 虚线为趋势线)

(4) 相对湿度分析

①月相对湿度分析

滕州气象站8月平均相对湿度最大(80.59%),3月平均相对湿度最小

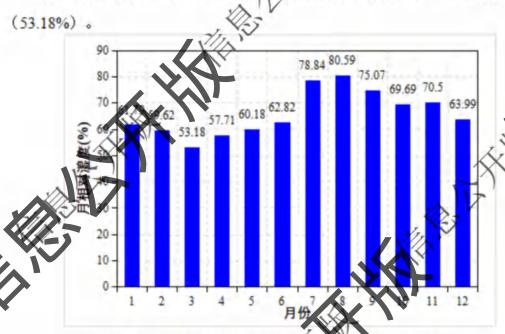



图 5.2-7 滕州月平均相对流区(从轴为百分比)

②相对湿度年际变化趋势与周期分析

滕州气象站近20年年平均2002度臺增加趋势,2016年年平均相对湿度最

大 (71.71%), 2005年年平均和交 发度最小 (59.67%), 无明显周期。

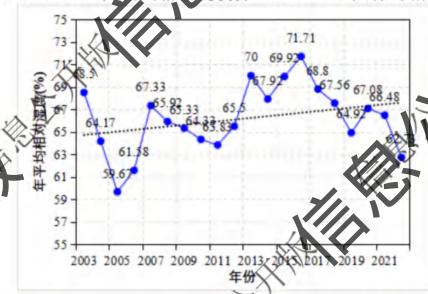



图 5.2-8 滕州 (2003-2022) 年平均相对温度 (纵轴为百分比,虚线为趋势线)

#### 5.2.3 污染源调查

拟建项目环境空气影响评价等级为一级,根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)要求,环境富气污染源调查应调查以下内容:

①本项目不同排放方案有组织和无组织排放源,对于改建、扩建项目还应调查本项目现有污染源。本项目为条源调查包括正常排放和非正常排放,其中非正常排放调查内容包括非子常工机、频次、持续时间和排放量。

②调查本项包数面拟被替代的污染源(如有),包括被替代污染源名称。第 置、排放污染物发挥放量、拟被替代时间等。

③调查评价范围内与评价项目排放污染物有关的其他在建项目、已批复环境影响。

的交通运输移动源,包括运输方式、新增交通流量、排放污染物及排放量。

187 页

#### 5.2.3.1 本项目污染源调查

(1) 正常排放污染源

A.有组织污染源

拟建项目正常工况下有组织,放源,放参数见表 5.2-7。

表 5.2-7 拟建项目有组织污染源情况 4 %表

| 点源  | 排气能中心 | 高底部<br>坐标 | 排列情報 | 排气筒<br>高度 | 排气筒内径 | 烟气出口流量            | 烟气出口温度 | 年排放<br>小时数 | PM10  | PMS   |       | NOx   | со   | NH <sub>3</sub> | H <sub>2</sub> S | 硫酸    | 甲醇    | VOCs             |
|-----|-------|-----------|------|-----------|-------|-------------------|--------|------------|-------|-------|-------|-------|------|-----------------|------------------|-------|-------|------------------|
| 名称  | X/m   | Y/m       |      | m         | m     | m <sup>3</sup> /h | °C     | h          | kg n  | kg/h  | kg/h  | kg/h  | kg/h | kg/h            | kg/h             | kg/h  | kg/h  | V <sub>2</sub> P |
| P1  | 1112  | 430       | 66   | 30        | 1.2   | 5000              | 25     | 8000       | 0.0   | 0.025 | 0     | 0     | 0    | 0               | 0                | 0     | 0 ;   |                  |
| P2  | 1101  | 1435      | 66   | 87        | 1.2   | 50000             | 50     | 8008       | . p.3 | 0.25  | 0     | 2.5   | 0    | 0               | 0                | 0     | 100   | 10               |
| P3  | 1079  | 426       | 67   | 89        | 1.2   | 15000             | 25     | ,8000      | 0.15  | 0.075 | 0     | 0     | 0    | 0               | 0.006            | 0 1   | 0.375 | 0.375            |
| 20/ | 983   | 451       | 68   | 15        | 0.2   | 30                | 2//    | 3000       | 0     | 0     | 0     | 0     | 0    | 0.0045          | 0.0003           | (A)   | 0     | 0                |
| PS  | 982   | 354       | 67   | 107       | 2     | 200000            | 2.5    | 8000       | 0     | 0     | 0     | 0     | 0    | 0               | .08              | 20    | 5.0   | 5.0              |
| P   | 821   | 1418      | 64   | 60        | 1.2   | 30000             | 50     | 8000       | 0     | 0     | 1.035 | 1.48  | 0    | 0.074           | N                | 0.148 | 0     | 0                |
| P7  | 1106  | 922       | 57   | 50        | 2.5   | 16600             | 20     | 8000       | 0.6   | 0.3   | 2.1   | 5.4   | 4.8  | 1.36            |                  | 0     | 0     | 1.8              |
| P8  | 922   | 458       | 68   | 70        | 1.1   | 16746             | 50     | 8000       | 0.167 | 0.084 | 0.586 | 0.837 | 0,   |                 | 0                | 0     | 0     | 0                |

B.无组织污染源

本项目正常工况下无组织排放源推放参数见表 5.2-8。

第 188 页

#### 5.2-7 拟建项目无组织污染源情况一览表

| 编号  | 面源坐板 | 起点<br>示m | 面源<br>海拔 | 面源长度 | 商度 | 与正北<br>方向夹 | 面源有<br>效排放 | 年排<br>放时 | 排放      |               | 1.1              | # 放速率 k         | rg/h  |       |
|-----|------|----------|----------|------|----|------------|------------|----------|---------|---------------|------------------|-----------------|-------|-------|
| -14 | X    | Y        | 高度/m     | M    | /m | 角产         | 高度/m       | 间/h      | 工况      | co            | H <sub>2</sub> S | NH <sub>3</sub> | VOCs  | 硫酸雾   |
| M1  | 1015 | 441      | 68       | 1/23 | 44 | 5          | 98         | 8000     | 正常      | 1.61          | 0.009            | 0.00002         | 0     | 0     |
| M2  | 859  | 532      | 66 7/    | X    | 34 | 5          | 32         | 8000     | 正常      | <b>109</b> 75 | 0.0065           | 0.00001         | 0     | 0     |
| M3  | 1004 | 325      | 69       | 17   | 14 | 5          | 25         | 8000     | 正常      | 0.018         | 0.004            | 0               | 0.201 | 0     |
| M4  | 850  | 464      | 85       | 43   | 30 | 5          | 24         | 8000     | K (A)   | 0.773         | 0                | 0               | 0     | 0     |
| M5  | 1198 | 852/     | 07       | 104  | 19 | 5          | 7          | 8000     | <b></b> | 0.0016        | 0                | 0               | 0     | 0     |
| M6  | 799  | 1424     | 64       | 58   | 37 | 5          | 48         | (900)    | 正常      | 0             | 0.01             | 0               | 0     | 0.031 |
| M7  | 1062 | 2010     | 64       | 140  | 70 | 5          | 37         | 2000     | 正常      | 0             | 0                | 0               | 1.915 | 111   |

# (2) 非正常排放污染源

度气治理措施非正常运转,处理效率下降,经分析拟建筑复合房气排放源,蓄热废气稳燃炉锅炉废气污染物排放量较大,本次评

为原具废气处理措施非正常运转,锅炉废气非正常排放**,**从本排放参数见表 5.2-8.

# 非正常工况污染源情况一览表

| 非正常排放源 | 非正常排放原因     | 污染物              | 非正常排放速率 kg/h | 单次持续时间。 | 年发生频次/次 |
|--------|-------------|------------------|--------------|---------|---------|
| P1     | 4.8         | 颗粒物              | 23.4         |         | <2      |
| D3     | XX,         | 颗粒物              | 38.9         | ( N N   | _       |
| P2     | 废气处理设施异常情况下 | NOx              | 2.5          |         | 4       |
|        | 污染物去除效率50%计 | 颗粒物              | - 24         |         |         |
| P3     | 17/4.5      | H <sub>2</sub> S | 0.006        | 1       | <       |
|        |             | 甲醇               | 0.375        | ~       |         |

第 189 页

| D4    | VI             | I <sub>3</sub> 0.0045 |     | 2     |
|-------|----------------|-----------------------|-----|-------|
| P4    | H <sub>2</sub> | S 0.0003              |     | <2    |
|       | H <sub>2</sub> | S 0.08                | 100 |       |
| P5    | CH             | 4O 5.0                | 1   | <2    |
|       | Vo             | Cs 5.0                | 112 |       |
|       | SC             | 5.17                  |     |       |
| P6    | NO             | x 3.7 ///             | M 1 | <2    |
| 1/1   | 硫酸             | 雾 0.74                |     |       |
|       | 颗粒             | 2物                    | -   |       |
| . XX  | SO             | 2.1                   |     | 2     |
| P7 X  | NO             | x                     | ,   | 2 1/4 |
| F/ X  | CC             | 4.8                   | 1   | 1     |
| 117   | 氨              | 0.36                  |     | X     |
| \$25° | VO             | Cs 1.8                |     | 115   |
| 010   | 果页志            | 0.167                 |     | 20    |
| D8    |                | 0.586                 | 1   | 10 0  |
|       | NO             | 0.837                 |     | >     |

#### 2.3.4 受本项目影响新增交通移动源调查

拟建项目新增交通量的运输距离按照枣皮连接线高速滕州收费站至厂区进行核算,运输距离约为100%。主要采用国五柴油重型货车进行运输。交通运输移动源主要污染物为 CO、NOx、THC、PM25、PM10等,根据《道路机动车》、污染物排放清单编制技术指南(试行)》、公告 2014年 第 92 号),发型车单车排放强度见表 5.2-15,项目物料及产品运输影响制增的交通运输移源情况详见表 5.2-16。

第 190 页

#### 5.2.4 大气环境影响预测

#### 5.2.4.1 预测模型的选取

拟建项目涉及的污染源类型主要为点源、面源,根据《环境影响评价技术导则 大气环境》(HJ2.2-2018),推荐的大气污染影响预测模式清单中的模型有AERMOD、ADMS、CALPUT模型。本次评价结合项目实际情况,选取 AERMOD模型进行预测。

拟建项目预测文条与 AERMOD 适用性分析见表 5.2-17。

| 表 5.2-17 AERMOD | 模型与本项目预测的适用性 |
|-----------------|--------------|
|-----------------|--------------|

|            | VZ              | 适用排放        | 推荐预测          | 模         | 拟污染物 | 12             | 其他  |
|------------|-----------------|-------------|---------------|-----------|------|----------------|-----|
|            | 這用污染源           | 形式          | 范围            | 一次<br>污染物 | PMC  | O <sub>3</sub> | 特性  |
| AEKNOZ     | 点源、面源、<br>线源、体源 | 连续源、<br>间断源 | 局地尺度<br>≤50km | 模型模拟法     | 系数法  | 不支持            | 144 |
| 2 项目<br>情况 | 点源、面源           | 连续源、间断源     | 局地尺度<br>50km  | 符合        | 才需要  | 不需要            | **  |
| 适用性        | 适用              | 适用          | 适用人           | 泛声用       |      |                |     |

本项目  $SO_2$ 和 NOx 年排放量共计 1月 小 下 500t,不需进行二次污染物预测,同时近 20 年全年静风频率 $\leq$ 35%,评价基准年(2024年)风速 $\leq$ 0.5m/s 的持续时间低于 72h,不需进行进入分

项目周边无海岸线,不涉及岸线熏烟现象,无需进一步模拟,因此 AERMOD 模型可满足项目预测需要

### 5.2.4.2 预测模型参数

# (1) 气象数据

本次评价地面气象数据采用滕州气象观测站观测数据,模拟高宜气象数据采用《WAXX WeatherResearchandForecastingModel》模式。气象是《WRF 初始场来自美国国家环境预报中心(NCEP)的全球再分析资料》水平分割率为1°×1°,每天共4个时次。00、06、12、18时。地形和地象类型类据采用美国地质调查局(USGS)的全球数据。气象数据及模拟气象数据信息见表 5.2-18~5.2-19。

表 5.2-18 观测气象数据信息

| 气象站 | 气象站   | 气象站 | 公坐      |         | 相对    | 海拔  | 数据<br>年份 |
|-----|-------|-----|---------|---------|-------|-----|----------|
| 名称  | 编号    | 等级  | 1. X5   | Y       | 距离m   | 高度m | 年份       |
| 滕州  | 54927 | 一般站 | V 22000 | 35.1000 | 14800 | 76  | 2024     |

表 5.2-19 模拟气象数据管息

| 模拟点   | 坐标<br>Y | 相对距离 | 数据<br>年份 | 家要素                | 模拟<br>方式 |
|-------|---------|------|----------|--------------------|----------|
| -6167 | 767     | 9800 | 2024     | 风间、风速、总云量、低云量、干球温度 | WRF      |

### (2) 地形数据

本次评价大气预测地长线播来自根据 SRTM(航天飞机雷达地形测绘使命)系统获取的雷达影像数据制成的数字地形高程模型,版本为 V4.1(最新),文件格式为 dem 格式 分辨率为 90m。

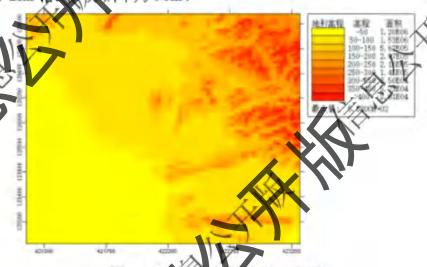



图 5.2-7 逐频范围地形示意图

# (3) 模型主要参数设置

①预测范围及网格设置、根据《环境影响评价技术导则·大气环境》 (HJ2.2-2018),结合工项目情况,本次评价大气影响预测范围选取以项目从址 为中心,边长5分km,面积约为 25km²的区域。预测网格采用直角坐标网格、生 网格区域覆盖预测范围,即 5×5km,网格间距 100m。

②预测点位:选取项目评价范围内有代表性的敏感点及预测范围网络点,详

| 表 5.2-20 | 主要环境空气保护 | 目标一位表 |
|----------|----------|-------|
|----------|----------|-------|

| かか   | 坐板    | r/m  | 保护   | 保护、人 | 环省   | 相对 | 相对厂址   |
|------|-------|------|------|------|------|----|--------|
| 名称   | X     | Y    | 对象   | 内容   | 可功能区 | 方位 | 边界距离/m |
| 尖山村  | -38   | 1434 | 居住区  | 籍人   | 二类区  | W  | 140    |
| 南涝坡  | 1972  | 1442 | 居住区人 | 入群   | 二类区  | Е  | 460    |
| 凤翔小镇 | -1045 | 724  | 屋住区下 | 人群   | 二类区  | W  | 1150   |

| 鲁化生活区  | 1806  | -252  | 居住区 | 人群    | 二类区  | E    | 130           |
|--------|-------|-------|-----|-------|------|------|---------------|
| 前连水    | 1582  | 2454  | 居住区 | THE S | 二类区  | N    | 1425          |
| 桥口     | 1513  | -883  | 居住区 | 猪人    | 二类区  | SE   | 190           |
| 木石镇政府  | -252  | -126  | 居住区 | 人群    | 二类区  | sw   | 375           |
| 木石医院   | -109  | -31   | EEE | 人群    | 二类区  | sw   | 220           |
| 木石社区   | 1804  | 6     | 居住区 | 人群    | 二类区  | NE   | 120           |
| 鲁化职工医院 | 1760  | 4.    | 居住区 | 人群    | 二类区  | NE   | 140           |
| 西荒村    | 41.00 | 2305  | 居住区 | 人群    | 二类区  | NW   | 1600          |
| 化石沟    | - 10  | 2431  | 居住区 | 人群    | 二类区  | NE   | 12/17         |
| 木石中学   | 2386  | 1171  | 居住区 | 人群    | 二类区  | NE   | <b>1</b> (913 |
| 大岭庫    | 2553  | -526  | 居住区 | 人群    | 二类区  | NE \ | 1580          |
|        | 2502  | -592  | 居住区 | 人群    | 二类区  | (R)  | 880           |
| 為因此    | 2037  | -1706 | 居住区 | 人群    | 二人区  | SE   | 1080          |
| 尖山村    | -38   | 1434  | 居住区 | 人群    | LXS. | W    | 140           |
| 墨子森林公园 | 2825  | -395  | 保护区 | 公园生态  | -    | E    | 700           |

③地表参数设置:根据地表特征,设置 30~90°为落叶林,90~220° 为城市,其余为农作地;空气湿度选用中毒湿度。相关地表参数见表 5.2-21。

表 50.22、地表参数选取表

| 扇区      | 季节    | 地差反照率 | 白天 BOWEN率 | 地表粗糙度 |
|---------|-------|-------|-----------|-------|
|         | 春     | 0.5   | 1.5       | 0.5   |
| 30~90°  | 3///  | 0.12  | 0.7       | 1     |
| 30~90   | .LN   | 0.12  | 0.3       | 1.3   |
|         | 1.1/1 | 0.12  | 1         | 0     |
|         | 春     | 0.35  | 1.5       | A.X   |
| 90-2305 | 夏     | 0.14  | 1         | , 51  |
| 35      | 秋     | 0.16  | 2 , , ,   |       |
| TATA .  | 冬     | 0.18  | 2         | 1     |
|         | 春     | 0.6   | 1.5       | 0.01  |
| 20~30°  | 夏     | 0.14  | 7/3       | 0.03  |
| 20~30   | 秋     | 0.2   |           | 0.2   |
| ,       | 冬     | 0.18  | 1/2 O.Y   | 0.05  |

④建筑物下洗:根据《环境影响评价技术导则·大气环境》(HJ2.2-2018), 拟建项目区域目前为空地,本次评价不考虑建筑物下洗。

⑤岸线熏烟:项目周边无港风及大型水体,不考虑岸线熏烟。

## (5) 预测方案

①预测因子: SO<sub>2</sub>、NO<sub>x</sub>、PM<sub>10</sub>、PM<sub>2</sub>、CO、氨、硫化氢、硫酸、VOCs、甲醇。

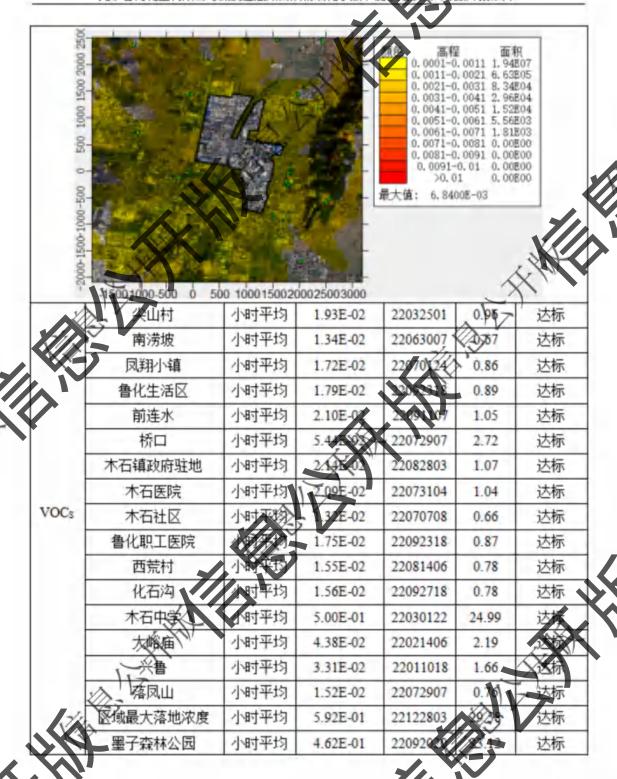
#### ②预测内容及预测方案

根据本项目污染物排放特点及大气导则要求,结合区域污染气象特征,本次大气环境影响预测内容及表示。22。

| 表 5.2-22   | 预测内容-         | -览表    |
|------------|---------------|--------|
| 100 3.4-44 | 1707/01/11/11 | JAL 4X |

| 评价对象 | 1         | 污染源                                | 排放形式 | 预测内容          | 评价内区                                                  |
|------|-----------|------------------------------------|------|---------------|-------------------------------------------------------|
|      |           | 增污染源                               | 正常排放 | 短期浓度<br>长期浓度  | 最大浓度占标率                                               |
| 7    | 超标污染物     | 新增污染源<br>区域削减污染源                   | 正常排放 | 短期浓度<br>长期浓度  | 评价年平均质量<br>>、浓度变化率                                    |
|      | 现状浓度达标污染物 | 新增污染源<br>区域削减污染源<br>其他在建、拟建污<br>染源 | 正常排放 | 短脚            | 桑加环境质量现状浓度后的保证率日平均<br>质量浓度和年平均质量浓度的占标率,或<br>短期浓度的达标情况 |
| 防护距离 | 新         | 增污染源                               | 正常和文 | <b>/</b> 短期浓度 | 大气环境防护距离                                              |

#### 5.2.4.3 预测结果


### (1) 拟建项目贡献值

正常工况下环境保护目标。据点贡献浓度见表 5.2-23.

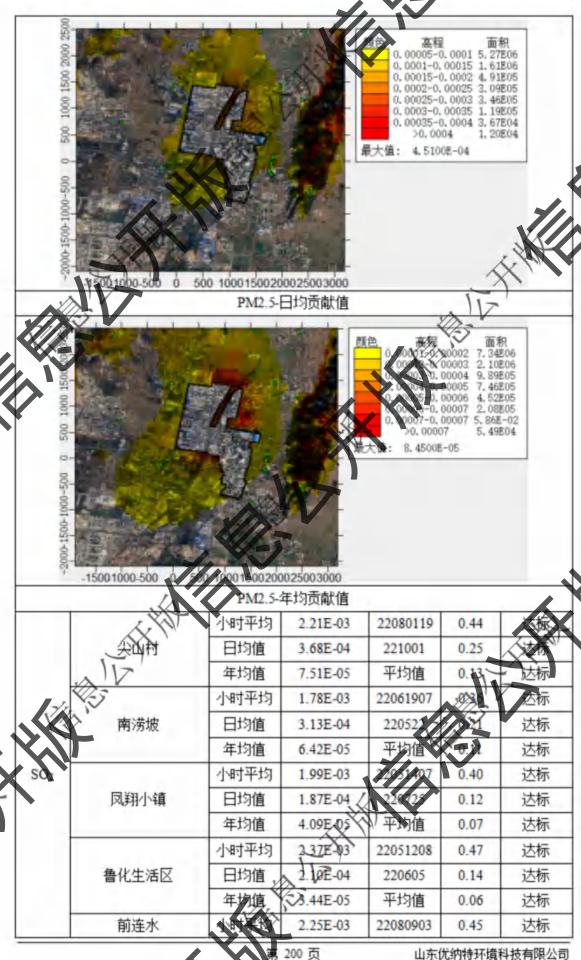
表 5.2-23 为建项目正常工况质量浓度贡献值预测结果表

| 污染物  | 预测点     | 平。河时段 | 最大贡献值<br>mg/m³ | 出现时间      | 占标率  | 达标情况     |
|------|---------|-------|----------------|-----------|------|----------|
|      | 尖山村     | 小时平均  | 6.61E-04       | 22050307  | 0.33 | <b>A</b> |
|      | 南济坡     | 小时平均  | 7.40E-04       | 22100308  | 0.37 | XX for   |
|      | 10月小镇   | 小时平均  | 5.13E-04       | 22072507  | 0.26 | 达标       |
| 13/1 | 鲁化生活区   | 小时平均  | 5.08E-04       | 22083008  | 10   | 达标       |
|      | 前连水     | 小时平均  | 3.80E-04       | 220807207 | 100  | 达标       |
|      | 桥口      | 小时平均  | 5.50E-04       | 22072407  | U 28 | 达标       |
| **   | 木石镇政府驻地 | 小时平均  | 5.25E-04       | DATE      | 0.26 | 达标       |
|      | 木石医院    | 小时平均  | 4.87E-04       | 12045247  | 0.24 | 达标       |
|      | 木石社区    | 小时平均  | 5.99E 04       | 22090408  | 0.30 | 达标       |
|      | 鲁化职工医院  | 小时平均  | 5-37E-04       | 22083008  | 0.26 | 达标       |
|      | 西荒村     | 小时平均, | 3. WE-03       | 22081406  | 1.63 | 达标       |
|      | 化石沟     | 小时平均  | ₹4.73E-04      | 22063007  | 0.24 | 达标       |

|                                    | 木石中学                                                                                                                                                                                                                                                              | 小时平均                                                         | 5.50E 04                                                                                                                                                 | 22100308                                                                                                                                                 | 0.28                                                                                                                                            | 达标                                                 |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                                    | 大峪庙                                                                                                                                                                                                                                                               | 小时平均                                                         | 8,85                                                                                                                                                     | 22021406                                                                                                                                                 | 4.42                                                                                                                                            | 达标                                                 |
|                                    | 兴鲁                                                                                                                                                                                                                                                                | 小时平均                                                         | 63E-03                                                                                                                                                   | 22011018                                                                                                                                                 | 3.31                                                                                                                                            | 达标                                                 |
|                                    | 落凤山                                                                                                                                                                                                                                                               | 小时平均                                                         | 4.35E-04                                                                                                                                                 | 22083008                                                                                                                                                 | 0.22                                                                                                                                            | 达标                                                 |
|                                    | 区域最大落地浓度                                                                                                                                                                                                                                                          | 小时间分                                                         | 1.45E-02                                                                                                                                                 | 22020620                                                                                                                                                 | 7.26                                                                                                                                            | 达标                                                 |
|                                    | 墨子森林公园                                                                                                                                                                                                                                                            | <b>粉</b> 押均                                                  | 1.45E-02                                                                                                                                                 | 22020620                                                                                                                                                 | 7.26                                                                                                                                            | 达标                                                 |
| 1500 1500 1500 1500 1500 1500 1500 |                                                                                                                                                                                                                                                                   |                                                              |                                                                                                                                                          | 0.0064-0<br>0.0084-0<br>0.0104-0<br>0.0124-0<br>0.0144-0                                                                                                 | 0, 0064 3, 89<br>0, 0084 4, 04<br>0, 0104 3, 23<br>0, 0124 2, 16<br>0, 0164 5, 20<br>0, 0164 5, 20<br>0, 02 0, 00<br>0, 02 0, 00<br>0, 02 0, 00 | 12:05<br>32:05<br>40-2<br>32:00<br>32:00<br>02:00  |
| 002,                               | -15001000-500 0 50<br>尖山村                                                                                                                                                                                                                                         | 0 1000150020<br>小时平均                                         | 0025043 X                                                                                                                                                | 22081107                                                                                                                                                 | 1.39                                                                                                                                            | 达标                                                 |
|                                    | -t->#1dz                                                                                                                                                                                                                                                          | 1- n+ 37-144                                                 | AL OUT OF                                                                                                                                                | 22062002                                                                                                                                                 | 1.01                                                                                                                                            | 144-                                               |
|                                    | 南涝坡                                                                                                                                                                                                                                                               | 小时平均                                                         | 11-01E-04                                                                                                                                                | 22063007                                                                                                                                                 | 1.01                                                                                                                                            | 达标                                                 |
|                                    | 凤翔小镇                                                                                                                                                                                                                                                              | 小时平均                                                         | 78E-04                                                                                                                                                   | 22121309                                                                                                                                                 | 1.38                                                                                                                                            | 达标                                                 |
|                                    | 凤翔小镇<br>鲁化生活区                                                                                                                                                                                                                                                     | 小时平均                                                         | 78E-04<br>1,78E-04                                                                                                                                       | 22121309<br>22070708                                                                                                                                     | 1.38                                                                                                                                            | 达标<br>达标                                           |
|                                    | 凤翔小镇<br>鲁化生活区<br>前连水                                                                                                                                                                                                                                              | 小时平均                                                         | 7.13E-05                                                                                                                                                 | 22121309<br>22070708<br>22063007                                                                                                                         | 1.38<br>1.78<br>0.71                                                                                                                            | 达标<br>达标<br>达标                                     |
|                                    | 凤翔小镇<br>鲁化生活区<br>前连水<br>桥口                                                                                                                                                                                                                                        | 小时间                                                          | 7.13E-04<br>7.13E-05<br>1.38E-04                                                                                                                         | 22121309<br>22070708<br>22063007<br>22071107                                                                                                             | 1.38<br>1.78<br>0.71<br>1.38                                                                                                                    | 达标<br>达标<br>达标<br>达标                               |
|                                    | 凤翔小镇<br>鲁化生活区<br>前连水<br>桥口<br>木石镇政府联邦                                                                                                                                                                                                                             | 小时平均                                                         | 7.8E-04<br>1.78E-04<br>7.13E-05<br>1.38E-04<br>1.75E-04                                                                                                  | 22121309<br>22070708<br>22063007<br>22071107<br>22071507                                                                                                 | 1.38<br>1.78<br>0.71<br>1.38<br>1.75                                                                                                            | 达标<br>达标<br>达标                                     |
|                                    | 凤翔小镇<br>鲁化生活区<br>前连水<br>桥口<br>木石镇政府联邦                                                                                                                                                                                                                             | 小时平均<br>小时平均<br>小时平均                                         | 7.8E-04<br>1.78E-04<br>7.13E-05<br>1.38E-04<br>1.75E-04<br>1.92E-04                                                                                      | 22121309<br>22070708<br>22063007<br>22071107<br>22071507<br>22071507                                                                                     | 1.38<br>1.78<br>0.71<br>1.38<br>1.75<br>1.92                                                                                                    | 达标                                                 |
| 硫化氢                                | 凤翔小镇<br>鲁化生活区<br>前连水<br>桥口<br>木石镇政府联邦<br>木石连院                                                                                                                                                                                                                     | 小时平均<br>小时平均<br>小时平均<br>小时平均                                 | 1.78E-04<br>1.78E-04<br>7.13E-05<br>1.38E-04<br>1.75E-04<br>1.92E-04<br>1.70E-04                                                                         | 22121309<br>22070708<br>22063007<br>22071107<br>22071507<br>22071507<br>22070708                                                                         | 1.38<br>1.78<br>0.71<br>1.38<br>1.75<br>1.92                                                                                                    | 达标<br>达标<br>达标<br>达标<br>达标                         |
| 硫化氢                                | 凤翔小镇<br>鲁化生活区<br>前连水<br>桥口<br>木石镇政府联邦<br>木石连院<br>木石社区                                                                                                                                                                                                             | 小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均                         | 1.78E-04<br>1.78E-04<br>7.13E-05<br>1.38E-04<br>1.75E-04<br>1.92E-04<br>1.70E-04<br>1.85E-04                                                             | 22121309<br>22070708<br>22063007<br>22071107<br>22071507<br>22071507<br>22070708<br>22070708                                                             | 1.38<br>1.78<br>0.71<br>1.38<br>1.75<br>1.92                                                                                                    | 达标<br>达标<br>达标<br>达标                               |
| 硫化氢                                | 凤翔小镇<br>鲁化生活区<br>前连水<br>桥口<br>木石镇政府联邦<br>木石连院<br>木石社区<br>鲁化职工医院<br>西荒村                                                                                                                                                                                            | 小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均                 | 1.78E-04<br>1.78E-04<br>7.13E-05<br>1.38E-04<br>1.75E-04<br>1.70E-04<br>1.85E-04<br>9.65E-05                                                             | 22121309<br>22070708<br>22063007<br>22071107<br>22071507<br>22071507<br>22070708<br>22070708<br>22081107                                                 | 1.38<br>1.78<br>0.71<br>1.38<br>1.75<br>1.92                                                                                                    | 达标<br>达标<br>达标<br>达标<br>达标                         |
| 硫化氢                                | 凤翔小镇<br>鲁化生活区<br>前连水<br>桥口<br>木石镇政府联邦<br>木石镇政府联邦<br>木石镇政府联邦<br>木石镇政府联邦<br>木石连院<br>西荒村<br>化石沟                                                                                                                                                                      | 小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均         | 1.78E-04<br>1.78E-04<br>7.13E-05<br>1.38E-04<br>1.75E-04<br>1.92E-04<br>1.70E-04<br>1.85E-04<br>9.65E-05<br>8.61E-05                                     | 22121309<br>22070708<br>22063007<br>22071107<br>22071507<br>22071507<br>22070708<br>22070708                                                             | 1.38<br>1.78<br>0.71<br>1.38<br>1.75<br>1.92                                                                                                    | 达标<br>达标<br>达标<br>达标<br>达标<br>达标                   |
| 硫化氢                                | 凤翔小镇 鲁化生活区 前连水 桥口 木石镇政府联 木石镇政府联 木石镇政府联 木石镇政府联 木石铁区 鲁化职工医院 西荒村 化石沟 木石中学                                                                                                                                                                                            | 小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均 | 1.78E-04<br>1.78E-04<br>7.13E-05<br>1.38E-04<br>1.75E-04<br>1.92E-04<br>1.70E-04<br>1.85E-04<br>9.65E-05<br>8.61E-05<br>5.59E-04                         | 22121309<br>22070708<br>22063007<br>22071107<br>22071507<br>22071507<br>22070708<br>22070708<br>22081107                                                 | 1.38<br>1.78<br>0.71<br>1.38<br>1.75<br>1.92<br>1.70                                                                                            | 达标<br>达标<br>达标<br>达标<br>达标<br>达标<br>达标<br>达标       |
| 硫化氢                                | 凤翔小镇 鲁化生活区 前连水 桥口 木石镇政府联地 木石中学 大峪庙                                                                                        | 小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均 | 1.78E-04<br>1.78E-04<br>7.13E-05<br>1.38E-04<br>1.75E-04<br>1.92E-04<br>1.70E-04<br>1.85E-04<br>9.65E-05<br>8.61E-05<br>5.59E-04<br>1.15E-04             | 22121309<br>22070708<br>22070708<br>22063007<br>22071107<br>22071507<br>22071507<br>22070708<br>22070708<br>22081107<br>22063000<br>22063000<br>22063110 | 1.38<br>1.78<br>0.71<br>1.38<br>1.75<br>1.92<br>1.70<br>1.8<br>1.59                                                                             | 达标<br>达标<br>达标<br>达标<br>达标<br>达标<br>达标<br>达标<br>达标 |
| 硫化氢                                | 凤翔小镇<br>鲁化生活区<br>前连水<br>桥口<br>木石镇政府联邦<br>木石镇政府联邦<br>木石镇政府联邦<br>木石镇政府联邦<br>木石镇政府联邦<br>木石镇政府联邦<br>木石镇政府联邦<br>木石镇政府联邦<br>木石镇政府联邦<br>木石镇政府联邦<br>木石镇政府联邦<br>木石镇政府联邦<br>木石镇政府联邦<br>木石镇政府联邦<br>木石镇政府联邦<br>木石镇政府联邦<br>木石镇政府联邦<br>木石共区院<br>西荒村<br>化石沟<br>木石中学<br>大峪庙<br>兴鲁 | 小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均 | 1,78E-04<br>1,78E-04<br>7,13E-05<br>1,38E-04<br>1,75E-04<br>1,92E-04<br>1,70E-04<br>1,85E-04<br>9,65E-05<br>8,61E-05<br>5,59E-04<br>1,15E-04<br>1,15E-04 | 22121309<br>22070708<br>22070708<br>22071107<br>22071507<br>22071507<br>22070708<br>22070708<br>22081107<br>22063034<br>22081107<br>22063034<br>22070708 | 1.38<br>1.78<br>0.71<br>1.38<br>1.75<br>1.92<br>1.70<br>1.81<br>0.96<br>0.59<br>1.15<br>1.15                                                    | 达标<br>达标<br>达标<br>达标<br>达标<br>达标<br>达标<br>达标<br>达标 |
| 硫化氢                                | 凤翔小镇 鲁化生活区 前连水 桥口 木石镇政府联地 木石中学 大峪庙                                                                                        | 小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均<br>小时平均 | 1.78E-04<br>1.78E-04<br>7.13E-05<br>1.38E-04<br>1.75E-04<br>1.92E-04<br>1.70E-04<br>1.85E-04<br>9.65E-05<br>8.61E-05<br>5.59E-04<br>1.15E-04             | 22121309<br>22070708<br>22070708<br>22063007<br>22071107<br>22071507<br>22071507<br>22070708<br>22070708<br>22081107<br>22063000<br>22063000<br>22063110 | 1.38<br>1.78<br>0.71<br>1.38<br>1.75<br>1.92<br>1.70<br>1.8<br>1.59                                                                             | 达标<br>达标<br>达标<br>达标<br>达标<br>达标<br>达标<br>达标<br>达标 |

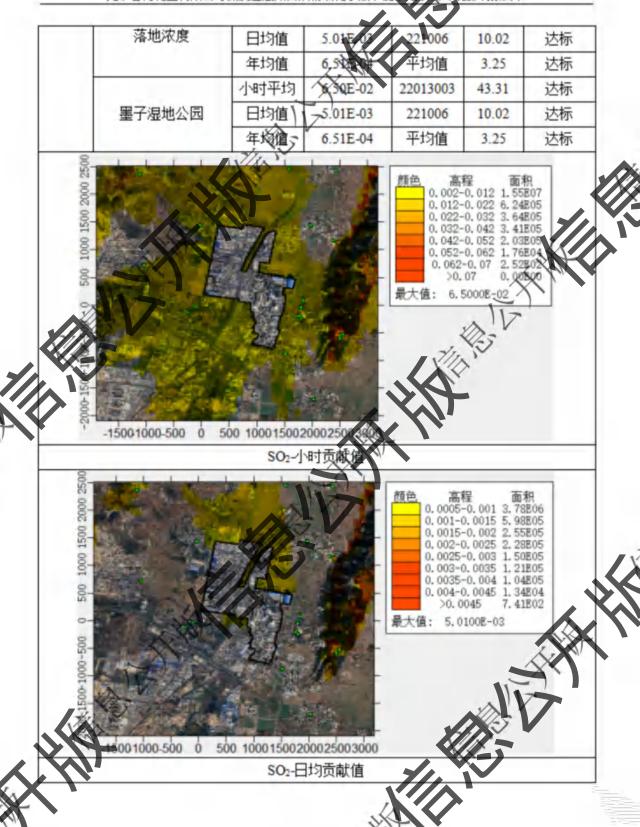


A THE TENT


|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 1 1      |                      | Y                                                    |                                                                                                                                  |                                                      |     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----|
|      | 10-1500-1900-500 Q 500 1000 1500 2000 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                      | 0.0<br>0.1<br>0.2<br>0.3<br>0.4<br>0.5<br>0.6<br>0.7 | 解 面利<br>1-0.1 2.12<br>1-0.2 1.96<br>1-0.3 2.28<br>1-0.4 5.79<br>1-0.5 7.70<br>1-0.6 1.08<br>1-0.7 0.00<br>1-0.8 0.00<br>5.9200を0 | E07<br>E06<br>E05<br>E04<br>E03<br>E03<br>E00<br>E00 |     |
|      | -1 00 00-500 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _          | 020002500300         |                                                      | NIV.                                                                                                                             | K. A.                                                |     |
|      | 尖山村                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 日均值<br>年均值 | 8.95E-05<br>2.40E-05 | 220726 -                                             | 0.03                                                                                                                             | 达标<br>达标                                             |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 日均值        | 9.41E-05             | TOE                                                  | 0.06                                                                                                                             | 达标                                                   |     |
|      | 南涝坡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 年均值        | 2.65E-05             | 亚人首                                                  | 0.04                                                                                                                             | 达标                                                   |     |
| (11) | E Yn L k#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 日均值        | 4.627 -08            | 221711                                               | 0.03                                                                                                                             | 达标                                                   |     |
| Χ,   | 凤翔小镇                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 年均值        | 1,287                | 平均值                                                  | 0.02                                                                                                                             | 达标                                                   |     |
|      | 鱼业生活区                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 日均值        | 9:89E-05             | 220916                                               | 0.06                                                                                                                             | 达标                                                   |     |
|      | 鲁化生活区                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 年均值》       | .90Z-05              | 平均值                                                  | 0.03                                                                                                                             | 达标                                                   | 11. |
|      | 前连水                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 种源         | 9.97E-05             | 220529                                               | 0.07                                                                                                                             | 达标                                                   | 1.4 |
|      | HULEVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 举通         | 2.57E-05             | 平均值                                                  | 0.04                                                                                                                             | 达标                                                   |     |
|      | 桥口                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 日均值        | 6.56E-05             | 220414                                               | 0.04                                                                                                                             | 达标                                                   | 1   |
| PM   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 样均值        | 1.37E-05             | 平均值                                                  | 0.02                                                                                                                             | 达权                                                   |     |
|      | 木石镇政府                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 日均值        | 9.78E-05             | 220422                                               | 0.07                                                                                                                             |                                                      |     |
|      | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 年均值        | 2.98E-05             | 平均值                                                  | 0.04                                                                                                                             | NO TO                                                |     |
|      | 公 木石医院                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 日均值        | 1.06E-04             | 220706                                               | 0.07                                                                                                                             | 达标                                                   |     |
|      | The state of the s | 年均值        | 3.32E-05             | 平均值                                                  | 10.0                                                                                                                             | 达标                                                   |     |
|      | 木石社区                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 日均值        | 1.17E-04             | 220622                                               | 18                                                                                                                               | 达标                                                   |     |
| XX   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 年均值        | 2.38E-05             | 平均值                                                  | T/3                                                                                                                              | 达标                                                   |     |
|      | 鲁化职工医院                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 日均值        | 9.42E-05             |                                                      | 0.06                                                                                                                             | 达标                                                   |     |
| X 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 年均值        | 2.06E-05             | 平均温                                                  | 0.03                                                                                                                             | 达标                                                   |     |
|      | 西荒村                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 日均值        | 1.62E-04             | 220723                                               | 0.11                                                                                                                             | 达标                                                   |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 年均值        | 4-21E-05             | 平均值                                                  | 0.06                                                                                                                             | 达标                                                   |     |
| ,    | 化石沟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 日均值        | 4.48E-05             | 220221                                               | 0.03                                                                                                                             | 达标                                                   |     |
|      | -58.507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 年护镇        | √1.12E-05            | 平均值                                                  | 0.02                                                                                                                             | 达标                                                   |     |

W. W.

| 日均値   6.24年   22-022   0.04   达标   年均値   1.4名   平均値   0.02   达标   大崎庙   日均値   200E-04   221216   0.13   达标   年均値   4.48E-05   平均値   0.06   达标   日均値   2.98E-05   平均値   0.04   达标   日均値   3.31E-05   221119   0.02   达标   日均値   3.31E-05   221119   0.02   达标   日均値   3.31E-05   221119   0.02   达标   日均値   9.03E-04   221113   1.81   24年均値   1.69E-04   平均値   0.42   24年均値   1.69E-04   平均値   0.42   24年均値   1.69E-04   平均値   0.42   24年均値   1.69E-04   平均値   0.42   24年均値   1.69E-04   平均値   0.41   24年均値   0.41   24年均位   0.4 | 100  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                   | IA .                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 大崎庙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 木石中学                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 日均值    | 6.24E 05          | 220220                                                                                            | 0.04                                                                                | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| 大昭    年均    4.48E-05   平均    0.06   达标   日均    1.29E-04   220529   0.09   达标   1.29E-05   平均    0.04   达标   1.29E-05   平均    0.04   达标   1.29E   0.02   221119   0.02   达标   1.29E   0.51E-06   平均    0.01   达标   1.29E   0.51E-06   平均    0.01   达标   1.29E   0.01   1.81   2.98E-05   1.69E-04   平均    0.42   3.81   2.98E   0.42   3.81   2.98E   0.42   3.81   3.81   2.98E   0.42   3.81   3.81   2.98E   0.42   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81   3.81  |      | THEFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _      | 1,43              |                                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 日均値                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 大峪庙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | -                 |                                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 年均値 2.98E-05 平均値 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | / V-H/M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | /                 |                                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7        |
| 本が値   2.98E-05   平均値   0.04   込标   1.09E-04   平均値   0.01   込标   1.69E-04   平均値   0.42   込标   0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 兴鲁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 700    | - 17.5 15 15 15 1 |                                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20       |
| 本切値   6.51E-06   平均値   0.01   込标   日均値   9.03E-04   221113   1.81   込标   年均値   1.69E-04   平均値   0.42   込标   2000   2.56E06   0.42   0.000   2.56E06   0.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.000   2.0 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                   |                                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 日均值 9.03E-04 221113 1.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 落凤山                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                   |                                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/25     |
| 年均値 1.69E-04 平均値 0.42<br>日均値 9.03E-04 221113 1.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                   |                                                                                                   |                                                                                     | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| 日均值 9.03E-04 221113 1.81 达标 年均值 1.69E-04 平均值 0.中 达标  (1.69E-04 平均值 0.中 达标  (1.69E-04 平均值 0.中 达标  (1.69E-04 平均值 0.中 达标  (1.69E-05 - 2.0003 1.61E06 0.0003 1.61E06 0.0007 1.18E05 1.0007-0.0008 3.68E04 2.00008 1.19E04 元流 9.03008-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 77777             |                                                                                                   | 1 1 1                                                                               | THE PARTY OF THE P | <b>4</b> |
| 年均值 1.69E-04 平均值 0.种                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | A TOP TO THE PROPERTY OF THE P |        |                   |                                                                                                   | A                                                                                   | - Jak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| (1) (1) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 是于是地公园                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                   |                                                                                                   | _                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4        |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 年均值    | 1.69E-04          | 平均值                                                                                               | 0.47                                                                                | 还标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4        |
| 0,00004-0,00000 2,100-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K-HA | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                   | >0.00                                                                                             | 08 1. 19E                                                                           | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20       |
| 1/3 #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 000-1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-5 |        | 3均贡献值             | 色<br>高程<br>0,00002-0,0<br>0,00006-0,0<br>0,00008-0,0<br>0,00012-0,0<br>0,00014-0,0<br>0,00014-0,0 | 08 1.19E                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| PM10年3万献值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 000-1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-1000-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-500 1 -1500-5 | PM10-E | 0.25 200          | 色<br>高程<br>0,00002-0,0<br>0,00006-0,0<br>0,00008-0,0<br>0,00012-0,0<br>0,00014-0,0<br>0,00014-0,0 | 008 1.19E0<br>00E-04<br>00004 7.34E0<br>00006 2.10E<br>00008 0001 46 0<br>0012 4 50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |


|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 年均值  | 1.20F 05  | 平均值      | 0.03  | 达标         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|----------|-------|------------|
|     | 南沙共中                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 日均值  | 4.74      | 220815   | 0.06  | 达标         |
|     | 南涝坡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 年均值  | 130E-05   | 平均值      | 0.04  | 达标         |
|     | EJ¥n J. čit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 日均值  | -2.31E-05 | 220711   | 0.03  | 达标         |
|     | 凤翔小镇                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 年均值; | 6.39E-06  | 平均值      | 0.02  | 达标         |
|     | 春 IV H X 区                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 色均值  | 4.45E-05  | 220916   | 0.06  | 达标         |
|     | 鲁化生活区                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 样均值  | 9.50E-06  | 平均值      | 0.03  | 达标         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 凹均值  | 4.99E-05  | 220529   | 0.07  | 达标         |
|     | 則差。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 年均值  | 1.28E-05  | 平均值      | 0.04  | W.         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 日均值  | 3.28E-05  | 221119   | 0.04  | 1          |
| 1   | 37L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 年均值  | 6.85E-06  | 平均值      | 0.02  | 达标         |
| 1   | - American                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 日均值  | 4.89E-05  | 220422   | 0.07  | 达标         |
|     | ブ 石镇政府                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 年均值  | 1.49E-05  | 平均值,     | 20704 | 达标         |
|     | 1.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 日均值  | 5.29E-05  | 270706/2 | 0.07  | 达标         |
|     | 木石医院                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 年均值  | 1.66E-05  | 李杨       | 0.05  | 达标         |
|     | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 日均值  | 5.87E-0   | 7012     | 0.08  | 达标         |
|     | 木石社区                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 年均值  | 1.102.95  | 平均值      | 0.03  | 达标         |
|     | de allama en minada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 日均值  | 4.341.03  | 220721   | 0.06  | 达标         |
|     | 鲁化职工医院                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 年均值  | L03E-05   | 平均值      | 0.03  | 达标         |
|     | 777.44.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 日均值》 | 1/E-05    | 220723   | 0.11  | 达标         |
|     | 西荒村                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 2.11E-05  | 平均值      | 0.06  | 达标         |
|     | Herrin .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 白须   | 2.21E-05  | 220221   | 0.03  | 达标         |
|     | 化石沟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 年均值  | 5.60E-06  | 平均值      | 0.02  | 达标         |
|     | 木石中                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 日均值  | 3.12E-05  | 220220   | 0.04  | 达探         |
|     | THE STATE OF THE S | 年均值  | 7.26E-06  | 平均值      | 0.02  | 200        |
|     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 日均值  | 9.98E-05  | 221216   | 0.13  | <b>公</b> 标 |
| 2   | 〉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 年均值  | 2.24E-05  | 平均值      | 0.05  | 达标         |
| 1/2 | <b>**</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 日均值  | 6.45E-05  | 220529   | 003   | 达标         |
|     | 兴鲁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 年均值  | 1.49E-05  | 平均值      | 6.0±  | 达标         |
|     | #P.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 日均值  | 1.66E-05  | 22/119   | 0.02  | 达标         |
|     | 落凤山                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 年均值  | 3.26E-06  | 李护道      | 0.01  | 达标         |
|     | 区域最大                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 日均值  | 4.51E-04  | 2013     | 1.29  | 达标         |
|     | 落地浓度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 年均值  | 8.45E-05  | 平均值      | 0.56  | 达标         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 日均值  | 4.51E-04  | 221113   | 1.29  | 达标         |
|     | 墨子湿地公园                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 年均值之 | - 11/     | 平均值      | 0.56  | 达标         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Cont. N   |          |       |            |

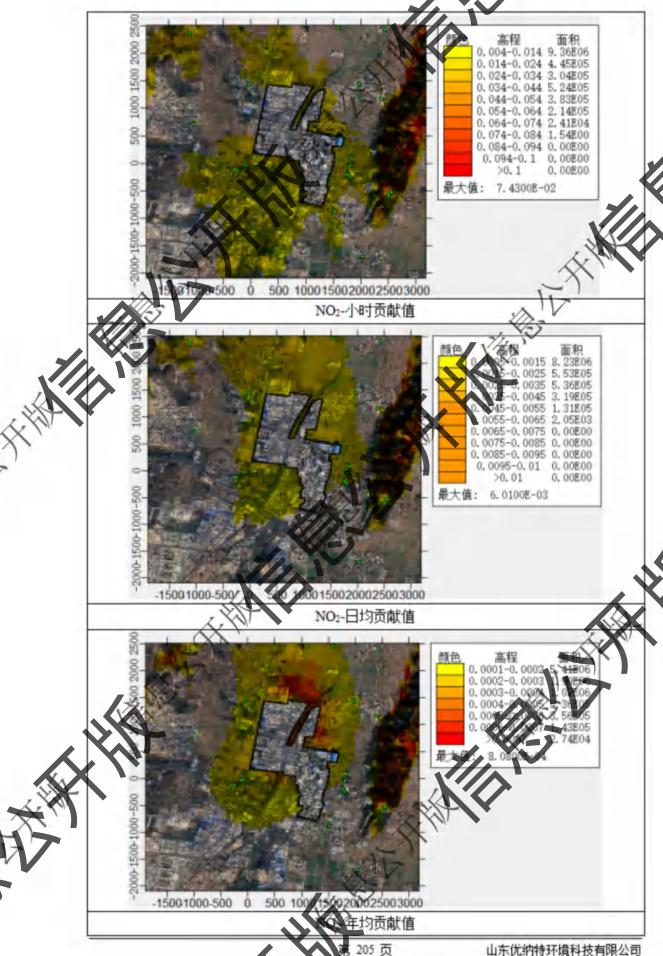
100 7



| 田均値 7,48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |        |              |           |            |       |     |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|--------------|-----------|------------|-------|-----|----|
| 小町平均   大田   10   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        | 日均值          | 4.46E,0   | 220813     | 0.30  | 达标  |    |
| おいけ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        | 年均值          | 7,482     | 平均值        | 0.12  | 达标  |    |
| 年均値                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        | 小时平均         | 23VE-03   | 22042911   | 0.47  | 达标  |    |
| 本石镇政府 日均値 3.05E-04 22072507 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 桥口村    | 日均值          | 1.80E-04  | 220219     | 0.12  | 达标  |    |
| 木石镇政府   日均値   3.05E-04   220720   0.20   达标   4寸9値   6.93E-05   平均値   0.12   达标   小町平均   2.84E-03   22102908   0.57   2.56E-03   220422   0.23   2.56E-03   2203208   0.57   2.56E-03   2 |     |        | 年均值;         | 2.73E-05  | 平均值        | 0.05  | 达标  |    |
| 本均値                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        | <b>小</b> 脉冲均 | 2.74E-03  | 22072507   | 0.55  | 达标  |    |
| 小町平均   2.84E-03   22102908   0.57   日均値   3.46E-04   220422   0.23   22083008   0.57   22084008   0.13   22084008   0.15   2.84E-03   22083008   0.57   2.84E-03   2208005   2.56E   2.900024   2.84E   2 |     | 木石镇政府  | 日均值          | 3.05E-04  | 220720     | 0.20  | 达标  |    |
| 田均値 3.46E-04 220422 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |        | 年均值          | 6.93E-05  | 平均值        | 0.12  | 达标  |    |
| # 日均値 7.77E-05 平均値 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |        | 小时平均         | 2.84E-03  | 22102908   | 0.57  | 125 |    |
| 小野平均 2.84E-03 22083008 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 水液色院   | 日均值          | 3.46E-04  | 220422     | 0.23  | 1   |    |
| 日均値   2.44E-04   220605   4016   达标   年均値   4.13E-05   平均値   0.07   达标   小时平均   2.56E-03   0.51   达标   日均値   2.27E-0   0.15   达标   日均値   2.27E-0   0.15   达标   日均値   2.27E-0   0.06   达标   日均値   0.06   达标   日均値   0.65   达标   日均値   0.65   22090224   2.84   达标   日均値   0.65   2209011   0.65   达标   日均値   0.5E-04   220911   0.65   达标   日均値   1.50E-03   22020710   0.30   达标   日均値   2.93E-05   平均値   0.05   达标   日均値   2.93E-05   平均値   0.05   达标   日均値   1.47E-04   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10   220326   0.10    |     |        | 年均值          | 7.77E-05  | 平均值        | 0.13  | 达标  |    |
| # 日均値 4.13E-05 平均値 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |        | 小时平均         | 2.84E-03  | 22083008   | 0.57  | 达标  |    |
| 中田平均 2.56E-03 20 0.51   込标 日均値 2.27E-0 0 0 0.15   込标 年 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sin | 木石社区   | 日均值          | 2.44E-04  | 220605,    | 3016  | 达标  |    |
| 個化职工医院       日均値       2.27E-0       0       0.15       达标         年均値       3.74年       平均値       0.06       达标         小时平均       1.40年の       22090224       2.84       达标         日均値       2.68E-04       220911       0.65       达标         年均値       3.82E-04       平均値       0.30       达标         化石沟       日均値       1.70E-04       220217       0.11       达标         上均値       2.93E-05       平均値       0.05       达标         日均値       1.47E-04       220326       0.10       公标         中均値       2.96E-05       平均値       0.05       公标         中均値       1.43E-03       220221       公表       达标         中均値       1.46E-04       平均値       2.24       达标         中均値       7.11E-04       2.24       达标         中均値       7.11E-04       0.47       达标         中均値       7.11E-04       0.47       达标         中均値       7.11E-04       0.47       达标         中均値       7.14E-05       平均値       0.02       达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | W   |        | 年均值          | 4.13E-05  | 平均值么       | 0.07  | 达标  |    |
| 年均値   3.2   2000224   2.84   达标   1.50E-04   220911   0.65   达标   1.50E-03   22020710   0.30   达标   1.50E-03   22020710   0.30   达标   1.70E-04   220517   0.11   达标   1.70E-04   220517   0.11   达标   1.42E-03   22063007   0.28   达述   1.47E-04   220326   0.10   2.56E-02   22032601   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80   5.80 | 1   |        | 小时平均         | 2.56E-03  | 10/12/     | 0.51  | 达标  |    |
| 年均値   3.7   平均値   0.06   达标     小时平均   1/2 E 0.2   22090224   2.84   达标     日均値   768 E -04   220911   0.65   达标     年均値   8 E -04   平均値   0.30   达标     年均値   1.50 E -03   22020710   0.30   达标     日均値   1.70 E -04   220517   0.11   达标     日均値   2.93 E -05   平均値   0.05   达标     日均値   1.47 E -04   220326   0.10   2000     年均値   2.96 E -05   平均値   0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 鲁化职工医院 | 日均值          | 2.27E-0   | 70%        | 0.15  | 达标  |    |
| 西荒村 日均値 2.68E-04 220911 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |        | 年均值          | 3.7/2 105 | 平均值        | 0.06  | 达标  |    |
| 年均値   1.50E-03   22020710   0.30   达标   1.50E-03   22020710   0.30   达标   1.70E-04   220517   0.11   达标   1.70E-04   220517   0.11   达标   1.42E-03   22063007   0.28   达添   1.47E-04   220326   0.10   22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |        | 小时平均         | 1/421/02  | 22090224   | 2.84  | 达标  |    |
| (化石沟 日外属 1.70E-03 22020710 0.30 达标 日外属 1.70E-04 220517 0.11 达标 日均值 2.93E-05 平均値 0.05 达标 1.42E-03 22063007 0.28 达标 日均値 1.47E-04 220326 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 西荒村    | 日均值          | 9.68E-04  | 220911     | 0.65  | 达标  |    |
| 化石沟 日                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |        | 年均值》         | 8 E-04    | 平均值        | 0.30  | 达标  |    |
| 任均値                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        | 1            | 1.50E-03  | 22020710   | 0.30  | 达标  |    |
| 大田平均                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | 化石沟    | 日间           | 1.70E-04  | 220517     | 0.11  | 达标  | l, |
| 日均值 1.47E-04 220326 0.10 次标 年均值 2.96E-05 平均值 0.05 次标 小时平均 2.56E-02 22032601 5.1 次标 日均值 1.43E-03 220221 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        | 年均值          | 2.93E-05  | 平均值        | 0.05  | 达标  | 5  |
| 年均値       2.96E-05       平均値       0.05       込标         小时平均       2.56E-02       22032601       5.10       込标         日均値       1.43E-03       220221       3.24       込标         年均値       1.46E-04       平均値       3.24       込标         小时平均       1.62E-02       22081020       3.24       込标         日均値       7.11E-04       23630       0.47       込标         年均値       8.11E-03       平均値       0.14       込标         小时平均       1.81€-04       22041508       0.36       込标         日均値       1.2E-04       220325       0.08       込标         年均値       1.47E-05       平均値       0.02       込标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | W.     | 小时平均         | 1.42E-03  | 22063007   | 0.28  | 达埃  |    |
| 小时平均 2.56E-02 22032601 5.10   大标 日均値 1.43E-03 220221 0.26   达标 年均値 1.46E-04 平均値 2.24   达标 小时平均 1.62E-02 22081020 3.24   达标 日均値 7.11E-04 2000 0.47   达标 年均値 8.11E-03 平均値 0.14   达标 小时平均 1.81を 22041508 0.36   达标 日均値 1.47E-05 平均値 0.02   达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 木石中学   | 日均值          | 1.47E-04  | 220326     | 0.10  |     |    |
| 大峪庙 日均値 1.43E-03 220221 0.25 达标 年均値 1.46E-04 平均値 2.25 达标 小时平均 1.62E-02 22031020 3.24 达标 日均値 7.11E-04 23630 0.47 达标 年均値 8.11E-02 平均値 0.14 达标 小时平均 1.81医数 22041508 0.36 达标 日均値 1.47E-05 平均値 0.02 达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 150    | 年均值          | 2.96E-05  | 平均值        | 0.05  | 公法标 |    |
| 年均値                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | 1      | 小时平均         | 2.56E-02  | 22032601   | 5.12  | 达标  |    |
| 小时平均     1.62E-02     22081020     3 24     达标       日均值     7.11E-04     25650     0.47     达标       年均值     8.11E-03     平均值     0.14     达标       小时平均     1.81€-04     22041508     0.36     达标       日均值     1.47E-05     平均值     0.02     达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3   | 大峪庙    | 日均值          | 1.43E-03  | 220221     | Ø\$5  | 达标  |    |
| 兴鲁     日均值     7.11E-04     2000     0.47     达标       年均值     8.11E-02     平均值     0.14     达标       小时平均     1.81至 22041508     0.36     达标       营风山     日均值     1.25E-04     220325     0.08     达标       年均值     1.47E-05     平均值     0.02     达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11  |        | 年均值          | 1.46E-04  | 平均值        |       | 达标  |    |
| 年均值     8.11E-03     平均值     0.14     达标       小时平均     1.81€ 98     22041508     0.36     达标       落凤山     日均值     1.25€ 04     220325     0.08     达标       年均值     1.47E-05     平均值     0.02     达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V   |        | 小时平均         | 1.62E-02  | 22081020   | 3 24  | 达标  |    |
| 年均值     8.11E-02     工作值     0.14     达标       小时平均     1.81至 22041508     0.36     达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 兴鲁     | 日均值          | 7.11E-04  | 2000       | 0.47  | 达标  |    |
| 落凤山 日均值 1.73E-04 220325 0.08 达标<br>年均值 1.47E-05 平均值 0.02 达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        | 年均值          | 8.11E-02  | <b>基均值</b> | 0.14  | 达标  |    |
| 落凤山 日均值 1.47E-05 平均值 0.02 达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |        | 小时平均         | 1.815-03  | 22041508   | 0.36  | 达标  |    |
| 年均值 1.47E-05 平均值 0.02 达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | 落凤山    | 日均值          | 1.73E-04  | 220325     | 0.08  |     |    |
| 区域最大 小野子(3) 6.50E-02 22013003 43.31 达标                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        | 年均值之         |           | 平均值        | 0.02  | 达标  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 区域最大   | 小时等为         | 6.50E-02  | 22013003   | 43.31 | 达标  |    |

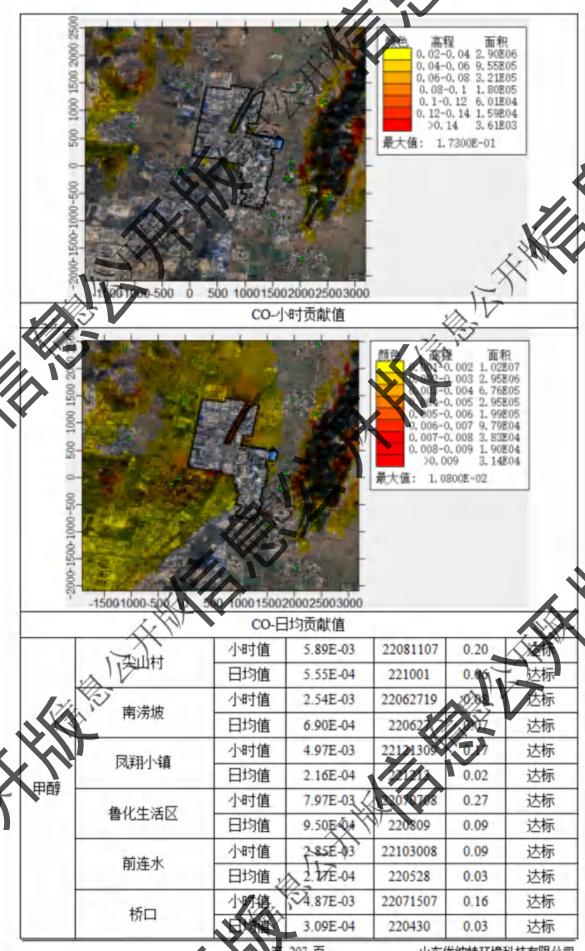
#### 兖矿鲁南化工有限公司微反应高效合成精细化学品节能表达为多种最影响报告书




第 202 页

| 1000 1500 2000 2500 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |           | 0,0003-0        | .0002 3, 2;<br>.0003 1, 1;<br>.0004 3, 98<br>.0005 2, 06 | E05<br>E05  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|-----------------|----------------------------------------------------------|-------------|
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | -         | >0.00           |                                                          | E-02<br>E04 |
| 200                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ZV.            | 1         | 最大值: 6.510      | 0E-04                                                    |             |
| 0-                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |                 |                                                          |             |
| 000-200             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 11        |                 |                                                          | 41.         |
| 1-005               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |           |                 |                                                          |             |
| 2000-               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4              |           |                 | X                                                        | Elm         |
| 2                   | \$407000 500 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500 1000150020 |           |                 | 113                                                      | ) '         |
| 1                   | 5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 均贡献值      | I               | NV                                                       | 144=        |
|                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 小时平均           | 3.66E-03  | 22101408        | \Q.83                                                    | 达标          |
|                     | 尖山村                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 日均值            | 5.92E-04  | 22042           | 0.74                                                     | 达标          |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 年均值            | 1.24E-04  | <b>是</b> 文值     | 0.31                                                     | 达标          |
| (11)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 小时平均           | 2.70E     | 22051308        | 1.35                                                     | 达标          |
| <u> </u>            | 南涝坡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 日均值            | 5.30E     | 220516          | 0.66                                                     | 达标          |
| '                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 年均值            | 1 18E×04  | 平均值             | 0.29                                                     | 达标          |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 小时平均           | 120.2. 93 | 22110208        | 1.51                                                     | 达标          |
|                     | 凤翔小镇                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 6E-04     | 220730          | 0.38                                                     | 达标          |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 6.68E-05  | 平均值             | 0.17                                                     | 11/1        |
|                     | m History P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 小阳子            | 4.57E-03  | 22042912        | 2.28                                                     | 达标          |
|                     | 鲁化生活区                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E 均值           | 4.60E-04  | 220326          | 0.57                                                     | 达标          |
| NO <sub>2</sub>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 年均值            | 7.75E-05  | 平均值             | 0.19                                                     |             |
|                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 小时平均           | 3.22E-03  | 22062506        | 1.61                                                     | (3)         |
|                     | 前達水                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 日均值            | 6.30E-04  | 220421          | 0.79                                                     | <b>达</b> 标  |
| 1-2                 | <b>45</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 年均值            | 1.17E-04  | 平均值             | 92                                                       | 标           |
|                     | À.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 小时平均           | 4.18E-03  | 22042908        | 09                                                       | 达标          |
|                     | 桥口村                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 日均值            | 3.58E-04  | 22021.          | 2045                                                     | 达标          |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 年均值            | 5.75E-05  | 77/值            | 0.14                                                     | 达标          |
|                     | No. of the last of | 小时平均           | 4.43E-03  | 2204220         | 2.21                                                     | 达标          |
|                     | 木石镇政府                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 日均值            | 5.04E-04  | 1               | 0.63                                                     | 达标          |
| * Kill              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Or - A-   | 77.45/5         | 0.32                                                     | ·++=        |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 年均值<br>小时平均    | 1.275-03  | 平均值<br>22122010 | 0.52                                                     | 达标          |

203 7


| 木石社区         | 小时平均 | 4.73E 07 | 220-2909 | 2.36  | 达标      |
|--------------|------|----------|----------|-------|---------|
|              | 日均值  | 5,82     | 220515   | 0.73  | 达标      |
|              | 年均值  | 1848E-05 | 平均值      | 0.24  | 达标      |
| 鲁化职工医院       | 小时平均 | 4.68E-03 | 22042912 | 2.34  | 达标      |
|              | 日均值了 | 4.96E-04 | 220706   | 0.62  | 达标      |
|              | 年均值  | 8.35E-05 | 平均值      | 0.21  | 达标      |
| 西荒村          | 小时平均 | 1.73E-02 | 22062903 | 8.63  | 达标      |
|              | 凹均值  | 1.15E-03 | 220911   | 1.44  | 达标      |
|              | 年均值  | 2.42E-04 | 平均值      | 0.60  | 125     |
|              | 小时平均 | 2.37E-03 | 22062706 | 1.18  | · White |
|              | 日均值  | 2.84E-04 | 220628   | 0.35  | 达标      |
|              | 年均值  | 5.13E-05 | 平均值      | 0.13  | 达标      |
| 木石中学         | 小时平均 | 2.26E-03 | 22020811 | (A)13 | 达标      |
|              | 日均值  | 2.88E-04 | 27/0607/ | 0.36  | 达标      |
|              | 年均值  | 5.90E-05 | 李人擅      | 0.15  | 达标      |
| 大峪庙          | 小时平均 | 2.96E-07 | 23/53/01 | 14.79 | 达标      |
|              | 日均值  | 1.662 95 | 220610   | 2.08  | 达标      |
|              | 年均值  | 1/881/04 | 平均值      | 0.47  | 达标      |
| 兴鲁           | 小时平均 | L86E-02  | 22081020 | 9.30  | 达标      |
|              | 日均值》 | 3/E-04   | 220129   | 1.05  | 达标      |
|              |      | 1.12E-04 | 平均值      | 0.28  | 达标      |
| 落凤山          | 小的变形 | 3.03E-03 | 22090408 | 1.51  | 达标      |
|              | 尺均值  | 2.15E-04 | 221210   | 0.27  | 达标      |
|              | 年均值  | 2.90E-05 | 平均值      | 0.07  | 达埃      |
| 区域最大<br>落地浓度 | 小时平均 | 7.43E-02 | 22013003 | 37.14 | 220     |
|              | 日均值  | 6.01E-03 | 221107   | 7.51  | 公达标     |
|              | 年均值  | 8.08E-04 | 平均值      | 2.02  | 达标      |
| 墨子湿地公园       | 小时平均 | 7.43E-02 | 22013003 | 100   | 达标      |
|              | 日均值  | 6.01E-03 | 221107   |       | 达标      |
|              | 年均值  | 8.08E-04 | 平均值      | 2,02  | 达标      |

第 204 页



|         |            | 4-114 |           |          |       |             |          |
|---------|------------|-------|-----------|----------|-------|-------------|----------|
| 215     | 山村         | 小时值   | 1.48E-02  | 22001120 | 0.15  | 达标          | 7        |
|         | шті        | 日均值   | 1,445.04  | 220811   | 0.04  | 达标          | 7        |
| -       | N#4#       | 小时值   | 97E-03    | 22060119 | 0.06  | 达标          |          |
| H       | 涝坡         | 日均值   | -6.98E-04 | 221205   | 0.02  | 达标          |          |
| FIX     | 33 .1、た書   | 小时值?  | 1.29E-02  | 22101819 | 0.13  | 达标          | ٦        |
| 121,3   | 孙镇         | 白肉值   | 8.74E-04  | 220901   | 0.02  | 达标          | 1        |
| A 21    | 4.75       | 时值    | 6.62E-03  | 22031408 | 0.07  | 达标          | 2        |
| 書化      | 生活区        | 日均值   | 6.93E-04  | 220713   | 0.02  | 达标          |          |
|         |            | 小时值   | 1.03E-02  | 22080121 | 0.10  | 达不          | <b>*</b> |
|         | 13/0/      | 日均值   | 1.01E-03  | 220531   | 0.03  | The second  | V        |
|         | 50         | 小时值   | 5.88E-03  | 22071405 | 0.06  | 达标          | 7        |
|         | M-LI       | 日均值   | 4.74E-04  | 220724   | 0.017 | 达标          |          |
|         | と古ておけた     | 小时值   | 1.58E-02  | 22031923 | 3076  | 达标          |          |
| ***     | 镇政府        | 日均值   | 2.35E-03  | 27/03/0/ | 0.06  | 达标          | 7        |
| +2      | 压压险        | 小时值   | 1.61E-02  | 15/15/   | 0.16  | 达标          |          |
| T       | 5医院        | 日均值   | 2.47E-00  | 7.07/2   | 0.06  | 达标          |          |
| +-7     | F41.67     | 小时值   | 8.072 505 | 22081007 | 0.08  | 达标          |          |
|         | 5社区        | 日均值   | 8.9415,04 | 221104   | 0.02  | 达标          |          |
| CO      | n T ÆRÞ    | 小时值   | 6.28E-03  | 22071308 | 0.06  | 达标          |          |
| 音化料     | 只工医院       | 日均值》  | 7.7.E-04  | 220916   | 0.02  | 达标          |          |
| -       | ***        | No.   | 2.47E-02  | 22083124 | 0.25  | 达标          |          |
| 1       | 荒村         | HAT   | 1.39E-03  | 220228   | 0.03  | 达标          | ],       |
| 21/     | 天 わ        | 人时值   | 6.02E-03  | 22052121 | 0.06  | 达标          | D        |
| 140     | 石沟         | 日均值   | 4.45E-04  | 220202   | 0.01  | 达埃          |          |
| *4      | XX         | 小时值   | 2.43E-02  | 22060121 | 0.24  | 22          |          |
|         | 44.4       | 日均值   | 1.52E-03  | 221009   | 0.04  | <b>公</b> 达标 | 7        |
| Ø 5 +   | 松庄         | 小时值   | 3,72E-02  | 22071101 | 0.37  | 达标          |          |
| 17/1/20 | 峪庙         | 日均值   | 1.56E-03  | 220711   | 005   | 达标          |          |
| 11/4    | <b>公</b> 角 | 小时值   | 1.72E-02  | 220602   | 15.7  | 达标          |          |
|         | <b>《鲁</b>  | 日均值   | 1.01E-03  | 22/325   | 0.03  | 达标          |          |
| X , z   | 凤山         | 小时值   | 3.73E-03  | TAP FO   | 0.04  | 达标          |          |
| 76      | ЭМШ        | 日均值   | 2,65E-04  | 1717     | 0.01  | 达标          |          |
| \sqrt   | 或最大        | 小时值   | 1.735     | 22103119 | 1.73  | 达标          |          |
|         | 也浓度        | 日均值   | 1.32E-02  | 220913   | 0.33  | 达标          |          |
| 聖之後     | 显地公园       | 小时值之  | 21 /3E-01 | 22103119 | 1.73  | 达标          |          |
| 至了公     | EMEZ IZI   | 日初    | 1.08E-02  | 221211   | 0.27  | 达标          |          |

THE REAL PROPERTY OF THE PARTY OF THE PARTY



207 页

|                             | 木石镇政府 木石医院 木石社区  鲁化职工医院  大石社区 | 小时值<br>日均值<br>小时值<br>小时值<br>小时值<br>小时值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.30E-03<br>6.30E-03<br>7.19E-04<br>7.57E-03<br>8.31E-04<br>8.27E-03<br>1.01E-03<br>4.17E-03<br>3.29E-04 | 22071507<br>220705<br>22071507<br>220705<br>22070708<br>220809<br>220809<br>22081107<br>220703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.21<br>0.06<br>0.24<br>0.07<br>0.25<br>0.08<br>0.28<br>0.10<br>0.14 | 达标 达标                                                              |
|-----------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|
|                             | 木石医院 木石社区  鲁化职工医院  成落分        | 小时值<br>日均值<br>小时值<br>日均值<br>小时值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.19E-04<br>7.57E-03<br>8.31E-04<br>8.27E-03<br>1.01E-03<br>4.17E-03                                     | 22071507<br>220705<br>22070708<br>220809<br>22070708<br>220809<br>22081107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.24<br>0.07<br>0.25<br>0.08<br>0.28<br>0.10                         | 达标 达标 达标                                                           |
|                             | 本石社区<br>鲁化职工医院<br>西流河         | 日均值<br>小时值<br>时值<br>小时值<br>日均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.19E-04<br>7.57E-03<br>8.31E-04<br>8.27E-03<br>1.01E-03<br>4.17E-03                                     | 220705<br>22070708<br>220809<br>22070708<br>220809<br>22081107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.07<br>0.25<br>0.08<br>0.28<br>0.10                                 | 达标<br>达标<br>达标                                                     |
|                             | 本石社区<br>鲁化职工医院<br>西流河         | 小时值<br>时值<br>时值<br>小时值<br>日均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.57E-03<br>8.31E-04<br>8.27E-03<br>1.01E-03<br>4.17E-03                                                 | 22070708<br>220809<br>22070708<br>220809<br>22081107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.25<br>0.08<br>0.28<br>0.10                                         | 达标<br>达标<br>达标                                                     |
|                             | 鲁化职工医院<br>西海河                 | 日均值<br>日均值<br>小时值<br>日均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.31E-04<br>8.27E-03<br>1.01E-03<br>4.17E-03                                                             | 220809<br>22070708<br>220809<br>22081107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.08<br>0.28<br>0.10                                                 | 达标<br>达标                                                           |
|                             | 鲁化职工医院<br>西海河                 | 时值<br>图均值<br>小时值<br>日均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.27E-03<br>1.01E-03<br>4.17E-03                                                                         | 22070708<br>220809<br>22081107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.28<br>0.10                                                         | 达标                                                                 |
|                             | 西海                            | 田均值<br>小时值<br>日均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.01E-03<br>4.17E-03                                                                                     | 220809<br>22081107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10                                                                 |                                                                    |
|                             | 西海                            | 小时值<br>日均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.17E-03                                                                                                 | 22081107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                    | 达标                                                                 |
|                             |                               | 日均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10. 1. 1. 1. 1.                                                                                          | - 1 L L L L L L L L L L L L L L L L L L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.14                                                                 | 14.5                                                               |
|                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.29E-04                                                                                                 | 220702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                    |
|                             |                               | 小时值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          | 220/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.03                                                                 | THE STATE OF                                                       |
|                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.52E-03                                                                                                 | 22041708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.05                                                                 | 达标                                                                 |
|                             |                               | 日均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.73E-04                                                                                                 | 220627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.017                                                                | 达标                                                                 |
|                             |                               | 小时值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.29E-03                                                                                                 | 22100308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2028                                                                 | 达标                                                                 |
|                             | 木石中学                          | 日均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.46E-04                                                                                                 | 27/1003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.04                                                                 | 达标                                                                 |
|                             | 1.10-2-                       | 小时值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.95E-03                                                                                                 | 120000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.17                                                                 | 达标                                                                 |
|                             | 大峪庙                           | 日均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.17E-04                                                                                                 | 2026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.04                                                                 | 达标                                                                 |
| T                           | 41-                           | 小时值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.9/1 005                                                                                                | 22070708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.17                                                                 | 达标                                                                 |
|                             | 兴鲁                            | 日均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.101.04                                                                                                 | 220326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.04                                                                 | 达标                                                                 |
|                             |                               | 小时值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 2.67E-03                                                                                               | 22071408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.09                                                                 | 达标                                                                 |
|                             | 落凤山                           | 日均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 E-04                                                                                                   | 221224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.02                                                                 | 达标                                                                 |
|                             | 区域最大                          | The same of the sa | 4.62E-01                                                                                                 | 22092020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.42                                                                | 达标                                                                 |
|                             | 落地浓度                          | 日次百                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.67E-02                                                                                                 | 220520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.67                                                                 | 达标                                                                 |
|                             |                               | 人时值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.62E-01                                                                                                 | 22092020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.42                                                                | 达标                                                                 |
|                             | 墨子湿地公园                        | 日均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.98E-02                                                                                                 | 220714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.98                                                                 | 达米                                                                 |
| 00-2 0002 005t-007t-005t-00 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          | 新色<br>0,005-<br>0,055-<br>0,105-<br>0,105-<br>0,205-<br>0,35-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0,405-<br>0 | 0. 105<br>0. 155<br>0. 27<br>2. 10                                   | 005<br>005<br>004<br>004<br>003<br>003<br>003<br>003<br>001<br>000 |

第 208 页



209 页

| 10.0                 |                                        |                   |                 | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |             |   |
|----------------------|----------------------------------------|-------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------|---|
|                      | 木石中学                                   | 小时值               | 4.34E 04        | 32112809                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 达标                                                        |             |   |
|                      | 小口十子                                   | 日均值               | 2,63            | 221128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 达标                                                        |             |   |
|                      | 大峪庙                                    | 小时值               | 38E-04          | 22081521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 达标                                                        |             | 4 |
|                      | 八四川田                                   | 日均值               | 2.47E-05        | 221128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 达标                                                        | •           | - |
|                      | 兴鲁                                     | 小时值了              | 2.15E-04        | 22112810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 达标                                                        | 28          | 1 |
|                      | 718                                    | 包均值               | 1.80E-05        | 221128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 达标                                                        |             | V |
|                      | 落凤山                                    | 时值                | 2.11E-04        | 22083008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 达标                                                        |             | ~ |
|                      | (H) of the                             | 凹均值               | 9.61E-06        | 220830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 达标                                                        |             |   |
|                      |                                        | 小时值               | 4.94E-03        | 22122106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           | <b>&gt;</b> |   |
|                      | 落地不度                                   | 日均值               | 6.36E-04        | 221123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · Jak                                                     |             |   |
|                      | 10000000000000000000000000000000000000 | 小时值               | 4.82E-03        | 22122606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 达标                                                        |             |   |
|                      |                                        | 日均值               | 5.21E-04        | 221224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 达标                                                        |             |   |
| -2000-1500-1000-500  | -15001000-5007                         |                   | 0025003000 时贡献值 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |             | 3 |
| 2004-1500-1000-500 0 |                                        | OD 1000 7 00 20 N | 22003000        | 集色<br>0.00004-0<br>0.00014-0<br>0.00024-0<br>0.00034-0<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.00054-2<br>0.000 | 00014 6-12<br>00024 1 1<br>00034 | 22 05<br>22 05<br>20 5<br>20 4<br>72 03<br>32 00<br>32 00 |             |   |
|                      |                                        | <b>基本</b> 日       | 均贡献值            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |             |   |
|                      |                                        | 17/14             | 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           | 1           |   |

## (2) 叠加现状浓度后的污染物达标情况

叠加现状环境质量浓度及其他在建污染源。响后,同时考虑项目替代源后,综合预测结果见表

表 5.2-24 拟建项目叠加后浓度预测结果表

| 污染物 | 预测点    | 李珍时段                                  | 贡献值 mg/m³ | 占标率% | 现状浓度 mg/m³ y | 量加后浓度 mg m³ | 占标率%    | 达标情况      |
|-----|--------|---------------------------------------|-----------|------|--------------|-------------|---------|-----------|
|     | 尖山村    | 4 平均                                  | 1.16E-03  | 0.58 | 1.20E-01     | 2.00E-01    | 60.58   | 达标        |
| Ī   | 南涝坡    | 计时平均                                  | 6.18E-04  | 0.31 | 1.207-01     | 2.00E-01    | 60.31   | 达标        |
| Ī   | 凤翔, 镇  | 小时平均                                  | 5.86E-04  | 0.29 | 1.272-01     | 2.00E-01    | 60.29   | 达标        |
| Ī   | 鲁化生活区  | 小时平均                                  | 6.00E-04  | 0.30 | 1.20E-11     | 2.00E-01    | 60.30   | 达标        |
| Ī   | 前连水    | 小时平均                                  | 5.15E-04  | 0.26 | 1.20E-01     | 2.00E-01    | 60.26   | 达         |
| 1   | 17 桥口  | 小时平均                                  | 5.70E-04  | 0.28 | 1.20E-01     | 2.00E-01    | 60.28   | <b>经标</b> |
|     | 木石镇政府  | 小时平均                                  | 5.63E-04  | 1932 | 1.20E-01     | 2.00E-01    | 60.28   | 达标        |
|     | 木石医院   | 小时平均                                  | 5.16E-04  | 26   | 1.20E-01     | 2.00E-01    | 66 26 5 | 达标        |
|     | 木石社区   | 小时平均                                  | 6.35E-04  | 3 2  | 1.20E-01     | 2.00E-01    | 60,32   | 达标        |
| 14  | 鲁化职工医院 | 小时平均                                  | 5.617-94  | 0.28 | 1.20E-01     | 2.00E-01    | 60,28   | 达标        |
| Ī   | 西荒村    | 小时平均                                  | 3/275-05  | 1.63 | 1.20E-01     | 2.00E-01    | 61.63   | 达标        |
|     | 化石沟    | 小时平均                                  | 483E-04   | 0.24 | 1.20E-01     | 2.035.91    | 60.24   | 达标        |
| 1   | 木石中学   | 小时平均                                  | 2.18E-03  | 1.09 | 1.20E-01     | 2.002-0     | 61.09   | 达标        |
|     | 大峪庙    | 小时来均                                  | 8.85E-03  | 4.42 | 1.20E-01     | 1 2.00E-01  | 64.42   | 达标        |
|     | 兴鲁     | 水时平均                                  | 6.63E-03  | 3.31 | 1.20E-01     | DE-01       | 63.31   | 达标        |
|     | 落凤山    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4.73E-04  | 0.24 | 1.20E-01     | 2.00E-01    | 60.24   | 达标        |

第 211 页

|                                        | 区域最大落地浓度      | 小时平均         | ALASE-N2  | 7.24  | 1.20E-01  | 2.00E-71  | 66.12 | 达标          |
|----------------------------------------|---------------|--------------|-----------|-------|-----------|-----------|-------|-------------|
|                                        | 墨子森林公园        | 小时平均人        | 4/4/E-02  | 7.24  | 5.00E-03  | 2.00      | 9.74  | 达标          |
|                                        | 尖山村           | 小时平过         | 2.51E-04  | 2.51  | 4.00E-03  | 4×25B-03  | 42.51 | 达标          |
|                                        | 南涝坡           | 少数中军         | 2.91E-04  | 2,91  | 4.00E-03  | 4.29E-03  | 42.91 | 达标          |
|                                        | 凤翔小镇          | 明平均          | 6.45E-04  | 6.45  | 4.00E-03  | 4.64E-03  | 46.45 | 达标          |
|                                        | 鲁化生活区         | 争时平均         | 2.13E-03  | 21.31 | 4.00E-93  | 6.13E-03  | 61.31 | 达标          |
|                                        | 前连水           | 小时平均         | 3.79E-04  | 3.79  | 4,00E 0   | 4.38E-03  | 43.79 | 达标          |
|                                        | 换C            | 小时平均         | 2.00E-04  | 2.00  | 4.00 E AS | 4.20E-03  | 42.00 | 达标          |
|                                        | 來石續政府         | 小时平均         | 5.71E-04  | 5.71  | 00E-03    | 4.57E-03  | 45.71 | 达抚          |
|                                        | 、大石医院         | 小时平均         | 6.88E-04  | 6.88  | 4.00E-03  | 4.69E-03  | 46.88 | 这           |
| ************************************** | <b>ノ</b> 木石社区 | 小时平均         | 2.26E-03  | 22/04 | 4.00E-03  | 6.26E-03  | 62.64 | 入达标         |
| 硫化氢人                                   | 鲁化职工医院        | 小时平均         | 9.32E-04  | 1924  | 4.00E-03  | 4.93E-03  | 49.32 | <b>/</b> 达标 |
| (A)                                    | 西荒村           | 小时平均         | 8.73E-05  | 1/202 | 4.00E-03  | 4.09E-03  | 40.82 | 达标          |
| 11                                     | 化石沟           | 小时平均         | 7.46F-04  | 7.46  | 4.00E-03  | 4.75E-03  | 47.46 | 达标          |
| 1.                                     | 木石中学          | 小时平均         | 3.VE-04   | 3.07  | 4.00E-03  | 4.31E-03  | 13.07 | 达标          |
|                                        | 大峪庙           | 小时平均         | 12/04E 05 | 0.20  | 4.00E-03  | 4.02F 98  | 40.20 | 达标          |
|                                        | 兴鲁            | 小时平均         | 2.26E-05  | 0.23  | 4.00E-03  | 4.021     | 40.23 | 达标          |
|                                        | 落凤山           | 小时平均         | 2.38E-04  | 2.38  | 4.00E-03  | E-03      | 42.38 | 达标          |
|                                        | 区域最大落地浓度      | 小晚晚均         | 3.20E-03  | 31.96 | 4.00E-03  | 7.20 - 03 | 71.96 | 达标          |
|                                        | 墨子森林公园        | <b>外时</b> 平均 | 2.13E-03  | 21.29 | 5.00E-04  | 63E-03    | 26.29 | 达标          |
| VOCs                                   | 尖山村           | 9 平均         | 2.18E-02  | 1.09  | 1.06E-01  | 1.28E-01  | 6.39  | 达标          |

第 212 页

|                 |          |      | - XAII     |       |          |          |       |             |
|-----------------|----------|------|------------|-------|----------|----------|-------|-------------|
|                 | 南涝坡      | 小时平均 | 2.74E-12   | 1.37  | 1.06E-01 | 1.33E-71 | 6.67  | 达标          |
|                 | 凤翔小镇     | 小时平均 | \$1.0 F-02 | 1.51  | 1.06E-01 | 1.30 (8) | 6.81  | 达标          |
|                 | 鲁化生活区    | 小时来过 | 8.15E-02   | 4.07  | 1.06E-01 | №7E-01   | 9.37  | 达标          |
|                 | 前连水      | 小规中写 | 3.81E-02   | 1.91  | 1.06E-01 | 1.44E-01 | 7.21  | 达标          |
|                 | 桥口       | 明平均  | 5.77E-02   | 2.89  | 1.06E-01 | 1.64E-01 | 8.19  | 达标          |
|                 | 木石镇政府    | 争时平均 | 2.70E-02   | 1,35  | 1.06E-01 | 1.33E-01 | 6.65  | 达标          |
|                 | 木石医院     | 小时平均 | 2.71E-02   | 1.36  | 1,000    | 1.33E-01 | 6.66  | 达标          |
|                 | 木石住区     | 小时平均 | 6.32E-02   | 3.16  | 1.00EA   | 1.69E-01 | 8.46  | 达标          |
|                 | 鲁化职工医院   | 小时平均 | 4.81E-02   | 2.41  | 06E-01   | 1.54E-01 | 7.71  | 达标          |
|                 | 西荒村      | 小时平均 | 1.59E-02   | 0.80  | 1.06E-01 | 1.22E-01 | 6.10  | ,iA         |
| 4               | 化石沟      | 小时平均 | 2.60E-02   | 1.00  | 1.06E-01 | 1.32E-01 | 6.60  | 入达标         |
| 1.7/2           | 木石中学     | 小时平均 | 5.13E-01   | 23.4  | 1.06E-01 | 6.19E-01 | 30.94 | <b>/</b> 达标 |
| 134             | 大峪庙      | 小时平均 | 5.45E-02   | 1/22  | 1.06E-01 | 1.61E-01 | 8.83  | 达标          |
| 4               | 兴鲁       | 小时平均 | 4.09E-02   | 2.05  | 1.06E-01 | 1.47E-01 | 2.35  | 达标          |
| 1.              | 落凤山      | 小时平均 | 4.ME 02    | 2.11  | 1.06E-01 | 1.48E-01 | 7.41  | 达标          |
|                 | 区域最大落地浓度 | 小时平均 | 12/6/E/01  | 29.80 | 3.12E-01 | 7.45E 9  | 37.27 | 达标          |
|                 | 墨子森林公园   | 小时平均 | 4.33E-01   | 21.67 | 3.12E-01 | 75E      | 37.27 | 达标          |
|                 | 25-1-44  | 日均值  | 1.51E-03   | 1.01  | 3.80E-02 | E-02     | 25.40 | 达标          |
|                 | 尖山村      | 年的值  | 3.75E-04   | 0.63  | 1.26E-02 | P.25 02  | 21.57 | 达标          |
| SO <sub>2</sub> | -tryttle | A以值  | 4.46E-04   | 0.30  | 3.80E-02 | 80E-02   | 25.36 | 达标          |
|                 | 南涝坡      | 年均值  | 8.70E-05   | 0.14  | 1.26E-02 | 1.27E-02 | 21.09 | 达标          |

第 213 页

|      | 回報小韓           | 日均值 | 6.29E-M    | 0.42  | 3.80E-02 | 3.81E-02  | 25.37  | 达标    |
|------|----------------|-----|------------|-------|----------|-----------|--------|-------|
|      | 凤翔小镇           | 年均值 | 1.75E-04   | 0.30  | 1.26E-02 | 1.20 (4)  | 21.24  | 达标    |
|      | 毎ル井洋豆          | 日均值 | 3.37E-04   | 0.22  | 3.80E-02 | 3.50B-02  | 25.34  | 达标    |
|      | 鲁化生活区          | 無順  | 5.70E-05   | 0.10  | 1.26E-02 | 1.26E-02  | 21.04  | 达标    |
|      | ***** <b>1</b> | 的值  | 5.69E-04   | 0.38  | 3.80E-02 | 3.81E-02  | 25.37  | 达标    |
|      | 前连水            | 年別值 | 1.04E-04   | 0.17  | 1.26E-92 | 1.27E-02  | 21.12  | 达标    |
|      | 45.0//A        | 日均值 | 2.77E-04   | 0.18  | 3,800    | 3.80E-02  | 25.34  | 达标    |
|      | 100            | 年均值 | 4.58E-05   | 0.08  | 1.205.43 | 1.26E-02  | 21.02  | 达标    |
| 3/   | 大石镇政府          | 日均值 | 6.98E-04   | 0.47  | \$0E-02  | 3.80E-02  | 25.36  | 达标    |
|      | 文 互辑政府         | 年均值 | 1.79E-04   | 0.30  | 1.26E-02 | 1.27E-02  | 21.24  | 这     |
|      | +7.500         | 日均值 | 8.33E-04   | 0.56  | 3.80E-02 | 3.80E-02  | 25.35  | 沙标    |
| 17/2 | 木石医院           | 年均值 | 1.89E-04   | 10    | 1.26E-02 | 1.28E-02  | 21.26  | 21.24 |
| (3)  | +7457          | 日均值 | 3.70E-04   | 1/100 | 3.80E-02 | 3.80E-02  | 25.945 | 达标    |
| 1    | 木石社区           | 年均值 | 6.47E-03   | 7.11  | 1.26E-02 | 1.26E-02  | 31.05  | 达标    |
|      | 毎ル町工匠で         | 日均值 | 3. VE-0    | 0.23  | 3.80E-02 | 3.80E-02  | 25.34  | 达标    |
|      | 鲁化职工医院         | 年均值 | 15 E 4 3 E | 0.10  | 1.26E-02 | 1.26F 0   | 21.24  | 达标    |
|      | TF++++         | 日均值 | 1.21E-03   | 0.81  | 3.80E-02 | 3.801     | 25.35  | 达标    |
|      | 西荒村            | 年均值 | 2.84E-04   | 0.47  | 1.26E-02 | E-02      | 21.12  |       |
|      | ルエジカ           | 日均值 | 2.71E-04   | 0.18  | 3.80E-02 | 7.80 - 02 | 25.35  | 达标    |
|      | 化石沟            | 年均值 | 4.58E-05   | 0.08  | 1.26E-02 | 26E-02    | 21.02  | 达标    |
|      | 木石中学           | 日河值 | 7.17E-04   | 0.48  | 3.80E-02 | 3.80E-02  | 25.34  | 达标    |

第 214 页

|                 |            |         |          |       |              | X        |                                                                                                                                                   |             |
|-----------------|------------|---------|----------|-------|--------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                 |            | 年均值     | 0.93E-85 | 0.17  | 1.26E-02     | 1.27E-72 | 21.11                                                                                                                                             | 达标          |
|                 | <b>土松</b>  | 日均值     | 1/90F-03 | 1.27  | 3.80E-02     | 3.84 1   | 25.58                                                                                                                                             | 达标          |
|                 | 大峪庙        | 年均值     | 2.71E-04 | 0.45  | 1.26E-02     | 1×88-02  | 21.40                                                                                                                                             | 达标          |
|                 | <b>沙</b> 鱼 | 以值了     | 1.15E-03 | 0.77  | 3,80E-02     | 3.82E-02 | 25.50                                                                                                                                             | 达标          |
|                 | 兴鲁         | 的值      | 1.67E-04 | 0.28  | 1.26E-02     | 1.27E-02 | 21.22                                                                                                                                             | 达标          |
|                 | 芬园山        | 自为值     | 2.00E-04 | 0.13  | 3.80E-02-7// | 3.80E-02 | 25.34                                                                                                                                             | 达标          |
|                 | 落凤山        | 年均值     | 2.80E-05 | 0.05  | 1,302        | 1.26E-02 | 20.99                                                                                                                                             | 达标          |
|                 | 区域最大       | 日均值     | 5.65E-03 | 11.31 | 3.80E.42     | 3.85E-02 | 77.06                                                                                                                                             | 达标          |
|                 | 落地浓度       | 年均值     | 9.76E-04 | 1.63  | 26E-02       | 1.35E-02 | 22.57                                                                                                                                             | 达标          |
|                 |            | 日均值     | 5.65E-03 | 11.31 | 3.80E-02     | 3.85E-02 | 77.06                                                                                                                                             | 心           |
| ,               | 墨子湿地公园     | 年均值     | 8.31E-04 | 4.16  | 1.26E-02     | 1.34E-02 | 25.58     达标       21.40     达标       25.50     达标       21.22     达标       25.34     达标       20.99     达标       77.06     达标       22.57     达标 |             |
| 17/2            | 5          | 日均值     | 1.73E-03 | 124   | 5.60E-02     | 5.62E-02 | 70.29                                                                                                                                             | <b>/</b> 达标 |
| (3)             | 尖山村        | 年均值     | 3.64E-04 | 1001  | 2.32E-02     | 2.36E-02 | 58.80                                                                                                                                             | 达标          |
|                 | == \#1#    | 日均值     | 5.85E-04 | 7.73  | 5.60E-02     | 5.60E-02 | 30.02                                                                                                                                             | 达标          |
| 1.              | 南涝坡        | 年均值     | 1 JE 0   | 0.33  | 2.32E-02     | 2.33E-02 | 58.31                                                                                                                                             | 达标          |
| NO.             | 日光和小さま     | 日均值     | 124 E 04 | 0.93  | 5.60E-02     | 5.61E 0  | 70.17                                                                                                                                             | 达标          |
| NO <sub>2</sub> | 凤翔小镇       | 年均值     | 1.92E-04 | 0.48  | 2.32E-02     | 2.34E    | 58.46                                                                                                                                             | 达标          |
|                 | 各ルルメロ      | 日均值     | 4.97E-04 | 0.62  | 5.60E-02     | E-02     | 70.00                                                                                                                                             | 达标          |
|                 | 鲁化生活区      | 年的值     | 8.62E-05 | 0.22  | 2.32E-02     | 2.332-02 | 58.20                                                                                                                                             | 达标          |
|                 | ****       | Atylife | 7.60E-04 | 0.95  | 5.60E-02     | 60E-02   | 70.05                                                                                                                                             | 达标          |
|                 | 前连水        | 年习值     | 1.38E-04 | 0.35  | 2.32E-02     | 2.33E-02 | 58.33                                                                                                                                             | 达标          |

第 215 页

|     |           |      |          |       |              |           | /_/                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|-----------|------|----------|-------|--------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | t∓⊓t±     | 日均值  | 4 36E-M  | 0.55  | 5.60E-02     | 5.60E-02  | 70.00                                                                                                                                                                                                                                                                                                                                                                                                                  | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 桥口村       | 年均值  | 6.4 F-05 | 0.16  | 2.32E-02     | 2.33      | 58.14                                                                                                                                                                                                                                                                                                                                                                                                                  | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 十一丁と南でおけた | 日均值  | 5.52E-04 | 0.69  | 5.60E-02     | 3.63B-02  | 70.38                                                                                                                                                                                                                                                                                                                                                                                                                  | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 木石镇政府     | 無順了  | 1.53E-04 | 0,38  | 2.32E-02     | 2.33E-02  | 58.36                                                                                                                                                                                                                                                                                                                                                                                                                  | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | +750      | 知道   | 5.73E-04 | 0.72  | 5.60E-02     | 5.64E-02  | 70.45                                                                                                                                                                                                                                                                                                                                                                                                                  | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 木石医院      | 年的值  | 1.54E-04 | 0.38  | 2.32E-92-7// | 2.33E-02  | 58.36                                                                                                                                                                                                                                                                                                                                                                                                                  | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ī   | +++       | 日均值  | 6.59E-04 | 0.82  | 5,000        | 5.60E-02  | 70.00                                                                                                                                                                                                                                                                                                                                                                                                                  | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 木石社区      | 年均值  | 1.06E-04 | 0.27  | 2.325.03     | 2.33E-02  | 58.24                                                                                                                                                                                                                                                                                                                                                                                                                  | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | WIND THE  | 日均值  | 5.26E-04 | 0.66  | 60E-02       | 5.60E-02  | 70.00                                                                                                                                                                                                                                                                                                                                                                                                                  | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 鲁心职工医院    | 年均值  | 9.06E-05 | 0.23  | 2.32E-02     | 2.33E-02  | 70.38                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | 西荒村       | 日均值  | 1.36E-03 | 1.10  | 5.60E-02     | 5.61E-02  | 70.08                                                                                                                                                                                                                                                                                                                                                                                                                  | 込标                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1/2 | 5 四荒村     | 年均值  | 2.67E-04 | 100   | 2.32E-02     | 2.35E-02  | 58.14       达标         70.38       达标         58.36       达标         70.45       达标         58.36       达标         70.00       达标         58.24       达标         70.00       达标         58.21       达标         70.08       达标         58.65       上达标         70.01       达标         58.32       达标         70.02       达标         58.77       达标         70.00       达标         58.77       达标         70.00       达标 |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (3) | ルフル       | 日均值  | 3.46E-04 | 1/042 | 5.60E-02     | 5.60E-02  | 70.00                                                                                                                                                                                                                                                                                                                                                                                                                  | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1/1 | 化石沟       | 年均值  | 5.95E-93 | 7.15  | 2.32E-02     | 2.33E-02  | 58.13                                                                                                                                                                                                                                                                                                                                                                                                                  | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.  | +74%      | 日均值  | 9.4E-0   | 1.19  | 5.60E-02     | 5.60E-02  | 70.01                                                                                                                                                                                                                                                                                                                                                                                                                  | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 木石中学      | 年均值  | 15 E 04  | 0.34  | 2.32E-02     | 2.33F 93  | 58.14                                                                                                                                                                                                                                                                                                                                                                                                                  | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 1400      | 日均值  | 2.44E-03 | 3.04  | 5.50E-02     | 5.00E     | 70.02                                                                                                                                                                                                                                                                                                                                                                                                                  | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 大峪庙       | 年均值人 | 3.16E-04 | 0.79  | 2.32E-02     | E-02      | 58.77                                                                                                                                                                                                                                                                                                                                                                                                                  | 58.14       达标         70.38       达标         58.36       达标         70.45       达标         58.36       达标         70.00       达标         58.24       达标         70.00       达标         58.21       达标         70.08       达标         58.65       ン达标         58.65       ン达标         58.32       达标         70.01       达标         58.32       达标         70.02       达标         58.77       达标         70.00       达标         58.48       达标 |
|     | W4        | 日均值  | 1.59E-03 | 1.99  | 5.60E-02     | ₹.60 2-02 | 70.00                                                                                                                                                                                                                                                                                                                                                                                                                  | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 兴鲁        | 车均值  | 2.00E-04 | 0.50  | 2.32E-02     | 34E-02    | 58.48                                                                                                                                                                                                                                                                                                                                                                                                                  | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 落凤山       | 日羽值  | 2.72E-04 | 0.34  | 5.60E-02     | 5.60E-02  | 70.00                                                                                                                                                                                                                                                                                                                                                                                                                  | 达标                                                                                                                                                                                                                                                                                                                                                                                                                                             |

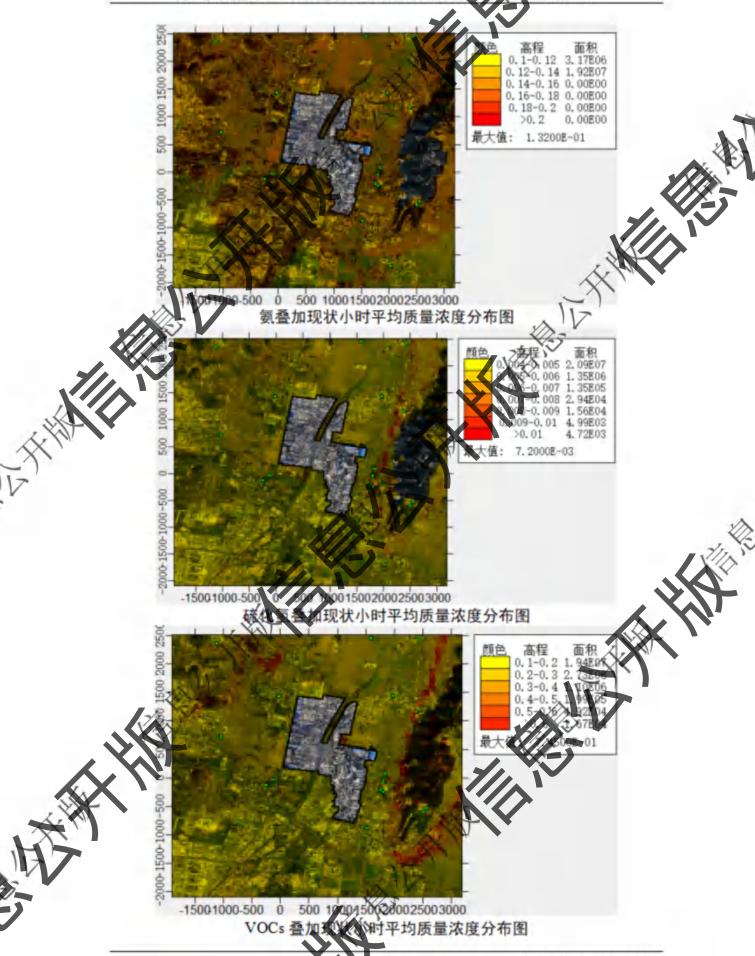
第 216 页

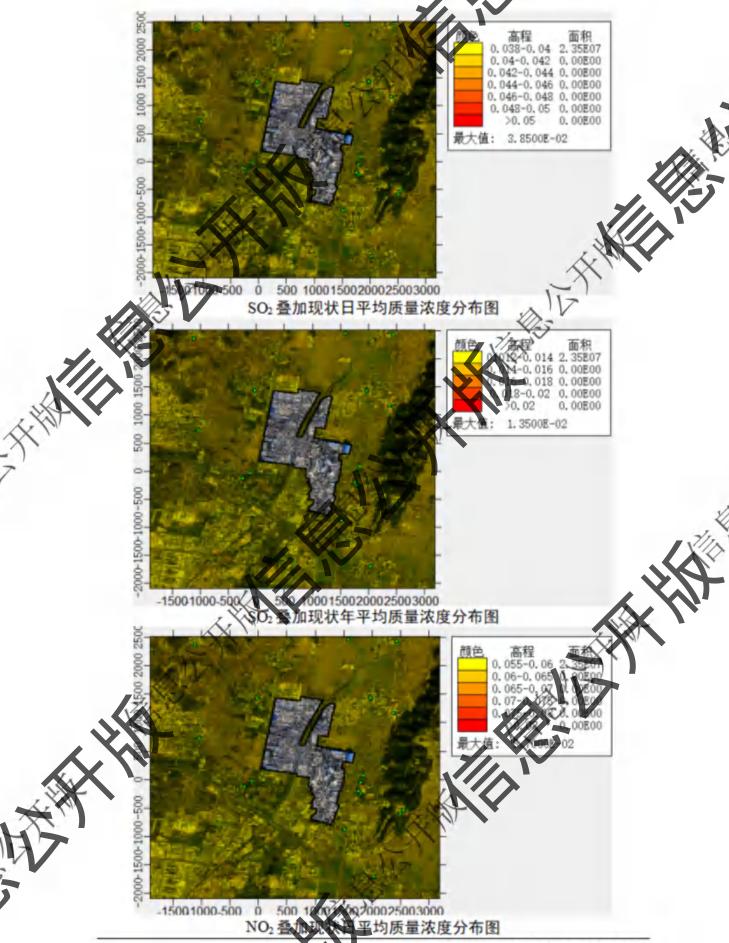
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | - XAV      |       |            |           |                      |             |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-------|------------|-----------|----------------------|-------------|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 年均值  | 3.45E-35   | 0.09  | 2.32E-02   | 2.32E-02  | 58.07                | 达标          |
|      | 区域最大                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 日均值  | √0/3 XE-03 | 9.22  | 5.70E-02   | 5.76      | 71.26                | 达标          |
|      | 落地浓度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 年均值  | 1.15E-03   | 2.87  | 2.32E-02   | 243E-02   | 60.84                | 达标          |
|      | <b>図</b> プ海州八回                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 以加入  | 7.37E-03   | 9.22  | 5.70E-02   | 5.70E-02  | 71.26                | 达标          |
|      | 墨子湿地公园                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 的值   | 9.21E-04   | 2.30  | 2.32E-02 2 | 2.41E-02  | 60.28                | 达标          |
|      | 215(1)++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 一种值  | 1.57E-03   | 0.05  | 5.00E-92   | 5.16E-02  | 1.72                 | 达标          |
|      | 尖山村                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 日均值  | 1.79E-04   | 0.02  | 5,002      | 5.02E-02  | 5.02                 | 达标          |
|      | -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 小时值  | 2.18E-03   | 0.07  | 5.00E-03   | 5.22E-02  | 1.74                 | 达标          |
|      | The state of the s | 日均值  | 5.27E-04   | 0.05  | 00E-02     | 5.05E-02  | 5.05<br>1.72<br>2.72 | 达标          |
|      | 17. 凤翔小镇                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 小时值  | 1.55E-03   | 0.05  | 5.00E-02   | 5.16E-02  | 1.72                 | 心           |
| 1    | 以外                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 日均值  | 6.69E-05   | 0.01  | 5.00E-02   | 5.01E-02  | 5.01                 | 沙标          |
| 17/2 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 小时值  | 4.02E-03   | 1013  | 5.00E-02   | 5.40E-02  | 1.80                 | <b>/</b> 达标 |
|      | 鲁化生活区                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 日均值  | 6.46E-04   | 10.06 | 5.00E-02   | 5.06E-02  | 71.26                |             |
| 中等   | <u>→</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 小时值  | 2.25E-93   | 7.07  | 5.00E-02   | 5.22E-02  | 111//2               | 达标          |
| 1.   | 前连水                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 日均值  | 2. VE-04   | 0.02  | 5.00E-02   | 5.02E-02  | 5.02                 | 达标          |
|      | 4£ 1744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 小时值  | 14/F-12 03 | 0.15  | 5.00E-02   | 5.45E (A) | 1.82                 | 达标          |
|      | 桥口村                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 日均值  | 2.59E-04   | 0.03  | 5.00E-02   | 5.03E A/  | 5.03                 | 71.26       |
| 1    | 十二结功效                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 小时值儿 | 5.22E-03   | 0.17  | 5.00E-02   | XE-02     | 1.84                 | 达标          |
|      | 木石镇政府                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 日均值  | 3.48E-04   | 0.03  | 5.00E-02   | ₹.0.2.02  | 5.03                 | 达标          |
|      | +750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 好值   | 6.06E-03   | 0.20  | 5.00E-02   | 61E-02    | 1.87                 | 达标          |
|      | 木石医院                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 目列值  | 4.41E-04   | 0.04  | 5.00E-02   | 5.04E-02  | 5.04                 | 达标          |

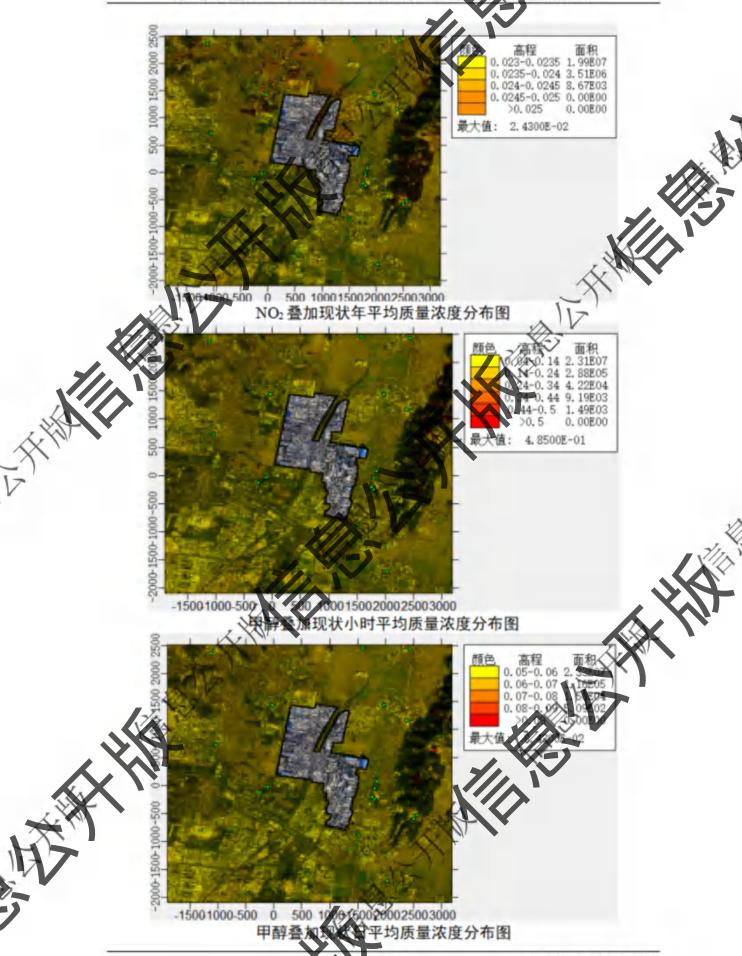
第 217 页

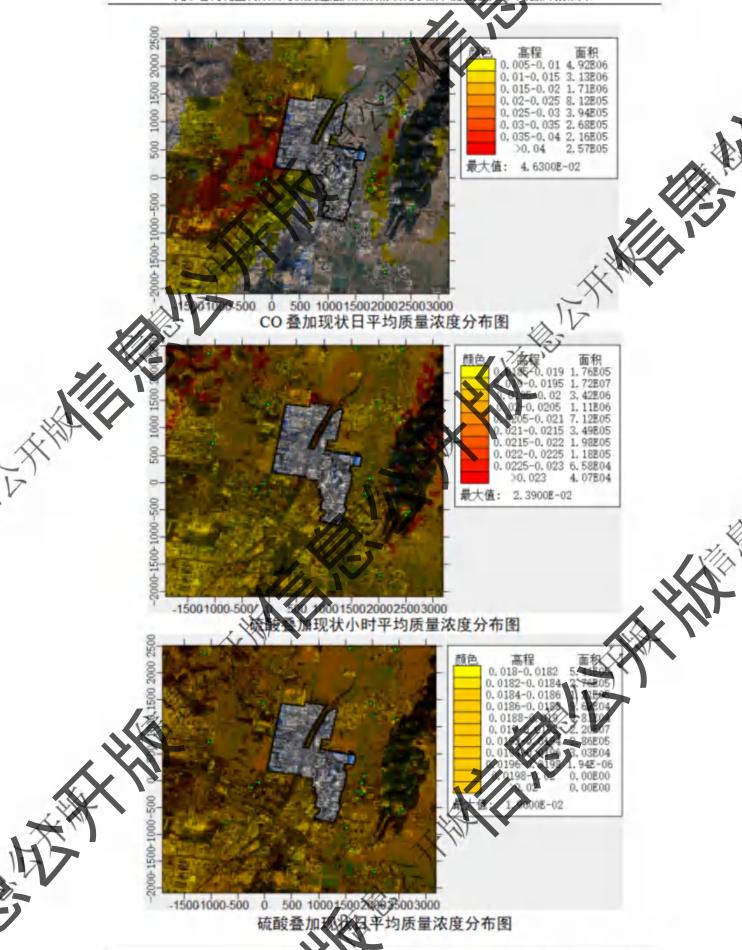
|     |                |       | _ X _ X _ X _ X _ X _ X _ X _ X _ X _ X |       |            | X         |                                                                                                        |             |
|-----|----------------|-------|-----------------------------------------|-------|------------|-----------|--------------------------------------------------------------------------------------------------------|-------------|
|     | +7:457         | 小时值   | 3.70E-43                                | 0.12  | 5.00E-02   | 5.37E-20  | 1.79                                                                                                   | 达标          |
|     | 木石社区           | 日均值   | \$ 0 E-04                               | 0.06  | 5.00E-02   | 5.00      | 5.06  1.81  5.07  1.69  5.01  1.70  5.01  1.75  5.03  1.74  5.02  1.72  5.01  16.17  8.43  16.17  7.78 | 达标          |
|     | 岳 ル町 工 医9六     | 小时值   | 4.22E-03                                | 0.14  | 5.00E-02   | 3.42B-02  | 1.81                                                                                                   | 达标          |
|     | 鲁化职工医院         | 以加入   | 6.91E-04                                | 0.07  | 5.00E-02   | 5.07E-02  | 5.07                                                                                                   | 达标          |
|     | <b>2</b>       | 时值    | 8.08E-04                                | 0.03  | 5.00E-02 2 | 5.08E-02  | 1.69                                                                                                   | 达标          |
|     | 西荒村            | 争值    | 1.29E-04                                | 0.01  | 5.00E-02   | 5.01E-02  | 5.01                                                                                                   | 达标          |
|     | 11/7/2011      | 小时值   | 1.10E-03                                | 0.04  | 5,002      | 5.11E-02  | 1.70                                                                                                   | 达标          |
|     | 11.14          | 日均值   | 1.33E-04                                | 0.01  | 5.00E.A3   | 5.01E-02  | 5.01                                                                                                   | 达标          |
|     | 4              | 小时值   | 2.41E-03                                | 0.08  | 00E-02     | 5.24E-02  | 1.75                                                                                                   | 达机          |
|     | 大石中学           | 日均值   | 2.83E-04                                | 0.03  | 5.00E-02   | 5.03E-02  | 5.03                                                                                                   | 这           |
|     | 1100           | 小时值   | 2.10E-03                                | 0.07  | 5.00E-02   | 5.21E-02  |                                                                                                        | 沙标          |
|     | 大峪庙            | 日均值   | 2.31E-04                                | 1000  | 5.00E-02   | 5.02E-02  | 5.02                                                                                                   | <b>/</b> 达标 |
| (3) | 火鱼             | 小时值   | 2.15E-03                                | 0.07  | 5.00E-02   | 5.22E-02  | 1.45                                                                                                   | 达标          |
|     | 兴鲁             | 日均值   | 2.22E-04                                | 0.02  | 5.00E-02   | 5.02E-02  | \$.02                                                                                                  | 达标          |
|     | *5.0           | 小时值   | 1. VE 07                                | 0.05  | 5.00E-02   | 5.16E-02  | 1.72                                                                                                   | 达标          |
|     | 落凤山            | 日均值   | 144 E 04                                | 0.01  | 5.00E-02   | 5.01E 0   | 1.79                                                                                                   |             |
|     | 区域最大           | 小时值   | 4.35E-01                                | 14,51 | 5.00E-02   | 4.86E (4) | 16.17                                                                                                  | 达标          |
|     | 落地浓度           | 日均值   | 3.43E-02                                | 3.43  | 5.00E-02   | 9.41E-02  | 1.72     达标       5.01     达标       16.17     达标                                                       |             |
|     | <b>聖</b> 乙海州八国 | 小的连   | 4.35E-01                                | 14,51 | 5.00E-02   | V.852-01  | 16.17                                                                                                  | 达标          |
|     | 墨子湿地公园         | Abdil | 2.78E-02                                | 2.78  | 5.00E-02   | /8E-02    | 7.78                                                                                                   | 达标          |
| co  | 尖山村            | 日河值   | 1.45E-02                                | 0.36  | 1.00E+00   | 1.00E+00  | 25.01                                                                                                  | 达标          |

第 218 页


|      |          |      |          |      |             |          | /-/   |      |
|------|----------|------|----------|------|-------------|----------|-------|------|
|      | 南涝坡      | 日均值  | 3.27E-33 | 0.08 | 1.00E+00    | 1.00E=20 | 25.00 | 达标   |
| 1    | 凤翔小镇     | 日均值  | 1/0 F-02 | 0.27 | 1.00E+00    | 1.00 400 | 25.00 | 达标   |
|      | 鲁化生活区    | 日均值  | 1.06E-02 | 0.26 | 1.00E+00    | 1.40E+00 | 25.00 | 达标   |
|      | 前连水      | 。與個人 | 3.77E-03 | 0.09 | 1.00E+00    | 1100E+00 | 25.00 | 达标   |
|      | 桥口村      | 知道   | 2.04E-03 | 0.05 | 1.00E+00    | 1.00E+00 | 25.00 | 达标   |
|      | 木石镇政府    | 争值   | 3.30E-02 | 0.82 | 1.00E+007// | 1.01E+00 | 25.18 | 达标   |
|      | 木石医院     | 日均值  | 3.53E-02 | 0.88 | 1.00E       | 1.01E+00 | 25.25 | 达标   |
|      | 木石は区     | 日均值  | 1.55E-02 | 0.39 | 1.005       | 1.00E+00 | 25.00 | 达标   |
|      | 鲁化职工医院   | 日均值  | 6.92E-03 | 0.17 | 00E+00      | 1.00E+00 | 25.00 | 达核   |
|      | 西荒村      | 日均值  | 1.49E-03 | 0.04 | 1.00E+00    | 1.00E+00 | 25.00 | 心    |
| 4    | 化石沟      | 日均值  | 3.31E-03 | 0.08 | 1.00E+00    | 1.00E+00 | 25.00 | 之标   |
| .7/4 | 木石中学     | 日均值  | 2.38E-03 | 104  | 1.00E+00    | 1.00E+00 | 25.00 | ア 达标 |
| 10   | 大峪庙      | 日均值  | 1.88E-03 | Jos. | 1.00E+00    | 1.00E+00 | 25.90 | 达标   |
| 11   | 兴鲁       | 日均值  | 1.07E-03 | 9.03 | 1.00E+00    | 1.00E+00 | 35.00 | 达标   |
|      | 落凤山      | 日均值  | 2. VE 07 | 0.06 | 1.00E+00    | 1.00E+00 | 25.00 | 达标   |
|      | 区域最大落地浓度 | 日均值  | 14 E 02  | 1.15 | 1.00E+00    | 1.01E 00 | 25.26 | 达标   |
|      | 墨子森林公园   | 日均值  | 1.08E-02 | 0.27 | 1.00E+00    | 1.00E    | 25.00 | 达标   |
|      | 25:1:44  | 小时值儿 | 3.41E-04 | 0.11 | 1.90E-02    | E-02     | 6.45  | 达标   |
| 7六五分 | 尖山村      | 日均值  | 4.80E-05 | 0.05 | 1.90E-02    | P90 - 02 | 19.05 | 达标   |
| 硫酸   | #2#4#    | 好值   | 2.28E-04 | 0.08 | 1.90E-02    | 92E-02   | 6.41  | 达标   |
|      | 南涝坡      | 旦 羽值 | 1.48E-05 | 0.01 | 1.90E-02    | 1.90E-02 | 19.01 | 达标   |


第 219 页


|                 |                   |       | - XALI    |      |          | X        | /=)   |             |
|-----------------|-------------------|-------|-----------|------|----------|----------|-------|-------------|
|                 | 回知小韓              | 小时值   | 2.89E-44  | 0.10 | 1.90E-02 | 1.93E-72 | 6.43  | 达标          |
|                 | 凤翔小镇              | 日均值   | \$.0 F-05 | 0.03 | 1.90E-02 | 1.90     | 19.03 | 达标          |
|                 | 毎ルナメロ             | 小时间   | 2.54E-04  | 0.08 | 1.90E-02 | 1.03B-02 | 6.42  | 达标          |
|                 | 鲁化生活区             | 具值了   | 1.19E-05  | 0.01 | 1.90E-02 | 1.90E-02 | 19.01 | 达标          |
|                 | ### <b>1</b>      | 时值    | 4.30E-04  | 0.14 | 1.90E-02 | 1.94E-02 | 6.48  | 达标          |
|                 | 前连水               | 争的值   | 3.32E-05  | 0.03 | 1.90E-02 | 1.90E-02 | 19.03 | 达标          |
|                 | 桥口时               | 小时值   | 2.80E-04  | 0.09 | 1,90E (F | 1.93E-02 | 6.43  | 达标          |
|                 |                   | 日均值   | 1.50E-05  | 0.02 | 1.905.00 | 1.90E-02 | 19.02 | 达标          |
|                 | 有镇政府              | 小时值   | 3.63E-04  | 0.12 | 00E-02   | 1.94E-02 | 6.45  | 达标          |
|                 |                   | 日均值   | 3.05E-05  | 0.03 | 1.90E-02 | 1.90E-02 | 19.03 | 这           |
| ,               | 木石医院              | 小时值   | 3.88E-04  | 0.13 | 1.90E-02 | 1.94E-02 | 6.46  | 入达标         |
| 17/2            |                   | 日均值   | 3.25E-05  | 100  | 1.90E-02 | 1.90E-02 | 19.03 | <b>/</b> 达标 |
| (3)             | 木石社区              | 小时值   | 2.51E-04  | 0.00 | 1.90E-02 | 1.93E-02 | 6.435 | 达标          |
| $\langle J_1  $ |                   | 日均值   | 1.54E-93  | 9.02 | 1.90E-02 | 1.90E-02 | 19.02 | 达标          |
|                 | 备.// III 工 医 () 合 | 小时值   | 2. OE 0   | 0.09 | 1.90E-02 | 1.93E-02 | 6.42  | 达标          |
|                 | 鲁化职工医院            | 日均值   | 12/8/E 05 | 0.01 | 1.90E-02 | 1.90F 01 | 19.01 | 达标          |
|                 | 7F *** + +        | 小时值   | 1.56E-03  | 0.52 | 1.90E-02 | 2.061    | 6.85  | 达标          |
|                 | 西荒村               | 日均值   | 1.16E-04  | 0.12 | 1.90E-02 | E-02     | 19.12 | 达标          |
|                 | ルエ約               | 小的连   | 2.60E-04  | 0.09 | 1.90E-02 | F952-02  | 6.42  | 达标          |
|                 | 化石沟               | Atyl值 | 1.36E-05  | 0.01 | 1.90E-02 | 90E-02   | 19.01 | 达标          |
|                 | 木石中学              | 7 可值  | 4.34E-04  | 0.14 | 1.90E-02 | 1.94E-02 | 6.48  | 达标          |


第 220 页

| 大峪庙            | 対値 2.68E-05<br>対値 2.47E-05<br>対値 2.15E-04<br>対値 1.80E-05<br>対値 9.61E-06<br>対値 4.94E-03<br>対値 4.82E-03<br>対値 4.82E-03    | 0.02<br>0.07<br>0.02<br>0.07<br>0.07<br>0.01<br>1.65<br>0.64 | 1.90E-02<br>1.90E-02<br>1.90E-02<br>1.90E-02<br>1.90E-02<br>1.90E-02<br>1.90E-02<br>1.90E-02 | 1.90E-02<br>1.92E-02<br>1.90E-02<br>1.90E-02<br>1.90E-02<br>1.90E-02<br>2.39E-02<br>1.96E-02<br>2.28E-02 | 19.03<br>6.51<br>19.02<br>6.40<br>19.02<br>6.40<br>19.01<br>7.98<br>19.64<br>7.61 | 达林<br>达林<br>达林<br>达林<br>达林 |
|----------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------|
| 大峪庙 日          | 2.47E-05<br>2.15E-04<br>2.15E-04<br>1.80E-05<br>对值 2.11E-04<br>匀值 9.61E-06<br>对值 4.94E-03<br>匀值 6.36E-04<br>对值 4.82E-03 | 0.02<br>0.07<br>0.02<br>0.07<br>0.07<br>0.01<br>1.65<br>0.64 | 1.90E-02<br>1.90E-02<br>1.90E-02<br>1.90E-02                                                 | 1.90E-02<br>1.92E-02<br>1.90E-02<br>2.39E-02<br>1.96E-02                                                 | 19.02<br>6.40<br>19.02<br>6.40<br>19.01<br>7.98<br>19.64                          | 达标                         |
| ※鲁             | 2.15E-04<br>1.80E-05<br>对值 2.11E-04<br>习值 9.61E-06<br>对值 4.94E-03<br>匀值 6.36E-04<br>对值 4.82E-03                         | 0.07<br>0.02<br>0.07<br>0.07<br>0.01<br>1.65<br>0.64         | 1.90E-02<br>1.90E-02<br>1.90E-02<br>1.90E-02                                                 | 1.90E-02<br>1.92E-02<br>1.90E-02<br>2.39E-02<br>1.96E-02                                                 | 6.40<br>19.02<br>6.40<br>19.01<br>7.98<br>19.64                                   | 达标                         |
| 落凤山 日生         | 对值 1.80E-05<br>对值 2.11E-04<br>匀值 9.61E-06<br>对值 4.94E-03<br>匀值 6.36E-04<br>寸值 4.82E-03                                  | 0.02<br>0.07<br>0.01<br>1.65<br>4 0.64<br>1.61               | 1.90E-02<br>1.90E-02<br>1.90E-02                                                             | 1.90E-02<br>1.92E-02<br>1.90E-02<br>2.39E-02<br>1.96E-02                                                 | 19.02<br>6.40<br>19.01<br>7.98<br>19.64                                           | 达林<br>达林                   |
| 落凤山 日生         | 对值 2.11E-04<br>匀值 9.61E-06<br>寸值 4.94E-03<br>匀值 6.36E-04<br>寸值 4.82E-03                                                 | 0.07<br>0.01<br>1.65<br>0.64<br>1.61                         | 1.90E-92√7/<br>1.90E-92<br>1.90E-92                                                          | 1.92E-02<br>1.90E-02<br>2.39E-02<br>1.96E-02                                                             | 6.40<br>19.01<br>7.98<br>19.64                                                    | 达标                         |
| 区域最大 小服        | 匀值 9.61E-06<br>寸值 4.94E-03<br>匀值 6.36E-04<br>寸值 4.82E-03                                                                | 0.01<br>3 1.65<br>4 0.64<br>3 1.61                           | 1.90E-02                                                                                     | 1.90E-02<br>2.39E-02<br>1.96E-02                                                                         | 19.01<br>7.98<br>19.64                                                            | 达核                         |
| 区域最大 小服        | 对值 4.94E-03<br>匀值 6.36E-04<br>寸值 4.82E-03                                                                               | 1.65<br>4 0.64<br>3 1.61                                     |                                                                                              | 2.39E-02<br>1.96E-02                                                                                     | 7.98<br>19.64                                                                     | _                          |
| 落地浓度 日生 小田     | 匀值 6.36E-04<br>寸值 4.82E-03                                                                                              | 0.64                                                         |                                                                                              | 1.96E-02                                                                                                 | 19.64                                                                             | 达拉                         |
| 少里子湿地公园        | 寸值 4.82E-03                                                                                                             | 1.61                                                         |                                                                                              |                                                                                                          |                                                                                   | 达                          |
| 墨子湿地公园 日北      |                                                                                                                         |                                                              | 1.80E-02                                                                                     | 2.28E-02                                                                                                 | 7.61                                                                              | -:-                        |
| H              | 匀值 5.21E-04                                                                                                             | 0.52                                                         |                                                                                              |                                                                                                          | 7.01                                                                              | 1                          |
| 为特征因子叠加综合影响后质量 |                                                                                                                         | V. 44                                                        | 1.80E-02                                                                                     | 1.85E-02                                                                                                 | 18.52                                                                             | NO.                        |
|                | 是压护                                                                                                                     |                                                              |                                                                                              |                                                                                                          | 1 Aller Br                                                                        |                            |









#### (3) 预测范围年平均质量浓度变化率

根据区域环境质量现状,项目所在区域为不远郊区,超标因子为 PM10、PM25。根据《环境影响评价技术导则大气环境》(HJ2.2-2018),对于不达标区域,可选择评价区域 PM10、PM25的环境质量变化情况。

本次评价将拟建项目表就值叠加区域在建项目排放源作为贡献方案,将区域 削减源作为削减方案进行叠加顶侧,评价实施区域削减方案后预测范围的年平均 质量浓度变化率、经项测,评价范围内的 PM10 的环境质量变化情况见表。2.2.2.3.

表 5.2-25 年平均质量浓度变化率计算表

| 污染物 | 网络点新增年均贡献值算术<br>平均值 μe/m³ | 所有网格点削减年均贡献值算术中<br>均值µg/m³ | K,%    |
|-----|---------------------------|----------------------------|--------|
| 24  | 1.6947E-02                | 1.1431E-01                 | -85.17 |
|     | 1.0782E-01                | 1.9189E-01/                | -43.78 |

根据预测结果,项目实施后 PM10、PM25 的年来为质量农度变化率 k 均小于

20%,区域环境质量可总体改善。

合并设置 计算结果 外部文件

合并设置

方案名称: PM2.5

- C PM2 5 次元込むけいかえ
- 一 特別结果的环境影响器制、允许不同污染物器加

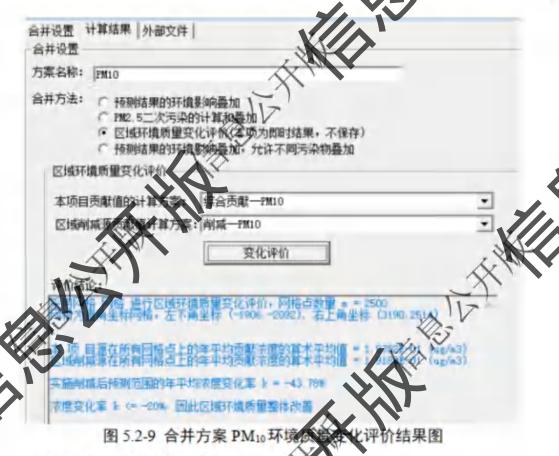
区域环境质量变化评

本项目贡献值的论算方案 综合贡献一PM2.5

区域削减源贡献值计算方案: 削减一PM2.5

变化评价

评价场论:


外网格 网络 进行区域环境质量变化评价,网络卢数量 m = 2500 二直角坐标网格,左下角坐标(-1906, -2092),右上角坐标(3

4.50. 具硬在胶直网络点上的生来的更新支撑的基本来均值。

で等別式 E-特別等度的 矢 エトッカ度等 小室 1 × 15 179

表度变化率 k (= -20%. 因此区域环境质量整体改革

图 5.2-8 合并方案 PM25 环境质量变化评价结果图



(4) 非正常工况预测结果

拟建项目废气污染物非正常排放工资不免染物贡献浓度见表 5.2-26。

表 5.2-26 项目来发 光况小时贡献质量浓度预测结果表

| 污染物  | 预测点    | 平域官  | 最大贡献值<br>mg/m³ | 出现时间     | 占标率  | 达标<br>情况 |
|------|--------|------|----------------|----------|------|----------|
|      | 尖山村,   | 小村平均 | 5.05E-03       | 22052107 | 1.01 | 达标       |
|      | 南涝城    | 小时平均 | 3.66E-03       | 22121811 | 0.73 | 过        |
|      | 凤翔水镇   | 小时平均 | 5.45E-03       | 22052107 | 1.09 | CIA CO   |
|      | 曹化生活区  | 小时平均 | 5.19E-03       | 22122610 | 1.04 | 込标       |
|      | ○ 前连水  | 小时平均 | 4.14E-03       | 22030402 | 0.8  | 上标       |
| 17/4 | 桥口     | 小时平均 | 4.80E-03       | 22042908 | 196  | 达标       |
| 10   | 木石镇政府  | 小时平均 | 5.70E-03       | 22080303 | 1    | 达标       |
| XII. | 木石医院   | 小时平均 | 6.21E-03       | 23091808 | 1.24 | 达标       |
| , [  | 木石社区   | 小时平均 | 5.85E-03       | 24.45.31 | 1.17 | 达标       |
|      | 鲁化职工医院 | 小时平均 | 5.10E-03       | 22172010 | 1.02 | 达标       |
|      | 西荒村    | 小时平均 | 3.93E 02       | 22072624 | 7.87 | 达标       |
|      | 化石沟    | 小时平均 | 1.44E-03       | 22052719 | 0.49 | 达标       |
|      | 木石中学   | 小时平均 | 3.53E-03       | 22122716 | 0.71 | 达标       |
|      | 大峪庙    | 小小子  | 3.03E-02       | 22032601 | 6.06 | 达标       |

227 页

|                    | 兴鲁       | 小时平均         | 1.70E/0   | 22081020   | 3.40   | 达标         |
|--------------------|----------|--------------|-----------|------------|--------|------------|
|                    | 落凤山      | 小时平均         | 3,82      | 22041508   | 0.77   | 达标         |
|                    | 区域最大落地浓度 | 小时平均         | 45E-01    | 22112019   | 29.02  | 达标         |
|                    | 墨子森林公园   | 小时平均         | 1.45E-01  | 22111919   | 96.73  | 达标         |
|                    | 尖山村      | 小时间          | 9.30E-03  | 22080119   | 4.65   | 达标         |
|                    | 南涝坡      | <b>分</b> 解平均 | 7.27E-03  | 22062419   | 3.63   | 达标         |
|                    | 凤翔小镇     | 时平均          | 7.95E-03  | 22122010   | 3.98   | 达标         |
|                    | 鲁化生活区    | 上时平均         | 9.98E-03  | 22122610   | 4.99   | 达标         |
|                    | DE V     | 小时平均         | 9.04E-03  | 22062602   | 4.52   | T.F.       |
|                    | A CHA    | 小时平均         | 9.94E-03  | 22032518   | 4.97   | · Valley   |
|                    | 本西镇政府    | 小时平均         | 1.03E-02  | 22102908   | 5.15   | 达标         |
| A2                 | 才右医院     | 小时平均         | 1.09E-02  | 22042307   | 5.45   | 达标         |
| 54                 | 木石社区     | 小时平均         | 1.14E-02  | 22083008   | 3508   | 达标         |
|                    | 鲁化职工医院   | 小时平均         | 1.04E-02  | 22951008   | 5.18   | 达标         |
| 1                  | 西荒村      | 小时平均         | 6.00E-02  | 10/10/     | 30.00  | 达标         |
|                    | 化石沟      | 小时平均         | 6.21E-0   | 22 (21) 10 | 3.10   | 达标         |
|                    | 木石中学     | 小时平均         | 5.802.00  | 22051908   | 2.90   | 达标         |
|                    | 大峪庙      | 小时平均         | 1/00E(0)  | 22032601   | 54.39  | 达标         |
|                    | 兴鲁       | 小时平均         | 6.94E-02  | 22081020   | 34.68  | 达标         |
|                    | 落凤山      | 小时平均         | 8/E-03    | 22041508   | 3.91   | 达标         |
|                    | 区域最大落地浓度 | 1            | 2.78E-01  | 22013003   | 139.20 | 超标         |
|                    | 墨子森林公园   | 小的学          | 2.78E-01  | 22013003   | 139.20 | 超标         |
|                    | 尖山村      | 小时平均         | 1.07E-01  | 22110123   | 23.69  | 达标         |
|                    | 南涝坡      | 小时平均         | 6.55E-02  | 22032622   | 14.55  | 达城         |
|                    | 凤翔妙镇     | 小时平均         | 7.89E-02  | 22021623   | 17.54  | 2          |
|                    | 鲁化生活区    | 小时平均         | 8.02E-02  | 22101717   | 17.82  | <b>公</b> 添 |
|                    | 》 前连水    | 小时平均         | 9.78E-02  | 22092219   | 21.14  | 达标         |
| 3                  | 桥口       | 小时平均         | 7.85E-02  | 22043012   | 1235   | 达标         |
|                    | 木石镇政府    | 小时平均         | 1.17E-01  | 22061022   | 76.04  | 达标         |
|                    | 木石医院     | 小时平均         | 1.12E-01  | 220.82822  | 21.95  | 达标         |
| $\mathbf{X}_{I,I}$ | 木石社区     | 小时平均         | 1.08E-01  | 221/291    | 24.06  | 达标         |
|                    | 鲁化职工医院   | 小时平均         | 8.57E-02  | D.10.17    | 19.05  | 达标         |
|                    | 西荒村      | 小时平均         | 1.49E-M   | 22042601   | 33.20  | 达标         |
|                    | 化石沟      | 小时平均         | \$.34E-02 | 22032619   | 11.86  | 达标         |
|                    | 木石中学     | 小时平均         |           | 22051520   | 33.97  | 达标         |
|                    | 大峪庙      | 小眼等级         | 2.33E-01  | 22071101   | 51.69  | 达标         |

THE VE

|     | 兴鲁            | 小时平均 | 1.90F 0   | 22010317 | 42.30  | 达标   |
|-----|---------------|------|-----------|----------|--------|------|
|     | 落凤山           | 小时平均 | 4,33      | 22043010 | 9.62   | 达标   |
|     | 区域最大落地浓度      | 小时平均 | 146E+00   | 22010802 | 325.05 | 超标   |
|     | 墨子森林公园        | 小时平均 | 1.37E+00  | 22100905 | 912.95 | 超标   |
|     | 尖山村           | 小时间  | 5.33E-02  | 22110123 | 23.69  | 达标   |
|     | 南涝坡           | 小的平均 | 3.27E-02  | 22032622 | 14.55  | 达标   |
|     | 凤翔小镇          | 村平均  | 3.95E-02  | 22021623 | 17.54  | 达标   |
|     | 鲁化生活区         | V时平均 | 4.01E-02  | 22101717 | 17.83  | 达标   |
|     | <b>PERMIT</b> | 小时平均 | 4,89E-02  | 22092219 | 21.74  | W.   |
|     | A TOWN        | 小时平均 | 3.93E-02  | 22043012 | 17.45  | VAN- |
|     | 木石镇政府         | 小时平均 | 5.85E-02  | 22061022 | 26.01  | 达标   |
|     | 木石医院          | 小时平均 | 5.61E-02  | 22082822 | 24 95  | 达标   |
| 194 | 木石社区          | 小时平均 | 5.42E-02  | 22042910 | 24.08  | 达标   |
|     | 鲁化职工医院        | 小时平均 | 4.29E-02  | 22701717 | 19.06  | 达标   |
|     | 西荒村           | 小时平均 | 7.47E-02  | 10/50    | 33.20  | 达标   |
|     | 化石沟           | 小时平均 | 2.67E-07  | 22/33/19 | 11.86  | 达标   |
|     | 木石中学          | 小时平均 | 7.642.00  | 22051520 | 33.97  | 达标   |
|     | 大峪庙           | 小时平均 | 1/101/01  | 22071101 | 51.69  | 达标   |
|     | 兴鲁            | 小时平均 | 9 52E-02  | 22010317 | 42.30  | 达标   |
|     | 落凤山           | 小时不够 | 1/E-02    | 22043010 | 9.63   | 达标   |
|     | 区域最大落地浓度      | 1    | 7.31E-01  | 22010802 | 325.05 | 超标   |
| 1   | 墨子森林公园        | 小的伞形 | 6.85E-01  | 22100905 | 652.11 | 超标   |
|     | 尖山村           | 小时平均 | 1.48E-02  | 22081120 | 0.15   | 达标   |
|     | 南涝坡           | 小时平均 | 5.97E-03  | 22060119 | 0.06   | 达埃   |
|     | 凤類火镇          | 小时平均 | 1.29E-02  | 22101819 | 0.13   | 2 0  |
|     | 鲁化生活区         | 小时平均 | 6.62E-03  | 22031408 | 0.07   | 公协   |
|     | <b>前连水</b>    | 小时平均 | 1.03E-02  | 22080121 | 0.10   | 达标   |
| 3   | 桥口            | 小时平均 | 5.88E-03  | 22071405 | 0.05   | 达标   |
| 100 | 木石镇政府         | 小时平均 | 1.58E-02  | 220319   |        | 达标   |
|     | 木石医院          | 小时平均 | 1.61E-02  | 22031923 | 0.16   | 达标   |
| X,  | 木石社区          | 小时平均 | 8.05E-03  | 2202490  | 0.08   | 达标   |
| 7   | 鲁化职工医院        | 小时平均 | 6.28E-03  | 2371108  | 0.06   | 达标   |
|     | 西荒村           | 小时平均 | 2.47E-300 | 22083124 | 0.25   | 达标   |
|     | 化石沟           | 小时平均 | 6.02E-03  | 22052121 | 0.06   | 达标   |
|     | 木石中学          | 小时平均 | - 11/     | 22060121 | 0.24   | 达标   |
|     | 大峪庙           | 小时平均 | 3.72E-02  | 22071101 | 0.37   | 达标   |

|           | 兴鲁         | 小时平均  | 1.72F_07   | 22060905  | 0.17  | 达标         |
|-----------|------------|-------|------------|-----------|-------|------------|
|           | 落凤山        | 小时平均  | 3,7\$      | 22091502  | 0.04  | 达标         |
|           | 区域最大落地浓度   | 小时平均  | 18E-01     | 22103119  | 1.73  | 达标         |
|           | 墨子森林公园     | 小时平均  | 1.73E-01   | 22103119  | 1.73  | 达标         |
|           | 尖山村        | 小时间分  | 5.89E-03   | 22081107  | 0.20  | 达标         |
|           | 南涝坡        | 小的平均  | 2.54E-03   | 22062719  | 0.08  | 达标         |
|           | 凤翔小镇       | 村平均   | 4.97E-03   | 22121309  | 0.17  | 达标         |
|           | 鲁化生活区      | l·时平均 | 7.97E-03   | 22070708  | 0.27  | 达标         |
|           | DE V       | 小时平均  | 2.85E-03   | 22103008  | 0.09  | 达克         |
|           | CHO!       | 小时平均  | 4.87E-03   | 22071507  | 0.16  | THE .      |
|           | 本西镇政府      | 小时平均  | 6.30E-03   | 22071507  | 0.21  | 达标         |
| A2        | 才右医院       | 小时平均  | 7.15E-03   | 22071507  | 0.247 | 达标         |
|           | 木石社区       | 小时平均  | 7.57E-03   | 22070708  | 30725 | 达标         |
|           | 鲁化职工医院     | 小时平均  | 8.27E-03   | 229/10/08 | 0.28  | 达标         |
|           | 西荒村        | 小时平均  | 4.17E-03   | 736.74V   | 0.14  | 达标         |
|           | 化石沟        | 小时平均  | 1.52E-0    | 2 4 1 1/8 | 0.05  | 达标         |
|           | 木石中学       | 小时平均  | 8.207 105  | 22100308  | 0.28  | 达标         |
|           | 大峪庙        | 小时平均  | 4.95E (0)  | 22031408  | 0.17  | 达标         |
|           | 兴鲁         | 小时平均  | 1 4.96E-03 | 22070708  | 0.17  | 达标         |
|           | 落凤山        | 小时平均  | 67E-03     | 22071408  | 0.09  | 达标         |
|           | 区域最大落地浓度   | 1111  | 4.62E-01   | 22092020  | 15.42 | 达标         |
|           | 墨子森林公园     | 小的邻于  | 4.62E-01   | 22092020  | 15.42 | 达标         |
|           | 尖山村        | 小时平均  | 1.93E-02   | 22032501  | 0.96  | 达标         |
|           | 南涝坡        | 小时平均  | 1.34E-02   | 22063007  | 0.67  | 达城         |
|           | 凤類妙镇       | 小时平均  | 1.72E-02   | 22070124  | 0.86  |            |
|           | 鲁化生活区      | 小时平均  | 1.79E-02   | 22092318  | 0.89  | <b>公</b> 协 |
|           | <b>前连水</b> | 小时平均  | 2.10E-02   | 22091107  | 1.05  | 达标         |
| 3         | 桥口         | 小时平均  | 5.44E-02   | 22072907  | 525   | 达标         |
| JK        | 木石镇政府      | 小时平均  | 2.14E-02   | 22082809  | 2.07  | 达标         |
| 1,000     | 木石医院       | 小时平均  | 2.09E-02   | 220/3104  | 1.4   | 达标         |
| $X_{I,I}$ | 木石社区       | 小时平均  | 1.32E-02   | 22070708  | 0.66  | 达标         |
|           | 鲁化职工医院     | 小时平均  | 1.75E-02   | D.202118  | 0.87  | 达标         |
|           | 西荒村        | 小时平均  | 1.55E-305  | 22081406  | 0.78  | 达标         |
| '         | 化石沟        | 小时平均  | 1.50E-02   | 22092718  | 0.78  | 达标         |
|           | 木石中学       | 小时平均  | - 1/       | 22030122  | 24.99 | 达标         |
|           | 大峪庙        | 小职争为  | 4.38E-02   | 22021406  | 2.19  | 达标         |

Will the last

230 页

|      | 兴鲁       | 小时平均  | 3.31E 0  | 22011018   | 1.66  | 达标  |
|------|----------|-------|----------|------------|-------|-----|
|      | 落凤山      | 小时平均  | 1,52     | 22072907   | 0.76  | 达标  |
|      | 区域最大落地浓度 | 小时平均  | 90E-01   | 22122803   | 29.58 | 达标  |
|      | 墨子森林公园   | 小时平均  | 4.62E-01 | 22092020   | 23.12 | 达标  |
|      | 尖山村      | 小时间分  | 6.61E-04 | 22050307   | 0.33  | 达标  |
|      | 南涝坡      | 分解平均  | 7.40E-04 | 22100308   | 0.37  | 达标  |
|      | 凤翔小镇     | 村平均   | 5.13E-04 | 22072507   | 0.26  | 达标  |
|      | 鲁化生活区    | l·时平均 | 5.08E-04 | 22083008   | 0.25  | 达标  |
|      | DE SA    | 小时平均  | 3.80E-04 | 22080720   | 0.19  | 125 |
|      | XX       | 小时平均  | 5.50E-04 | 22072407   | 0.28  | 1   |
|      | 小本石镇政府   | 小时平均  | 5.25E-04 | 22042207   | 0.26  | 达标  |
|      | 木石医院     | 小时平均  | 4.87E-04 | 22042207   | 0.247 | 达标  |
| 1611 | 木石社区     | 小时平均  | 5.99E-04 | 22090408 1 | 330   | 达标  |
|      | 鲁化职工医院   | 小时平均  | 5.27E-04 | 22983008   | 0.26  | 达标  |
| 1    | 西荒村      | 小时平均  | 3.27E-03 | 10/10/3    | 1.63  | 达标  |
|      | 化石沟      | 小时平均  | 4.73E-0  | 23/63/37   | 0.24  | 达标  |
|      | 木石中学     | 小时平均  | 5.502304 | 22100308   | 0.28  | 达标  |
|      | 大峪庙      | 小时平均  | 8/851(0) | 22021406   | 4.42  | 达标  |
|      | 兴鲁       | 小时平均  | 0.63E-03 | 22011018   | 3.31  | 达标  |
|      | 落凤山      | 小时平均  | 1.3 E-04 | 22083008   | 0.22  | 达标  |
|      | 区域最大落地浓度 | 1111  | 1.45E-02 | 22020620   | 7.26  | 达标  |
|      | 墨子森林公园   | 小的学的  | 1,45E-02 | 22020620   | 7.26  | 达标  |
|      | 尖山村      | 小时平均  | 1.39E-04 | 22081107   | 1.39  | 达标  |
|      | 南涝坡      | 小时平均  | 1.01E-04 | 22063007   | 1.01  | 达埃  |
|      | 凤赵狄镇     | 小时平均  | 1.38E-04 | 22121309   | 1.38  | 200 |
|      | 鲁化生活区    | 小时平均  | 1.78E-04 | 22070708   | 1.78  | 公协  |
|      | 》 前连水    | 小时平均  | 7.13E-05 | 22063007   | 0.71  | 、达标 |
| 13   | 桥口       | 小时平均  | 1.38E-04 | 22071107   | 135   | 达标  |
|      | 木石镇政府    | 小时平均  | 1,75E-04 | 220715     | 175   | 达标  |
| (ipo | 木石医院     | 小时平均  | 1.92E-04 | 220/1507   | 1.92  | 达标  |
| X    | 木石社区     | 小时平均  | 1.70E-04 | 22070708   | 1.70  | 达标  |
|      | 鲁化职工医院   | 小时平均  | 1.85E-04 | 22070708   | 1.85  | 达标  |
|      | 西荒村      | 小时平均  | 9.65E-05 | 22081107   | 0.96  | 达标  |
|      | 化石沟      | 小时平均  | E.PTE-05 | 22063007   | 0.86  | 达标  |
|      | 木石中学     | 小时平均  | 5.39E-04 | 22120920   | 5.59  | 达标  |
|      | 大峪庙      | 小时平匀  | 1.15E-04 | 22031408   | 1.15  | 达标  |

A STATE OF THE PARTY OF THE PAR

|       | 兴鲁           | 小时平均 | 1.15E of  | 220/0708 | 1.15  | 达标    |
|-------|--------------|------|-----------|----------|-------|-------|
|       | 落凤山          | 小时平均 | 8,83      | 22083008 | 0.88  | 达标    |
|       | 区域最大落地浓度     | 小时平均 | % 84E-03  | 22092020 | 68.39 | 达标    |
|       | 墨子森林公园       | 小时平均 | -6.84E-03 | 22092020 | 68.39 | 达标    |
|       | 尖山村          | 小时的  | 9.16E-04  | 22072507 | 0.31  | 达标    |
|       | 南涝坡          | 小野平均 | 6.16E-04  | 22100308 | 0.21  | 达标    |
|       | 凤翔小镇         | 时平均  | 1.05E-03  | 22072507 | 0.35  | 达标    |
|       | 鲁化生活区        | 小时平均 | 9.72E-04  | 22083008 | 0.32  | 达标    |
|       | 列等外          | 小时平均 | 1.38E-03  | 22063007 | 0.46  | 42    |
|       | A KA         | 小时平均 | 1.09E-03  | 22051307 | 0.36  | THE . |
|       | 小五百镇政府       | 小时平均 | 1.34E-03  | 22080307 | 0.45  | 达标    |
| X     | <b>才</b> 右医院 | 小时平均 | 1.38E-03  | 22080307 | 0.45  | 达标    |
| 611   | 木石社区         | 小时平均 | 9.90E-04  | 22112810 | (2033 | 达标    |
| Codes | 鲁化职工医院       | 小时平均 | 1.03E-03  | 22083008 | 0.34  | 达标    |
| 1,    | 西荒村          | 小时平均 | 7.79E-03  | 10/01    | 2.60  | 达标    |
|       | 化石沟          | 小时平均 | 1.05E-0   | 2013     | 0.35  | 达标    |
|       | 木石中学         | 小时平均 | 1.042.95  | 22112809 | 0.35  | 达标    |
|       | 大峪庙          | 小时平均 | 2/681(0)  | 22081521 | 0.89  | 达标    |
|       | 兴鲁           | 小时平均 | 8.53E-04  | 22112810 | 0.28  | 达标    |
|       | 落凤山          | 小时不够 | 70E-04    | 22083008 | 0.26  | 达标    |
|       | 区域最大落地浓度     | 1    | 2.47E-02  | 22122106 | 8.24  | 达标    |
|       | 墨子森林公园       | 小的邻步 | 2,41E-02  | 22122606 | 8.03  | 达标    |

预测结果可见,其正常 Z 76下污染物 NO<sub>2</sub>, PM<sub>10</sub>、PM<sub>2</sub>5最大贡献浓度超出环境质量标准, 对周边环境影响较大。建设单位应加强防范, 减少非正常工况发达。如出现事故情况, 应立即停产检修, 待检修完毕后方可再进行生产。

# 5.2.5 医染控制措施方案

### 冷染防治措施比选

於建项目位于环境空气不达标区,选择大气污染治理设施、预防措施或多方案比选应优先考虑治理效果。

## (1) 粉煤气化工段废气治理方案可行性

根据《排污许可证申请与核发技术规范、煤炭加工-合成气和液体燃料生产》 (HJ1101-2020) 《排污许可证申请与核发技术规范 锅炉》(HJ953-2018) 分析项目采取的废气治理措施的可依依。详见表 5.2-27。

232 市

| 来52.27    | 污染防治器 | 14. 4VA = |
|-----------|-------|-----------|
| XX 3.2-21 | 污染的污垢 |           |

| 编号     | 単元        | 生产设施       | 污染物项目人           | 洲海东西可行技术                     | 拟采取措施                          |
|--------|-----------|------------|------------------|------------------------------|--------------------------------|
| P1/P1* |           | 原煤仓        | 颗粒物              | 袋式除尘                         | 袋式除尘                           |
| P2     | */\#      | 磨煤干燥机      | 颗粒物 V            | 袋式除尘、<br>低氮燃烧                | 袋式除尘、<br>低氮燃烧                  |
| P3     | 粉煤<br>气化  | 输煤载气<br>放空 | 颗粒物、甲醇、<br>硫化氢   | 袋式除尘、<br>冼涤塔                 | 袋式除尘<br>(输煤载气已经过低<br>洗工段吸收描处理) |
| P4     |           | 捞查机放空      | 鎮、硫化氢            | -71                          |                                |
| P5     | 酸性气<br>脱除 | 氏温度醇洗      | 硫化氢、甲醇、<br>非甲烷总烃 | 尾气洗涤塔                        | 尾气洗涤塔                          |
| P6     | 硫图版       | 硫回收制酸      | 二氧化硫、<br>硫酸雾     | 吸收塔                          | 双氧水吸收潜                         |
| PSA    | 3         | 过热炉        | 颗粒物、NOx、<br>二氧化硫 | 低氮燃烧、SCR、<br>低氮燃烧+SCR、<br>其他 | 個家燃烧                           |

集上,粉煤气化过程原煤仓放空气、磨煤干燥放空气、输煤载气放空气、捞 查机排放气、低温甲醇洗尾气吸收塔尾气、硫回收制酸装置尾气采取的废气治理 措施均为《排污许可证申请与核发技术规范、探教加工-合成气和液体燃料生产》 (HJ1101-2020)《排污许可证申请与核发技术规范、保护》(HJ953-2018)中所 列可行技术。

### (2) 辛醇装置及储运系统度,治理力案

拟建项目设置 1 套废气废格及房户用于辛醇装置生产过程中高浓度有机废气和废液的焚烧处理。废产废液焚烧炉即直燃式热氧化炉,TO 通过高温氧化原理对废气、废液进行处理。废液送入燃烧器,经过组合燃烧器直接导入焚烧炉废气废液均为可燃组分,且热值较高,在助燃风和补氧风作用下,高温氧化、并转化成水。二氧化碳等物质。处理后的高温废气因携带大量热能,进行金块回收利用、进而减少运行成本。直燃式氧化直燃炉是处理高浓度有机废气炉型,因具有比 XTD 及 CO 更强热容量,在治理高浓度有机废气时被逐步引用。

废气废液焚烧炉采用立式结构,通过调节助燃燃料量(重组分废液)和燃烧 空气的供给来确保废液的完全燃烧并维持炉内的燃烧温度,按焚烧烟气在燃烧炉 内的滞留时间确定焚烧炉容积,以满足废料中的有机物在炉内有效燃烧分解。

废液燃烧器确保烟气有足够的停留时间完全燃烧。控制燃烧温度:当辅助燃烧器的联锁保护投入自动状态时√√√√√00°C,调节主燃料管线上的调节阀门增

大燃料的投入。当 T>1150°C,减少燃料气的投入。看当增加二次助燃风,增加冷却风的投入。炉膛设置三支温度测量仪表。参与炉膛温度控制。当炉膛>1050℃时,允许废液导入。燃烧室负压控制: 焚烧炉应始终保持在一定的负压状态(-0.1Kpa),影响负压的外部因素主要是燃料的供给、助燃空气的供给、燃烧状况、引风量等。调节负压的主要手段是调节进料量,即废气进料量、废液喷射进料量;调节助燃空气烧线、即二次风量的控制;调节引风机的开度,即引风量的控制;调节数条分流,含理控制燃烧。

正常运行财务关废液通过压力输送至废液雾化器,经蒸汽雾化后重组分废液作雾化送从废液焚烧,经燃烧器点燃焚烧;同时废气以及空气分别经预热到3%之名进炉(正常工况),补氧风采用预热后的空气,降低燃料消耗;有机废液。 化燃烧产生的烟气在炉膛内有足够停留时间大子又火焚烧炉内烟气温度还到1100℃。供氧充足,减少CO的生成。

焚烧炉是废气燃烧分解场所,炉体燃烧板捣3 (温度、时间、涡流)原则设计,设计的烟气通道有足够的烟气停留时间 大于2s),保证废气在炉体内被充分氧化、热解、燃烧,使有机物减减去除率达到99.99%以上。保证废气彻底焚化分解。

拟建项目辛醇装置生产过程中高、软度有机废气经废气废液焚烧炉焚烧处理后,可保证外排废气中,成为排放浓度及排放速率均满足《挥发性有机物排放标准 第 6 部分,有机火工 下瓜》(DB37/2801.6-2018)表 1 排放限值要求。

同时,根据、排污许可证申请与核发技术规范 石化工业》(HJ85×20×4) 中"表 5.石化工业排污单位生产装置或设施废气治理可行技术参照表",挥发性 有权物治理可行技术为燃烧净化(热力焚烧、催化燃烧、蓄热燃烧、,因此,拟 建项的矛用废气废液焚烧炉用于挥发性有机废气的处理属等发光技术。

## 3.2.12 烟囱高度论证

拟建项目各工艺废气排气筒高度均大于 15m、扩充 区域性大气污染物综合排放标准》(DB37/2376-2019)、《挥发性有机物排放标准 第 6 部分:有机化工行业》(DB37/2801.6-2018)"排气筒的高度应不低于 15m"的规定。

其中辛醇装置废气废液焚烧炉排气筒 50m,满足《危险废物焚烧污染控制标

且根据估算模型 AERSCRES 计算,项目排放的大气污染物最大落地浓度均不超标,项目排气筒高度设置是合理的。

### 5.2.6 大气防护距离

根据《环境影响评价技术导则-大气环境》(HJ2.2-2018),建设项目实达大大气防护距离计算,本次对厂界外 2000m 范围内设置 50m×50m 的网络、根据统计会产现有 在建和拟建项目源强,针对项目特征污染物氨、硫化氢、甲醇、502、NOx、PM<sub>10</sub>、PM<sub>25</sub>、CO、硫酸进行了预测。分

气防护距离计算结果见表 5.2-28。

表 5.2-28 大气防护距离计算结果

|    |                  |              | K 2.2-20      | V (147.11 | TIE led bil | SEHNE 7            | arc.         |        |               |
|----|------------------|--------------|---------------|-----------|-------------|--------------------|--------------|--------|---------------|
| 序号 | 污染物              | 预测点          | 坐<br>X坐标<br>m | Y 坐标<br>m | 平均时段        | 最大<br>贡献值<br>mg/m³ | 标准值<br>ug/m3 | 占标率%   | 防护<br>距离<br>血 |
| 1  | VOCs             | 区域最大<br>落地浓度 | 2262          | 743       | Zh          | 5.95E-01           | 2000         | 29.73  | 无超 标点         |
| 2  | 氨                | 区域最大<br>落地浓度 | 2218          |           | 1h          | 5.24E-02           | 200          | 26.19  | 无超 标点         |
| 3  | H <sub>2</sub> S | 区域最大<br>落地浓度 | 1918          | 7         | 1h          | 9.71E-03           | 10           | 97.13  | 无超<br>标点      |
| 4  | 硫酸               | 区域最大落地浓度     | 1218          | +157      | 1h          | 5.96E-03           | 300          | 1.99   | 无超            |
| 5  | NO <sub>2</sub>  | 区域最大落地浓度     | 2218          | -257      | 1h          | 2.58E-02           | 200          | 12.80  |               |
| 6  | SOZ              | 区域最大落地浓度     | 2262          | -657      | 1h          | 1.47E-02           | 500          | 795    | 升超<br>标点      |
| 7  | PY tro           | 区域最大<br>落地浓度 | 2262          | -257      | 1h          | 1.28E-02           | Sens.        | 7 2 74 | 无超 标点         |
| 8  | 21 2 5           | 区域最大<br>落地浓度 | 2262          | -257      | 1h          | 6.38E-03           |              | 2.84   | 无超 标点         |
| 9  | 甲醇               | 区域最大<br>落地浓度 | 918           | 343       | 1h          | 9. NE-02           | 3000         | 3.15   | 无超 标点         |
| 10 | со               | 区域最大<br>落地浓度 | 518           | 643       | 1h          | XIVE-01            | 10000        | 7.17   | 无超 标点         |

经预测,项目污染物氨、硫化氢、甲醇、VOCs、SO2、NOx、PM10、PM2.5、CO、硫酸网格点最大贡献浓度均不存在超标点,无需设置大气环境防护距离。

### 5.2.7 环境监测计划

依据《排污许可证申请与核发技术规范、煤炭加工-合成气和液体燃料生产》 (HJ1101-2020)、《排污许可证申请与核发技术规范 石化工业》(HJ853-2017)、 《排污许可证申请与核发技术规范 锅炉》(HJ953-2018),同时结合厂区现有 在线监测设备布设情况及现有工程环评批复、例行监测开展情况,项目自行监测 计划见表 5.2-29。

### 5.2.8 污染源其效量核算

5.2.8.1 正常工况污染物排放量核算

有组织污染物排放量核算

表 5.2-30 大气污染物有组织排放量核算法

| 序号  | 排放口编号     | 污染物              | 核算排放浓度<br>(mg/m³) | 核算制企業   | 核算年排放量<br>(t/a) |
|-----|-----------|------------------|-------------------|---------|-----------------|
|     |           |                  | 主要排放口             |         |                 |
| 1   | P1 (P1*)  | 颗粒物              | 10                | 0.05    | 0.4             |
| 2   | P2        | 颗粒物              | 10                | 0.5     | 4.0             |
| 2   | .FZ       | NOx              | 50                | 2.5     | 20              |
| 3   |           | 颗粒物              |                   | 0.15    | 1.2             |
|     | P3        | H <sub>2</sub> S | 195               | 0.006   | 0.048           |
|     |           | 甲醇               |                   | 0.375   | 3.0             |
| 4   | P4        | NH <sub>3</sub>  | 15                | 0.0045  | 0.0036          |
| 4   | P4        | PA               | 10                | 0.0003  | 0.0024          |
| 5 1 |           | LAS              | 0.4               | 0.08    | 0.64            |
|     | P5(DA042) | CHO              | 25                | 5.0     | 40              |
|     | X         | VOCs             | 25                | 5.0     | 40,             |
| 6   | 117       | SO <sub>2</sub>  | 35                | 1.035   | 8.18            |
|     | 11/38     | NOx              | 50                | 1.48    | 11.5            |
|     |           | 硫酸雾              | 5                 | 0.148   | 25 1.84         |
|     |           | 氨                | 2.5               | 0.074   | 0.592           |
|     | P7        | 颗粒物              | 10                | 0,6     | 4.8             |
|     |           | SO <sub>2</sub>  | 35                | 17/1/   | 16.8            |
|     |           | NOx              | 90                | 1 3/    | 43.2            |
| ,   |           | CO               | 80                | 11/1-48 | 38.1            |
|     |           | 氨                | 6                 | 0.36    | 2.88            |
|     |           | VOCs             | 30 117            | 1.8     | 14.4            |
|     |           | 颗粒物              | 330               | 0.167   | 1.336           |
| 8   | P8        | SO <sub>2</sub>  | 3/4,35            | 0.586   | 4.688           |
|     |           | NOx              | 30                | 0.837   | 6.696           |

第 236 页

|      | 颗粒物                                   | 11.736 |
|------|---------------------------------------|--------|
|      | SO <sub>2</sub> (5)                   | 29.768 |
|      | NOX L                                 | 81.736 |
| 有组织  | , vods                                | 57.4   |
| 排放总计 | △□                                    | 3.4756 |
|      | · · · · · · · · · · · · · · · · · · · | 0.6904 |
|      | 硫酸雾                                   | 1.184  |
|      | CO                                    | 38.1   |

### 3、项目大气泛染物车排放量核算

| £ 5.2-32 | 大气污染物年排放量核算表 |  |
|----------|--------------|--|
| 2.6-26   | 八八大切十分从里多并仅  |  |

|      | 污染物              | 年排放量(24) |
|------|------------------|----------|
|      | 颗粒物              | 11.736)  |
| 1865 | SO <sub>2</sub>  | 20.768   |
| 3    | NOx              | 201.736  |
| 4    | СО               | 70.214   |
| 5    | H <sub>2</sub> S | 0.9284   |
| 6    | NH <sub>3</sub>  | 3.476    |
| 7    | 硫酸雾              | 1,432    |
| 8    | VOCs (           | 74.33    |

## 5.2.9 大气环境影响评价结论

- (1) 拟建项目 SO₂、NO₃→Φ→Φ→Φ PNZ₂、CO 在各敏感点及网格点浓度贡献值可以满足环境空气质量标准格类要求。氨、硫化氢、甲醇、硫酸雾在各敏感点及网格点浓度贡献值可以满足产环境影响评价技术导则 大气环境》(HJ2.2-2018) 附录 D 要求;VOC (李照19甲烷总烃) 在各敏感点及网格点浓度贡献值可以满足《大气污染物练合排放标准详解》的要求。本项目正常排放下各污染物短期浓度贡献值的最大浓度占标率≤100%,年均浓度贡献值的最大浓度占标率≤10%。
- 《文》综合考虑拟建项目、在建项目并叠加削减源及现状。境质量浓度后, 有杂物 305、NO2、CO、VOCs、氨、硫化氢、硫酸雾等特殊多子在各敏感点及 网格点浓度叠加值可以满足相应环境质量标准要求。
- (3) 本项目实施削减方案后,不达标因子 PM25年平均质量浓度变化率 k<-20%,项目建成后区域环境质量能够得到一定改善。

综上所述,本项目大气环境影响可以接受。 项目大气环境影响评价自查表详见表 5.2-34。

|           | 工作内容                     |                                         |                                                                    | 自查项目           |                            |                       |  |
|-----------|--------------------------|-----------------------------------------|--------------------------------------------------------------------|----------------|----------------------------|-----------------------|--|
| 评价等级      | 评价等级                     | 一级小                                     |                                                                    | 二级口            | Elak                       | 三级□                   |  |
| 与范围       | - 评价范围                   | 边长=50kmo                                |                                                                    | 边长 5~50kips    | )                          | 边长=5 km√              |  |
|           | SO <sub>2</sub> +NOx Hit | ≥ 2000t/a□                              |                                                                    | 500 - 2000 Las |                            | <500 t/a√             |  |
| 评价因子      | 评价因子                     | 基本污染物 (SO <sub>2</sub> 、<br>其他污染物 (氨、硫( | NO <sub>2</sub> 、PM <sub>10</sub> 、PM <sub>25</sub> 、<br>七氢、甲醇、硫酸雾 | COV.           |                            | 次 PM2.5□<br>二次 PM2.5√ |  |
| 评价标准      | (年)标准                    | 国家标准、                                   | 地方扬                                                                | 5              | 附录D√                       | 其他标准√                 |  |
|           | THE WAR                  | 一类区。                                    |                                                                    | 925            | 一类                         | 类区和二类区√               |  |
| 现状评价、     | 评价基准年                    |                                         |                                                                    | (2022)年        |                            | 3                     |  |
| WALLED Y  | 环境空气质量现状数据来源             | 长期例行监测数据》                               | 主管部门发布的数据                                                          |                | 现状补充监测                     |                       |  |
|           | 现状评价                     |                                         | <b>公共</b>                                                          |                | 不证                         | 达标区 / 172             |  |
| <b>金源</b> | 调查内容                     | 本项目正常排放。<br>本项目非正常排放。<br>现有污染源、         | 拟替代的污                                                              |                | (他在建、拟建<br>项目污染源\          | <b>公</b> 域污染源√        |  |
| 1         | 预测模型                     | AERMOD ADMS:                            | AUSTAL2000□                                                        | EDMS/AEDTo     | CALPUTE                    | 网络模型 其他               |  |
|           | 预测范围                     | <b>这种</b> 5000 2                        |                                                                    | 边长 5~50km =    |                            | 边长 = 5 km√            |  |
| 大气环境      | 预测因子                     | SO2、NO2、PM10、PM25、CO、NH3、H2S、硫酸雾 VOCs、甲 |                                                                    |                | 型接入了N2.5 =                 | 不包括二次 PM2.5           |  |
| 影响预测      | 正常排放短期浓度贡献值              | C本類最大占标率≤100%√                          |                                                                    |                | C 調最大占标率>100% a            |                       |  |
| 与评价       | 正常排放年均                   | 一类区                                     | C <sub>≠項目</sub> 最大占标率                                             | ≤10%□          | C <sub>本海</sub> 最大         | √标率>10%□              |  |
|           | 浓度贡献值                    | 二类区                                     | C <sub>本項目</sub> 最大占标率:                                            | S30% / S       | C <sub>本项目</sub> 最大标率>30%□ |                       |  |
|           | 非正常排放 1h 文度贡献 直          | 非正常持续时长(1)h                             | C <sub>≠E</sub>                                                    |                |                            | C#=3*占标率>100%         |  |

第 238 页

| 万染源监测                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 评价结论 大气环境的中距离                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 污染為年報計量 t/a   SO <sub>2</sub> 29.768   NOx81.736   颗拉物 11.736   VOC.743   類 3.476   H <sub>2</sub> S 0.9284   CO70.214   硫酸雾 1.437   注:"□" 为勾选项,填"√";" 《 为内容填写项                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 注:"口"为勾选项,填"小";"《《为内容填写项                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| THE TENTH OF THE PARTY OF THE P |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### 5.3 地表水环境影响评价

#### 5.3.1 评价等级确定

拟建项目厂区实行"雨污分流入清泻分流原则",设置独立的初期雨水收集系统,设立独立的初期雨水管道、拟建项目废水经过污水管网排入鲁化净化水厂集中处理。

鲁化净化水厂为鲁南高科技化工园区配套园区污水处理厂之一,主要负责鲁南高科技化工园区水梁线公路以北区域的污水集中处理,由兖矿鲁南化工高展公司负责运维和管理。根据鲁南高科技化工园区管理委员会及兖矿鲁南化工有限公司联举出界的/关于兖矿鲁南化工有限公司废水排放的相关说明/\企业废水排至各类净化水厂需执行鲁化净化水厂设计进水水质要求,并落实相关行业间接排放标准要求。

依据《环境影响评价技术导则地表水环境》(HX(3、518),拟建项目属于水污染影响型,排放方式为间接排放,地表水水水等级划分见下表 5.3-1。

表 5.3-1 地表水环境影响评价等级划分表

| 排放方式 | 污水排放量 Q/(m³/4),不产条物当量数 W/(无量纲) | 评价等级 |
|------|--------------------------------|------|
| 间接排放 | 11 S V-                        | 三级B  |

## 5.3.2 废水产生情况及治理资施

#### 5.3.2.1 废水产生情况,

根据设计资料成工程分析结论,拟建项目建成废水排至鲁化净化水厂发管、理,外排水质能够满足鲁化净化水厂设计进水指标要求。

拟建项目运行后外排废水水质满足鲁化净化水厂进水指标要求 同户区现有 水经管道输送至鲁化净化水厂处理。

## 2 鲁南高科技化工园区鲁化净化水厂

鲁化净化水厂即鲁化污水处理厂位于鲁南高科技化工风区中部,枣木高速以南,距离鲁南化工厂区最近距离约750m。鲁化净化水厂为鲁南高科技化工园区配套的3座园区污水处理厂之一,主要负责鲁南高科技化工园区枣梁线公路以北区域污水集中处理,由兖矿鲁南化工有限公司负责运维和管理。

鲁南高科技化工园区鲁化净收水厂目前设计污水处理能力2.6万m³/d. 采用

"原水→调节池→初沉池→A/O 反应池→X次池→USB 反硝化池→接触氧化池→混凝反应池→三沉池→V 型滤池→乙级出水池→(UF 超滤→RO反渗透→锅炉水池)→冷却水池→出水"工艺路线,经园区企业预处理后的污水进入调节池进行水质调节,然后进入初沉地之除SS,后进入A/O生物反应池、USB反硝化池、接触氧化池处理系统 以完成去除有机物、硝化/反硝化和生物除磷等功能;处理后污水进入混凝反应池 \型滤池进一步除SS、氟,处理后部分污水满足《流域水污染物综合和液、水准第1部分:南四湖东平湖流域》(DB37/3416.1-30/2)/一般保护区域标准系,排入小沂河(小魏河)。



表 5.3 1 多化净化水厂现状处理工艺流程图

2024年度鲁化净从水厂列分及在线监测数据见表5.3-5~5.3-6。

长6.3万鲁化净化水厂例行监测统计结果一览表

| 监测报告及        | 检测点位                      | 松测压日     | 检测结果  |       |        | ************************************** |  |
|--------------|---------------------------|----------|-------|-------|--------|----------------------------------------|--|
| 采样日期         |                           | 检测项目     | 检测数据  | 检出限   | 单位     | 孫准限直                                   |  |
| 125          |                           | 流量       | 1076  | - /   | y to h | 7-                                     |  |
| TATA .       | E鲁化净化水<br>厂排放口<br>(DW008) | 硫酸盐      | 308   | 10 -  | ng L   | 650                                    |  |
| >//-         |                           | 全盐量      | 2110  |       | myL    | 2500                                   |  |
| Kli.         |                           | 氟化物      | 0.48  | 0.05  | mg/L   | 2                                      |  |
| 益(检)字 2024 年 |                           | 五日生化需氧量  | 4.2,  | 1.5   | mg/L   | 20                                     |  |
| 第 006-87号    |                           | 氰化物      | 0.000 | 0.004 | mg/L   | 0.2                                    |  |
| 2024.7.1     |                           | 总氰化物     | 801   | 0.004 | mg/L   | 0.2                                    |  |
|              |                           | 可吸附有机卤素。 | 0.053 | 1     | mg/L   | 1.0                                    |  |
|              |                           | 总转入。     | 0.052 | 0.004 | mg/L   | 2                                      |  |
|              |                           | 总铜、      | 0.01  | 0.006 | mg/L   | 0.5                                    |  |
|              |                           |          | 0.01  | 0.01  | mg/L   | 1.0                                    |  |

241 页

|                              | _    |      |        |      |     |
|------------------------------|------|------|--------|------|-----|
|                              | 总有机碳 | FR   | 0.5    | mg/L | 20  |
|                              | 悬浮物  |      | 1      | mg/L | 30  |
|                              | 挥发酚  | ND   | 0.0003 | mg/L | 0.1 |
|                              | 硫化物二 | ND   | 1      | mg/L | 0.5 |
|                              | 石油类  | 0.15 | 0.06   | mg/L | 3   |
|                              | 1/11 | ND   | 0.0008 | mg/L | 0.1 |
|                              | 中苯   | ND   | 0.001  | mg/L | 0.1 |
| 三益(检)字 2024 年<br>第 006-138 号 | 甲醛   | 0.22 | 0.05   | mg/L | W   |
| 2024.9.28                    | V    |      |        |      |     |

表 5.16、鲁化净化水厂排放口(DW008) 2024 年在线监测日均值统计表

|        |      | 7     |        | 9 III 1 600 000 |        |       | 1 100-14-11 | Title line of | Total Carried Co. |      |
|--------|------|-------|--------|-----------------|--------|-------|-------------|---------------|-------------------|------|
| Bit    | SOD  | my L) | 氨氮(n   | ng/L)           | 总磷(1   | mg/L) | 总氮(n        | ng/L)         | 7 p               | H    |
|        | 有值   | 最大值   | 最小值    | 最大值             | 最小值    | 最大值   | 最小值,        | 最大值           | 最小值               | 最大值  |
| 26.    | 12.7 | 26.0  | 0.122  | 1.95            | 0.103  | 0.345 | 7.61        | 0.13          | 6.40              | 7.59 |
| 2024 2 | 16.8 | 29.5  | 0.063  | 1.70            | 0.0924 | 0.357 | 7.49        | 10.7          | 6.64              | 7.32 |
| 2024.3 | 17.9 | 42.9  | 0.147  | 1.53            | 0.190  | 0.356 | AN          | 10.4          | 6.59              | 7.42 |
| 2024.4 | 16.8 | 22.5  | 0.204  | 1,42            | 0.225  | 400   | 0.07        | 11.6          | 6.68              | 7.35 |
| 2024.5 | 16.6 | 31.0  | 0.0985 | 6.38            | 0.163  | 50 93 | 6.22        | 16.9          | 6.49              | 8.05 |
| 2024.6 | 17.5 | 21.9  | 0.0526 | 1.03            | 0.17   | 0.324 | 4.33        | 17.1          | 6.32              | 7.26 |
| 2024.7 | 14.2 | 25.4  | 0.0809 | 5.00            | 20007  | 0.375 | 8.86        | 19.3          | 6.44              | 8.7  |
| 2024.8 | 13.7 | 26.0  | 0.098  | 2.38            | 25175  | 0.319 | 11.9        | 17.0          | 6.16              | 6.79 |
|        |      |       |        |                 |        |       |             |               |                   |      |

根据鲁化争化水厂近两年处理水量实测数据统计,大部分时段已接近满负荷运行。在个别时段存在超负荷运行的情况,《流域水污染物综合排放标准第1部分》的四湖东平湖流域》(DB37/3416.1-2023)规定: "自 2007年3月31日起,役计处理规模≥500m³/d 的现有工业废水集中处理厂排放。不列水污染物的应按入河排污口所在区域执行表3规定的排放浓度限值人

为满足达标排放要求,同时进一步加强风风中水回用量,节约水资源,减少 废水外排,加强生态园区建设,提高周边水环境质量。鲁化净化水厂正在实施鲁 南高科技化工园区鲁化净化水厂提标扩建项目,扩建工程主要包括鲁化净化水厂

旅建项目,扩建工程主要包括鲁化/ > 提标扩建及中水系统两个部分: 鲁化净化水水提环扩建系统: 在鲁化净化水厂现有 2.6 万 m³/d 污水处理系统提标改造, 并新建 1.2 万 m³/d 污水处理系统, 鲁化净化水厂总污水处理能力达到 3.8 万 m²/d; 同时新建 3.0 万 m³/d 中水处理系统。鲁化净化水厂改造项目建成后,鲁南化工西厂区排口关停,将原直排废水纳入园区鲁化净化水厂中水系统处理、尾水与净化水厂污水均质处理后由排口 DW008 排放。该工程污水处理扩散部分计划于 2026 年 6 月投运,中水系统计划于 2026 年 7 月投运。

鲁化净化水人改扩后污水处理工艺流程图见图 5.3-2。



### 表 5.3-2 鲁化净化水厂改扩后处理工艺流程图

鲁南高科技化工园区鲁化净化水厂提标改造工程将现有2.6万m之内水处理系统USB和接触氧化池改造为第二级低氧生化池,提高废水分质处理能力实现像外类。现有2.6万m³/d污水处理系统改造完成后污水水等汇基为"调节池+初次池+A/O 生物反应池+二沉池+混凝沉淀池+三沉池-均质池-出水"。

新建 1.2 万 m³/d 污水系统工艺为"调节罐+初流池+承级低氧生化池+高效二 沉池+高密度池+均质池+出水";新建 3.0 万 m2d 中水系统工艺中微污染水处理单元采用"调节池+高效沉淀池+反硝化池+复氧催化池+BAF 滤池+V 型滤池"工艺,中水回用单元采用"超滤+弱酸钠床\*\*浸渗透";膜浓缩及蒸发结晶装置采用"浓

盐水调节池+高效沉淀池+多介质过滤器+臭氧化光池+多介质过滤器+UF 装置+弱酸钠床+RO 反渗透+脱碳器+RO3+除硅管式起滤膜+盐结晶+排水"。

鲁南高科技化工园区鲁化净化水、提标扩建项目建成后,污水处理系统外排废水与中水系统尾水均质处理后执行控制标准,可确保外排废水主要指标(COD、NH3-N、TP、TN、氟化物、金盘量、硫酸盐)可满足《流域水污染物综合排放标准第 1 部分:南四湖东平湖流域》(DB37/3416.1-2023)中表 3 一般保护区域标准,其他指标满足《流域水污染物综合排放标准第 1 部分:南四湖东平湖流域》(DB37/3416.1-2023)表 1、表 2 中一般保护区域标准及《污水综合排放标准》(GB8978-1946)。4 中一级标准要求。

通知鲁化争化水厂改造正在施工建设中,预计于 2026 年 6 月投入运行,改造了成后可进一步保证废水达标排放,有利于周边地美水环境质量改善。

拟建项目废水经鲁化净化水厂接管处理后,废水排放情况见表 5.3-7。

表 5.3-7 拟建项目废水排放养况一览表

| n-ten | 4454- | 废水量    | 污染    | 排入鲁化  | 和小厂     | 最终排〉    | 外环境     |
|-------|-------|--------|-------|-------|---------|---------|---------|
| 时段    | 排放方式  | 万 m³/a | 因子    | 浓度皿   | 排放量 t'a | 浓度 mg/L | 排放量 t/a |
|       |       |        | COD   | 9007  | 1760.52 | 30      | 66.02   |
| 全年    | 间接排放  | 220    | NH:-Y | Z 200 | 440,13  | 4       | 8.80    |
|       |       |        | 总数    | 200   | 440.13  | 12      | 26.41   |

项目建成后,综合考虑华厂现首及在建项目,全厂废水总排放情况见表 5.3-8.

### 表 幻水 找建项目建成后全厂废水排放情况一览表

| 废水来源 人    | 小板水            | 废水排放量          | 污染因子       | 接管考        | 核指标       | 11124               |                   |      |
|-----------|----------------|----------------|------------|------------|-----------|---------------------|-------------------|------|
| 灰小木源 入    | 类型 (m³/a)      | 小米四丁           | 浓度 mg/L    | 排放量 t'a    | 排放五句      |                     |                   |      |
| 26万合成氨系统文 | 1              |                | COD        | 500        | 1632      | 送書南高科               |                   |      |
| 现有粉煤等纯系统、 | 综合废水           | 综合废水 3264000   | 氨氮         | 45         | 146.88    | 技化工园区               |                   |      |
| 聚甲酸四(在建)  |                |                | 总氮         | 70         | 228 4     | 5万米 / 理厂            |                   |      |
| 西、医康锅、    | 1210           |                | COD        | 800        | VALUE.    | N. T. 11. 12. 11. 1 |                   |      |
| 循环系统、     | 清净<br>废水       | 3 4            | 8984000    | 氨氮         | 200       | 1790 8              | 送鲁化净化水厂<br>(中水系统) |      |
| 脱盐水站      |                | TW.            | 总氮         | 209        | 1106.8    | ( T ACHENE)         |                   |      |
| 厂区其它生产    | 180            |                | COD        | 1800       | 7341.44   | 100 20 20 20 10 10  |                   |      |
| 装置、公铺装置、  | 混合<br>废水       | 9176800        | 氨氮         | 200        | 1835.36   | 送鲁化净化水厂<br>(污水处理)   |                   |      |
| 生活污水      | 18/1           |                | 总领         | 200        | 1835.36   | (NAME)              |                   |      |
|           |                |                | cop        |            | 16160.64  |                     |                   |      |
| 外排废水合计    | k合计 - 23625450 | 1胺水合计 23625450 | - 23625450 | - 23625450 | 美丽 3779.0 |                     | 3779.04           | 间接排放 |
|           |                |                | 总氮         | -+         | 3860.64   |                     |                   |      |

TAR IV

第 244 页

### 5.3.3 地表水环境影响分析

拟建项目建成后,新增废水排放 22006500%,废水水质水量均在鲁化净化水厂处理能力范围内。项目废水经鲁化净化水厂深度处理后,可满足《山东省流域水污染综合排放标准第一部分,南四湖东平湖流域》(DB37/3416.1-2023)中一般保护区域标准相关要求,这场外排至小沂河,待园区墨子湖湿地提标扩建工程完成后,改排至墨子湖湿地、整湿地进一步处理后,外排小沂河(小魏河),对周围地表水环境及验水小。

总体上、拟建功目运行期间废水可达标排放,对区域地表水环境影响较大 5.3.4.项目和2x对南水北调影响分析

本义北调东线工程于 2002 年 12 月 27 日开工,输水干线逐经江苏省骆马湖、中运河和山东省内韩庄运河、南四湖、梁济运河、东平湖、北达天津,年抽长江 化能力达 126 亿 m³。按照工期和水质保证情况,确定规划基准年为 2002 年。规划分为三期:一期规划水平年为 2005 年,输水来水水质基本达到III类水质标准,二期规划水平年为 2007 年,输水干线水质稳定达到III类水质标准;三期规划水平年为 2010 年,输水干线水质稳定达到III类水质标准;三期规划水平年为 2010 年,输水干线全线稳定达到III类水质标准,满足南水北调主体工程二期给水要求。《南水北调东绿龙等出东段水污染防治规划》要求汇水区处于城市污水处理厂覆盖范围内的工业交票源,达标后一律入城市污水处理厂,经处理后实现污水资源化。南四湖省域分散工业废水必须经处理后达到一级排放标准。

根据《山东省南水北周工程沿线区域水污染防治条例》(2006年12月20日山东省第十届为民代表大会常务委员会第二十四次会议通过)中对南水北周工程调水水质的要求,将沿线区域划分为三级保护区。核心保护区、黄点保护区和一级保护区。核心保护区是指输水干线大堤或者设计洪水位逐渐线以同的区域,重点保护区是指核心保护区向外延伸十五公里的汇水区域,长期保护区是指除核心保护区和重点保护区以外的其他汇水区域。根据此名为地方标准《流域水污染物综合排放标准第1部分:南四湖东平湖流域》(2005)、34(6.1-2018),将南四湖、东平湖流域划分为下列三类控制区。

核心保护区域指:山东省南水北调东线工程干渠大堤和所流经湖泊大堤(这两条大堤以下简称"沿线大堤")内的全部区域。

重点保护区域指:核心保护区域向外延伸

一般保护区域指:除以上核心保护区域和重点保护区域以外的其他调水沿线 汇水区域。

拟建项目废水间接排放至园区鲁化净化水厂,经深度处理后可达标排放,且 项目厂区不位于南水北调沿线、拟建项目所在位置距离南水北调干线约 29km, 不在南水北调东线工程的核心保护区域和重点保护区域内,属于 小沂河上分别设有谷水水闸、官桥水闸及小沂河汇入新薛河前水闸,新薛河 导流工程目前设有温房节制闸,位于新薛河汇入南四湖前。通过实施截污 程,可以有效地减少新薛河河流对南水北调东线工程输水干线的活染影响。本项 较小,加上河流沿途的农灌、截留、蒸发、下渗、在半旱季节的情 目排水在进入南四湖以前基本上消耗殆尽,影响不到南水北调工程。即 水期有少量排水进入南四湖,此时由于南水北堤工 明自然径流量大,在水体自然蒸发和自净作用,区 入南四湖的水量及污染 物的量均很少,符合《南水北调东线工程山东及水污 染防治规划》的要求,项目 建设对南水北调东线工程的影响较

### 5.3.5 评价结论

拟建项目建成后,新增废水产成200650水。废水水质水量均在鲁化净化水 厂处理能力范围内。项目 600 经事化净化水厂深度处理后,可满足《山东省流域 水污染综合排放标准第一部分: 南四湖东平湖流域》(DB37/3416.1-2023) 般保护区域标准相关要求,达标外排至小沂河,待园区墨子湖湿地提标扩 完成后, 次排至墨子湖湿地, 经湿地进一步处理后, 外排小沂河 周围地表水环境影响较小。

自查表详见表 5.3-9。

地表水环境影响评价自查表 工作内容 白查项目 水污染影响型 /; 水文要素影响型 区 景响类型 饮用水水源保护区 口;饮用水取水口 口;涉水的自然保护区 口;重要湿地 口; 水环境保护目标 稀水生生物的栖息地 口;重要水生生物的自然产卵场及雾饵场,越冬场和洄游通道、天然渔场等渔业水体 口;涉 影 水的风景名胜区 口《集他口 响 水污染景响。/ 水文要素影响型 识 景响途径 直接排放 口; 间接排放 、/; 其他 口 水温 口; 径流 口; 水域面积 口 永温 口; 水位(水深) 口; 流速 口; 流量 口; 其他 口 持久性污染物 口;有毒有害污染物 口;非持久性污染物 口; pH 值 口; 热污染 口; 富营养化 口; 其他 ~ 水污染影响型 水文要素影响型 一级 D; 二级 D; 三级 A D; 三级 一级口;二级口;三级口 数据来源 调查项目 区域污染源 已建口;在建口;拟建/; 排污许可证 口; 环评 口; 环保验收 口; 既有实则 口; 现场 监测 口;入河排放口数据 口;人其他口 其他口 数据来源 受影响水体水环境质量 丰水期 口; 平水期 口; 枯水期 大 赤 対期 口 春 生态环境保护主管部门 图 补充监测 图; 其他 日 季口;夏季日 未开发 口; 开发里 40%以下 /; 开发里 40%以上 口 区域水资源开发利用状况 调 杳 水文情势调查 丰水期 口; 水水期 口; 枯水期 口; 冰封期 口 春 季口、夏季口;秋季口;冬季口 监测时期 监测断面或点位 書水期 □;平水期 □;枯水期 □;冰封期 □ 春 氨氮、硫化物、 补充监测 ✓季 □; 夏季 □; 秋季 □; 冬季 √ 监测断面或点位个数

第 247 页

山东优纳特环境科技有限公司

大肠菌群、阴离子表面活性剂

(4) 个

# 兖矿鲁南化工有限公司微反应高效合成精细化学品节能示范项目环境影响报告书

|      | 评价范围                     | 河流: 长度 (3.5) km; 湖库、河口及近岸海域: 面积 1/1 km²                                                            |
|------|--------------------------|----------------------------------------------------------------------------------------------------|
|      | 评价因子                     | (pH、COD)、氨氮、硫化物、石油类、挥发酚、全盐量、砷、铅、镉、汞、光谱等、高端盐、氯化物、氟化物、氧化物、氧化物、二、黄、黄、黄、黄、黄、黄、黄、黄、黄、黄、黄、黄、黄、黄、黄、黄、黄、黄、 |
|      | 评价标准                     | 河流、別庫、河口:   类 口:   I 类 //:   V类口:    V类 口   近岸海域: 第一类 口: 第二类 口: 第三类 口: 第四类 口   规划年评价标准 (/)         |
|      | 评价时期                     | 車水期 □; 平水期 □; 枯水類 □; 水封期 □<br>春季 □; 夏季 □; 秋季 □ 冬季 √                                                |
| 现状评价 | Tandalic Marie           | 水环境功能区或水功能区、近岸海域环境功能区水质达标状况 □:                                                                     |
|      | 预测情景                     | 设计水文条件 口<br>建设期 口;生产运行期 口;和产品产品 口 正常工况 口;非正常工况 口 污染控制和减缓措施方案 口区(流)域环境质量改善目标等 网络星                   |
|      | 预测方法                     | 数值解 口:解析解 囚 其他 口导则推荐模式 口:其他 囚                                                                      |
|      | 水污染控制和水环境影响减缓措<br>施有效性评价 | 区 (流) 域水环境偏退改善目标 口; 替代削减源 口                                                                        |
| 影响评价 | 水环境景响评价                  | 排放口混合区外满定水环境管理要求 口水环境功能区水质达标 口满足水环境内能区或水功能区、近岸海域环境功能区水质达标 口满足水环境保护目标水域水环境质里要求 口水环境控制单元或断面水质达标 口    |

第 248 页

|   | 污染源排放量核算      | 传来<br>(CDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 初<br>氨氮)    | 排放量(1760.52、440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 型/(t/a)         | 排放浓度/(mg/L)<br>(800、200) |
|---|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------|
|   |               | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 排污许可证编      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                          |
|   | 替代源排放情况       | 7275-2471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (/)         | (/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (/)             | (/)                      |
|   | 生态流量确定        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 生态流量: 一般    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 繁殖期 ) m³/s; 其他  | ( ) m <sup>3</sup> /s    |
| _ | 工作内容          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 王恋水应:       | RATE OF THE PARTY |                 | ( / ш                    |
|   | 环保掩施          | 污水处理                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 设施 /; 水文减缓设 | 施口;生态流量保障设施                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1   区域削減 口;依持   | £其他工程措施/; 其他 口           |
|   | 11/           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 入境质里                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | 污染源                      |
|   | A PORIGH BILL | 监测方式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 手动 口 多勋 口; 无监                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 则 ☑             | 动 /;自动 /;无监测 口、          |
|   | TIZ PRINTED   | 监测点位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | (厂区污水排口)                 |
| 1 | 2             | 监测因子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1              | H、COD、氨氮、总磷、总氮)          |
| 1 | 污染物排放清单       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | AV                       |
| 1 | 评价结论          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 可以接受:/;不                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | 7/1                      |
|   |               | 注: "口" 为勾选项                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | 为内容填写项;"备注                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ZUA IGTI ZGTI A | 414                      |
|   |               | 12.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | X III.                   |
|   |               | ART TO THE PARTY OF THE PARTY O |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                          |
|   |               | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                          |
|   | , v           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                          |
|   |               | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W-5             |                          |
|   |               | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                          |
|   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Auto a      | 49 页                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | 山东优纳特环境科技有               |

- 5.4 地下水环境影响预测与评价
- 5.4.1 地下水评价等级确定
- 5.4.1.1 项目类别分类

根据《环境影响评价技术导则》地下水环境》(HJ610-2016),建设项目所属的地下水环境影响评价,其类别见表 5.4-1。

## 表 5.1-1 地下水环境影响评价行业分类表

| ı | 行业类别    | <b>顺</b> 国类别 | 报告书      | 地下水环境影响项型类别 |
|---|---------|--------------|----------|-------------|
|   | L石化、化工人 | 基本化学原料制造     | 除单纯混合分装外 | 1类(一)类(     |

#### 5.4.1.2 评价等级确定

了项目的地下水环境敏感程度的确定

使据《环境影响评价技术导则 地下水环境》(H7616,2016)可知,建设项 自场地的地下水环境敏感程度分为敏感、较敏感、不数感量费,具体分级原则及 产业园情况详见下表 5.4-2。

表 5.4-2 建设项目场地的地不水 4. 竟敏感程度的分级

| 分级      | 项目场地的地下水环境敏感特征                                                                                              |
|---------|-------------------------------------------------------------------------------------------------------------|
| 敏感      | 集中式饮用水水源地(包括已建成的水角)备用、应急水源地,在建和规划的水源地)准保护区,除集中式饮养。水源地、外的国家或地方政府设定的与地下水环境相关的其它保护区、水水、矿泉水、温泉等特殊地下水资源保护区       |
| 较敏<br>感 | 集中式饮用水水源地(包括一类或的在用、备用、应急水源地,在建和规划的水源地)准保护区以外的,等经流区;特殊地下水资源(如矿泉水、温泉等)保护区以外的分布区以及分散式居民饮用水水源等其它未列入上述敏感分级的环境敏感区 |
| 不敏感     | 以上情形之外的其他地区                                                                                                 |

备注:a 环境敏感区 是指《建设项目环境影响评价分类管理名录》中所界定的涉及地 的环境敏感区 \

综上、环项目不在集中式饮用水水源(包括已建成的在用、备用、应急水源, 在建筑规划的饮用水水源)准保护区范围内,也不属于特殊地方水源保护区,但 属于下游金河水源地的补给径流区,不存在其他的地下水环境被感区,因此确定 级区的地下水环境敏感程度为"较敏感"。

(2) 地下水环境影响评价工作等级划分

根据《环境影响评价技术导则 地下水环境》(HJ610-2016)可知,项目评价等级分级,详见表 5.4-3。

表 5.4-3 建设项目评价 在方等级分级表

| 项目<br>环境敏感程度 | I类项目 | 人,如此项目 | Ⅲ类项目 |
|--------------|------|--------|------|
| 敏感           | - 11 | -      | ==   |
| 较敏感          | - 20 |        | Ξ    |
| 不敏感          | 3/1  | Ξ      | Ξ    |

拟建项目属于 I 类项目、 国地下水环境较敏感,根据表 5.4-3,判断项目地下水评价等级为一级。

## 5.4.2 评价范围每保护目标

### 5.4.2.1 评价范围

海绳×玫境影响评价技术导则-地下水环境》(HJ 610-2016)的要求,评价范围有另用公式计算法、查表法和自定义法确定。地下水环境评价范围应包括与金设项目相关的地下水环境保护目标,以能说明地下水环境基本现状,反映调查评价区地下水基本流场特征,满足地下水环境影响预测和评价为基本原则。

项目场地处于官桥断块上游,其下游分布,入金河水源地,均处于官桥断块水 文地质单元内,因此,本次评价以整个官桥断块水文地质单元作为评价范围,面 积约 180km²。

#### 5.4.2.2 重点保护目标

根据工程场区周边的地形地貌、地质及水文地质条件综合分析。本场地西侧岩石裸露,场地第四条覆盖厚度薄,含水砂层不发育,无孔隙潜水分布,分布的主要含水层系裂隙岩溶弱承压含水层。在官桥断块下游,第四系孔隙潜水分深隙岩溶水为一综合的水文地质体,水位基本相同,因此将本项目评价范围下游的地下水含水层综合看为一层,为本项目地下水的目标保护层位。其次游的村、镇及城市水水源地均为保护目标。

具体保护目标分布及具体情况见图 5.4-1。

见图 5.4-1。



官桥断块内目前主要的城市集中供水水源地为金河水源地,为薛城区城市生活用水水源地,开采中、下奥陶系碳酸盐岩聚。岩溶含水亚组,金河水源地多年平均地下水资源量为 3083.78 万 m~年,多年平均地下水可开采量为 2775.4 万 m³/年。目前,已经批复许可水量为 2264.8 万 m³/年(山东晟润供水公司 1818.7 万,远通纸业 190.6 万,除炒百条水 255.5 万),另外,考虑到现状农村分散生活用水、农业灌溉用水量约为 112 万 m³/年,金河水源地地下水可开采量基本饱和,仅剩余 98.6 农业产年的水量可供平衡。

该水源地位于拟建项目下游(南侧)18km,拟建项目场地为其补给控制区根据《枣庄市饮用水水源保护管理办法》,金河水源地保护区范围为,①一级保护区,东至取水井东 120m,西至取水井西 120m,南至取水井南 80m,北至取水井水 550m 范围内的区域;②二级保护区:东至东黄村东边界,西至西黄村东边界,南至泉头村南边界,北至取水井北 1300m 范围区的区域—级保护区范围除外)(图 5.4-2)。



图 5.4-2 金河水源地保护区范围示意图

5.4.2.3 项目周边水源地保护区概况

项目区周围水源地主要有三个人,两个为滕州市集中式饮用水水源地,

即荆泉饮用水水源地和羊庄饮用水水源地。另一次,车庄市薛城区饮用水水源地,即金河饮用水水源地保护区。

#### (1) 荆泉水源地

根据《滕州市荆泉水源地饮角》水源保护区调整划分技术报告》,荆泉饮用水源地为滕州市主要集中式饮用水水源地,其补给区位于滕州东北部山区,荆泉断块地下水补给量 Q 补 =14.47 | 10 ° m³/d, 地下水开采资源量 Q 开 =13.21×10 ° m³/d, 荆泉水源地在水口降至 15 m 的约束条件下的允许开采量 Q 允=7.50×10 ° m³/d。

荆泉饮用水源地位于评价项目北部约 5km,与评价项目之间有桑村穹窿相隔, 为人,水岭,其周围的变质岩、岩浆岩只在浅部发育细密的风化裂隙,导水性 和黄水块均差,因此,荆泉水源地与评价项目区处于不同水发地质单元,且不位 水地下水流向的下游。

#### (2) 羊庄水源地

羊庄饮用水源地是评价项目区主要的供水水源,根据《滕州市羊庄水源地饮用水水源保护区调整划分技术报告》,并连饮用水水源补给区位于羊庄镇东北部山区及枣庄市山亭区部分地区,并是常水系统的可开采资源量 21.71×10<sup>4</sup>m<sup>3</sup>/d,目前实际开采 14.81×10<sup>4</sup>m<sup>3</sup>/d,为第一5,90×10<sup>4</sup>m<sup>3</sup>/d 的剩余量通过河水基流、泉及潜流的形式排泄出区。

羊庄饮用水水源保护区位于拟建项目东南侧,距离较近,约 2km。根据《滕州市羊庄水源地饮用水水源保护区调整划分技术报告》相关结论,一羊压盆地是一个地表。地一分水岭基本一致和完整的水文地质单元及地表水流域一除在下游出口处向逐外排泄外,中、上游地区汇集的地表水和地下水均分区外水体不存在水分联系和水量交换关系,所以,在自然或现状条件下,区域发染源对本区的地表水体及地下水体均不会造成直接的污染和影响。因此《羌庄》源地与评价项目区处于不同水文地质单元。

## (3) 金河水源地

金河水源地保护区为枣庄市薛城区饮用水水源地,其位于评价项目区南部, 距离评价项目约 18km,金河水源地及其保护区位于峄山断裂、化石沟断裂、西 王庄至北辛断裂构成的Ⅲ区南部。因为评价项目存货的西王庄—北辛断裂东段两盘为石炭—二叠系煤系地层,具有阻水作用,因此可以有效防止评价项目废水跑冒滴漏对金河水源地的污染影响。

### 5.4.3 水文地质条件调查

#### 5.4.3.1 地形、地貌条件

项目所在地区属鲁中南地区的西南麓延伸地带,西邻南四湖,地形较为复杂地貌类型较多。调查区域地形整体上北东高,南西低,官桥以北为低山丘陵区山体呈近南北向展布,地面标高一般在 53-190m 之间,薄山为最高点,标高 186 8 位 宣传 金河一带为平原区,地面标高在 38-51m 之间,地势略有起伏。金河、南由于受断裂构造控制,地面被抬升,柏山为最高点,标高为 127.1m,山前地带地面标高为 35-40m。

本次的调查区地貌分为构造剥蚀丘陵和山前倾斜平原等, 详述如下:

- (1)剥蚀低山丘陵区,分布在本区的北部贫瘠北部,标高 72~250m, 主要由寒武系、奥陶系灰岩组成。
- (2) 剥蚀残丘区,主要分布在本区面部全官桥一带,标高 50~150m,由上 寒武系、奥陶系灰岩组成。
- (3) 山涧冲洪积平原,分布在木石以南,羊庄盆地内,地势平坦开阔,标 高 50~72m 之间,地流岩伐车要由粘质砂砾土组成。
- (5) 山前倾斜冲洪积平原,分布在官桥、柴胡店以南地区,地势平均等 标高 50m 左右,地表岩性主要为冲洪积物。

本式程项目处于鲁中丘陵向鲁西南平原过渡地带,其特点是低山丘陵,及残丘气水的小盆地、谷地、小型平原相间分布,地形起伏较大为少是所在地木石盆地水、靠落凤山,系龙山山脉最南端,东北为龙山、北面 966.70 依次是桃山、独座山、狐山,西面 5~6km 有大山、笃山,总的龙势趋势是东北高西南低,呈簸箕状,地面坡度 0.05。拟建工程地处山前为坡地,由东北向西南倾斜,冲沟不发育,地面标高约 63.4~63.7m,地貌属于到蚀丘陵之山前坡谷地貌。

#### 5.4.3.2 地质条件

#### 1、地层

调查区位于鲁西台背斜(II)南翼边缘带、上山宫断(IV)的南部,由官桥断块凸起区及木石—金河断块凹陷两个又级构造单元组成。区内发育了太古界泰山岩群、古生界寒武—奥陶系、石炭—叠系、中生界侏罗系及第四系地层。

(1) 太古界泰山岩群 (An)

主要分布于化石沟断裂外系部和南部,隐伏于第四系松散层之下,岩性主要为花岗片麻岩、片麻状花岗岩、片岩及混合岩等。

(2) 古生**贝**赛3(E-O)

①长清群(人) 分布于调查区北部木石镇化石沟一带,岩性以磷红色、杂色页岩或泥岩为宝,次为灰色砂岩、粉砂岩、灰岩、泥云岩、白云岩等,该群与上看,这群整合接触。

●头组(€ M),为陆源碎屑岩夹若干薄层状分布的碳酸盐岩组合。底部 外紫红色粉砂岩、砖红色云泥岩、粉砂质页岩夹薄层链条状况质条带灰岩,肝紫 色含云母细砂岩、砂质页岩夹核形灰岩,中部火烤红色、紫红色云母砂质灰岩为 主,夹灰岩扁豆体,肝紫色薄层含云母含铁质海绿石石英细砂岩夹钙质砂岩、长 石石英细砂岩和钙质砂岩,具板状及双向交错层理;顶部为紫色页岩夹鲕状灰岩。

②九龙群(Є-O<sub>j</sub>):主要分布, 在北下及化石沟断裂东侧,在金河南侧也有少量出露,岩性以灰色灰岩、 及黄岩、页岩及白云质灰岩为主。

张夏组(E, z)、 / AX / 灰色厚层鲕状灰岩为主夹多层藻屑鲕状灰岩、藻 凝块灰岩、云斑灰岩和 / 双岩及云质砂屑灰岩;上部为灰色厚层大型藻丘大岩藻凝块灰岩、藻属鲕状灰岩石夹多层不规则层状分布的砂屑灰岩、云斑灰岩、厚度 216-240m / 7

憲山組 (€¡G),下部以薄层灰岩与黄绿色页岩互层,中外部为中原层、薄

炒米店组(Є; C): 下部以薄层板状灰岩与页岩互复为产、间夹竹叶状灰岩,上部以浅灰色中厚层灰岩及鲕状灰岩为主,夹有氧化圆分叶状灰岩。厚度 61-94m。

三山子组(Є-O<sub>j</sub>S):下部以褐灰色-浅灰色中厚层中细晶白云岩为主,夹中薄层粉细晶白云岩,为残余云斑藻凝块和砾屑结构;中部为灰色薄层白云岩与褐灰色中厚层细晶白云岩互层,夹砾屑色色岩数层;上部为含燧石结核、燧石条带

白云岩,中上部燧石集中,顶部燧石较少,多次分分类构,与上覆马家沟组呈假整合接触。厚度 182-197m。

③马家沟组(OM), 奥陶系马家沟组是继九龙群之后的又一套巨厚层的海相碳酸盐岩沉积,以白云岩和石灰岩交替出现为特征,出露于木石镇东南部金河地区隐伏于第四系之下。

东黄山段(OM<sup>d</sup>) 下部为黄绿色页岩,上部为泥质灰岩。厚度 15-19m。 北庵庄段 (AMC): 以中厚层灰岩、深灰色夹有泥质灰岩和云斑藻灰岩 发 溶发育。厚度(A-M66m。

土临丧(2016):下部为灰白色、棕灰色泥质灰岩,中厚层状。上部为泥质 白土,灰岩夹有角砾状灰岩、白云石角砾岩。厚度 26-96m。

在py山段(OM™),青灰色厚层含燧石结核微晶灰岩、宏斑灰岩夹灰质白云厚度 197-300m。

阁庄段(OM<sup>®</sup>): 浅灰色、灰色中厚层白无质女岩、灰质白云岩夹泥质灰岩。 厚度 64-170m。

(3) 石炭—二叠系(C-P): 主要原伏主化石沟断裂以西、木石以南、柴胡店以东一带,为一套海陆交互相。其为积蓄系,自下而上划分为月门沟群和石盒子组,与下伏地层呈假整合接触。群组间为整合接触。

月门沟群(C-Py) 本部分为三个组。

本溪组(C,B)、黄绿色泥岩、页岩为主,底部夹多层铝土矿及山西式铁矿,厚47m。

太原组(CT),为灰—灰黑色泥岩、页岩、粉砂岩夹多层灰岩和煤层,厚

为西组 $(P_y^S)$ :为灰—深灰色泥岩、砂质页岩、黄绿色酸分类煤层,厚 123m。 石盒子组 $(P_1^S)$ :为黄绿、灰绿色砂岩,紫红 大紫色泥岩夹铝土岩,灰 页岩及薄煤层等。厚 168m。

- (4) 侏罗系(J): 只发育侏罗系三台组(S), 主要隐伏于峄山断裂以西, 岩性为褐红色、棕红色砂岩、砂砾岩及中粗粒石英砂岩等。厚度约 200m。
  - (5) 第四系(Q):岩性为浅棕黄/黄褐色粉质粘土,厚度受基底地形影

响, 自北向南厚度逐渐增加。调查区南部普 细砂和中粗砂夹砾石, 砾石 磨圆度较好,砾径不等,为局部地区农业生

#### 3、构造

本区在大地构造位置上处于华水板块鲁西地块鲁中隆起区与鲁西南潜隆起 区的交接部位,区内构造人的彩为主,主要有峄山断裂、化石沟断裂、官桥断裂、 西王庄—北辛断裂、 泉、散型及金河断裂等,详见图 5.4-4。现分述如下:



枣庄市区域构造纲要图 图 5.4-4

(1) 峄山断裂

隐伏于第四系之下,走向线波状弯曲,是存在向约 345°,倾向南西,倾角70-80°,垂直断距大于 1500m,断裂破碎煮宽度 20-40m,属张性、略具左移扭动的正断层。为鲁中南和鲁西南的重要的区域地质分界线,自中生代后期以来一直控制着鲁西南断陷区的沉积。断裂条侧地层是前震旦系和寒武—奥陶系,西侧地层是侏罗系。该断裂的形成文能受基底构造控制,燕山期强烈活动,后期又多次活动,控制着现代地貌单元。该断裂具阻水性质,形成官桥断块西部的隔水边界。

### (2) 化石沙糖

北起北安之南重张桥,全长约30km,走向北东10°-20°,倾向西,倾角之。20°、断距大于100mm,断面陡立且光滑,有顺时针扭动的迹象。断裂平面展布呈舒缓波步,从河北庄至埠岭方向改至西南,而从埠岭至刘昌庄方向发致皇东西。北盘为省上罗寒武系地层,南盘为太古界变质岩。木石以北级新裂导水,木石以南具有阻水性质。

### (3) 官桥断裂

该断裂北起北王庄南至东公桥,全长约之后,除北段可见外其余大部分隐伏于第四系之下,走向北东 30°左右,倾向北西西,倾角 75°-80°,逆时针方向扭动,为一压扭性断裂。

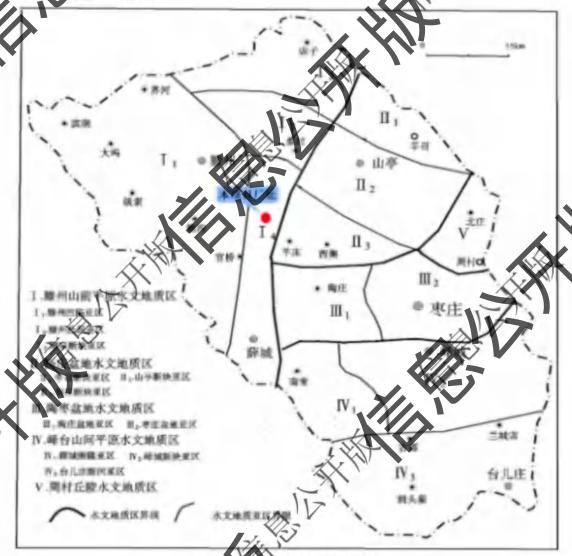
## (4) 西王庄—北辛断裂

### 火5) 泉头断裂

层体于泉头村南侧,规模较小,走向近 EW,倾向 N,为人高肃度断层,断层南北盘岩性皆为奥陶系马家沟组灰岩、泥灰岩,该断层具阻水性质,对泉头北部富水地段具有重要意义。该断裂规模较小,向西方方域此断裂相交,北侧岩溶水可通过西部断裂不发育段径流补给南侧岩溶水。

### (6) 金河断裂

为一隐伏断裂, 东起张桥西至太平龙一带, 长约 5km, 走向近 EW, 倾向 N,


属高角度正断层。南盘岩性以寒武系为主, 水盘为处义 奥陶系为主, 该断裂大辛 庄付庄段由于岩浆岩的穿插切割而导致阻火, 从下形成裂隙一岩溶水南部的相对 隔水边界, 而付庄一张桥段断裂则透水。

#### 2、岩浆岩

区内岩浆岩出露范围不大、主要分布在木石镇后安上东侧和薛城金河一带, 其产状多为岩脉或岩墙、常见的有燕山期正长斑岩、闪长斑岩、花岗斑岩及蚀变煌斑岩等。

#### 5.4.3.3 水文地度条

区内水区地质条件受地形地貌、地层岩性、地质构造、地下水补给强度等因素的,技地层岩性组合及主要影响因素分为五个不同的水及地质区、十三个亚、 208 5.4-5。



水文地质分区图

#### 1、地下水含水层类型及分布

地下水含水岩组按储水空隙特征对分松散岩类孔隙水、碳酸盐岩类裂隙岩溶水和碎屑岩、侵入岩裂隙水三大类

①松散岩类孔隙水

滕西山前倾斜平原、分布于滕州~薛城以西至昭阳湖~微山湖,为微向西南倾斜的山前冲洪和采熄、第四系厚度 30~90m,更新统及全新统含水砂层发育成分。 自上游向下游砂层增多,厚度增大,岩性由粗变细。单位涌水量 100~1000m~10 m 不等。地下收水质良好,水化学类型为 HCO₃-Ca型。

分。在山前平原:分布于峄城东南至台儿庄及韩庄运河两岸、地形向南微倾斜、建区系厚度 10~38m,自北向南砂层层数增多,厚度加大。其中中部泥沟至 全城店一带第四系厚度可达 38m,含水砂层厚度 18m 左右,岩性以中粗砂为主,单位涌水量大于 500m³/(d·m),为中强富水地系。地下水质良好,水化学类型为HCO3-Ca型,具有较好的开发前景。

另外,在羊庄盆地和陶枣盆地及1000、山麓地带也有部分孔隙水,但第四系厚度一般小于10m,含水层不发。富水建较弱,单井涌水量小于300m³/d,其地下水水质较好,水化学类型发现600-Ca型。

## ②碳酸盐岩裂隙岩液

该类型地下水含水溶组的寒武系、奥陶系白云岩等组成,主要分布中部也区长清群朱砂洞组裂隙岩溶水;主要分布于枣庄断裂以北柏山~大北底一次、峄裂以北薜城、北棠阴~左庄一线及凫山断裂和长龙断裂以北地区,一般呈裸露、半裸露状态、分布位置较高处,灰岩岩溶较发育,但不利于地下水储存。富水性较强、并孔单位涌水量小于100 m³/(d·m)。若埋藏条件和补充发生有利地段,单位涌水量也可大于1000m³/(d·m)。水化学类型为HCG、50-C1型。

九龙群张夏组裂隙岩溶水:该组地层分布较广大 股大路位置较高,形成"崮" 形山,仅在盆地、断块边缘地带呈隐伏状态、国隐伏面积较小,深度较浅。含水岩组富水性较差,且不均匀,单位涌水量、般小于 100m³/(d·m)。地下水水化学 类型为 HCO<sub>3</sub>-Ca型。

九龙群三山子组裂隙岩溶水,为白云岩紫烧起名、主要分布于羊庄盆地、陶枣盆地、荆泉断块、峄城断块等地段的南部边缘地带,呈裸露~半裸露状态,多为地下水的补给径流区,地下岩溶形态主要为溶蚀裂隙、蜂窝状溶蚀及溶洞等,地表岩溶形态为溶沟、溶芽和干谷等,岩溶发育深度在200m以上。其中陶枣盆地中东部十里泉、丁庄~水子产地段,该组中段岩溶裂隙极发育,富水性极好,单位涌水量大于1000mk(chi),形成了十里泉和丁庄~东王庄水源地。地下水水化学类型以 HCA、Cook of 型为主。

马家沟组裂像是溶水,分布范围与三山子组相似,多隐伏于各盆地和赤块的腹部,为埋城型,石灰岩、白云质灰岩地下裂隙岩溶发育强烈,地形较低,有利于地、水的汇集,一般单位涌水量大于1000m³/(d·m),形成多分地下水供水水源地、地、地、水质良好,水化学类型为 HCO3-Ca型。

### ③碎屑岩、侵入岩裂隙水

长清群馒头组裂隙水,为碎屑岩夹碳酸盐,有级合,分布范围与朱砂洞组一致,地下水赋存于页岩和薄层灰岩的裂隙中,富水生差,单位涌水量小于 10m³/(d·m),水化学类型为 HCO<sub>5</sub>-Ca型。

九龙群崮山组、炒米店组裂炒米产主更分布于低山、丘陵区中上部,地表裂隙较发育,但地下岩溶、裂隙发发差》由于受地形等因素制约,地下水在页岩、薄层灰岩中赋存条件差,单位涌水量小于100m³/(d·m),在地形和构造有利地段可大于100m³/(d·m)。地下水常以季节性泉形式排泄。水化学类型为HCO3-Cx型

保罗系、石炭、二叠系裂隙水:主要分布于峄山断裂以西、陶枣煤田、原南煤田及官桥煤田区,为煤系地层的上覆地层,含水层由砂岩、砾岩、粘土岩组成,裂隙不发育,单位涌水量小于 100m³/(d·m),水化学类型较复杂,多为100 50 = Ca型,溶解性总固体多大于 500mg/1。

侵入岩裂隙水,主要分布在党山~辛召、桑村、麓城、南常和枣庄附近,主要岩性为闪长岩、石英闪长岩、花岗岩和变粒岩等、食水层为网状风化裂隙及脉状构造裂隙,风化带深度 5~30m,裂隙不发育、富水性微弱,单位涌水量10~20m³/(d·m),构造裂隙带及地形低洼处涌水量略大。水化学类型 HCO₃-Ca 型。

## 2、地下水的补给、径流与排泄

地下水补、径、排特征依照五个水文地域、水平个亚区分别进行论述。

表 5.4-4 地下水砂、径、排持征表

| 单元          | 名称       | 地下冰补、径、排特征                                                                                          |
|-------------|----------|-----------------------------------------------------------------------------------------------------|
| X           | 亚区       | 10 17 11 11 11 11 11 11 11 11 11 11 11 11                                                           |
| 滕           | 滕西<br>平原 | 第四系孔隙水主要接收犬气降水入渗、河流渗漏、灌溉回渗,地下水自东北向西南径流,以人工开采和向湖区径流、溢流排泄为主。下伏基岩地下水补给条件差,径流流缓                         |
| 州山          | 滕北<br>丘陵 | 地下水主要接收降水。水补给。地表径流为主,汇入马河、户主、岩马等大中型水库(x)。                                                           |
| 前平原         | 荆泉<br>断块 | 地下人接收於水八彥,河流及水库放水入彥、库区彥漏等补给,东北部分<br>区、西河部为鲜泄区,地下水自东北向西南汇聚。以泉水、人工开采及第四条<br>升路水向下游径流排泄。               |
|             | 官桥       | 工障水主要接受降水入渗、河流渗漏补给,岩溶水同时接受孔腹水越流补给。<br>(本部分补给区,南部为排泄区,地下水自北向南径流。现以人工开采排泄为主                           |
|             |          | 接发大气降水入渗补给。沿沟谷、低洼地带地形坡向径流。零星泉水及山村人畜用水开采排泄,地表水多汇流蓄积于水库中,雨季泄流、旱季放水,该区总体构成羊庄盆地的间接补给区。                  |
| <b>产</b> 盆地 | 山亭断块     | 接受大气降水入渗补给及地表河水渗漏补给。总从自然向西、自北向南径流,但不能形成统一地下水流场。主要排泄方式有浆水排泄、人工开采排泄和地下水径流排泄,该区总体构成羊庄盆地的直接补给区。         |
| 地上          | 羊庄断块     | 接受大气降水入渗,地表河水渗漏、水下水风向径流补给。自盆地周边向中部汇聚径流,总体自东向西南径流。以象水排泄、河道溢流排泄、人工开采排泄为主,地下水径流排泄微弱。该区层体为丰庄盆地的集中径流排泄区。 |
| 陶枣          | 陶庄<br>盆地 | 地下水补给主要有大气降水、地震水及矿坑排水入渗。顺坡向自南向北、顺地势自东向西径流。排泄方式有量水溢流、人工开采、矿坑排水等,地下水径流排泄量较小。                          |
| 盆地          | 枣庄<br>盆地 | 地下水补给主要有大量。<br>地下水补给主要有大量。<br>地表水及城市废水渗漏。地下水总体自北、东、<br>西三面向中部汇流,然后向身径流排泄。主要排泄方式为人工开采。               |
| 峰           | 南常丘陵     | 大气降水入渗水堆,从给来源,地下水多顺地形坡向流动,无集中径流,以分散开采排泄水主; 少量地下水径流排泄,地表汇流后,大部分流入韩庄运河,构成台儿定断来的间接补给区。                 |
| 台山间亚        | 峄城<br>断块 | 主要补充为大气降水入渗、河水渗漏、少量北部地下水径流。地下水流、水中自西向东,自北向南,局部受微地形、构造控制。以人工开采和向南东之外的泄为主。                            |
| 平原          | 削        | 补给来源有大气降水入渗、河水渗漏、地下水侧向径流,地表水流或口渗等。<br>地下径流总体有三个方向,一是自北向南,二是自西向东<br>径流排泄,另有人工开采及蒸发排泄。                |
| 剧步          | VE       | 降水入渗补给。顺地形自北西向南东径流,泉水排泄, <b>发地毒水</b> 汇水为主,蓄于周村水库                                                    |

## 3、地下水的水位动态特征

(1) 孔隙水水位动态特征

根据孔隙水长期动态观测资料分析,松散者类孔隙水属入渗—开采—径流型,水位动态主要受降水和人工开采两大因素影响。丰水季节和丰水年份降水量大,孔隙水水位高,枯水季节和枯水等,降水量小,孔隙水水位低。每年的3~6月份,

在人工开采的影响下,孔隙水水位迅速下降、大彩彩、月底,水位达到最低,而7~10月份,在降水补给下,水位迅速上升、年内最低水位一般出现在5~6月份,最高水位出现在8~9月份。自2003年孟河水源地大部分供水井停采后,浅层孔隙水水位有所抬升。其后多年水位都态基本保持在同一水平上下波动,地下水系统处于多年自然均衡状态。水位埋深1.5~8.0m,年变幅一般为2~10m,多年变幅小于15m。

#### ②岩溶水水农园公特征

区域上岩溶地、水水位主要受人工开采活动的影响,此外还受降水量的影响, 岩溶水水位为态在年内和年际间表现出不同的变化特征(详见图 5.46)。

是各水年内变化可分为三个阶段,每年的 3~6 月份是春灌季节,地下水开采量相对较大,而大气降水补给量甚微,地下水位表现为明显的下降;而 7~10 月份开采量相对减少,大气降水集中补给,水位迅速大升,一般在 9 月份达到最高峰;10 月份到次年 1 月份为水位相对稳定阶级。补给量和开采量相对较小,岩溶水水位缓慢下降。从补给区到排泄区,岩溶水的水位动态变化规律大致相同,只是变幅和速度略有区别,水位年变幅 3~m。自 2003 年金河水源地大部分供水井停采后,岩溶水水位有所抬升,其后多年水位动态基本保持在同一水平上下波动,地下水系统处于多年自然大概发表。水位埋深 10~18m,年变幅一般为 2~3m,




图 5.4-6 地下水多年水位设势曲线

## (2)岩溶水水位动态特征

区域上岩溶地下水水位主要受人工开来活动的影响,此外还受降水量的影响,岩溶水水位动态在年内和年际间表现出不同的变化特征。

岩溶水年际变化,主要受人工开采及降水素物,2003年以前金河水源地大量开采,致使种楼岩溶水在水位相对低位(35~36m)处于多年动态平衡状态,而受降水枯、丰期的影响,在2000年和2003年典型的枯水年份,水位标高创出最低纪录,之后在丰水年份又受到补给而回升;自2003年金河水源地大部分供水井停采后,岩溶水水位有断治升,其后多年水位动态基本保持在相对高位(37~39m)水平上下波动、地下水系统处于多年自然均衡状态。水位埋深10.0~18.0m,年聚解、般为2~3m,多年变幅小于4m,但需要注意到,水源地域少开采后,区内岩溶水的水位年变幅相对减小,由减少开采前的3m变为减少,采后的240。7

为2~10月份开采量相对减少,大气降水集中供给,水位为现象。 份达到最高峰;10月份到次年1月份为水位和水稳定阶段,补给量和开采量相对较小,岩溶水水位缓慢下降。

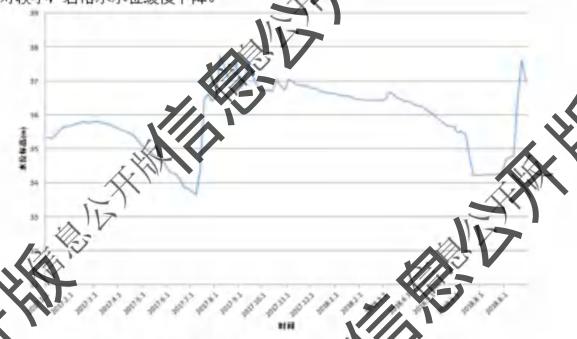



图 5.4-7 种楼岩溶水 2017.1~2018.9 风景水 (3) 动态曲线

根据地下水导则 8.3.3.6 第一条要求: 评价等级为一级的建设项目, 地下水分布区为岩溶裂隙水, 水位、水质监测频率为枯丰两期数据。本次评价于 2024

年9月25~26日,2025年2月20~21日,分别元展了丰水期、枯水期两期监测,可满足导则要求。

#### 4、地下水水化学特征

根据本次地下水环境现状监视所取水样的监测结果显示,本区地下水化学类型有: Ca-HCO<sub>3</sub>-SO<sub>4</sub> (1#、2#、7#、8#)、Ca-Na-HCO<sub>3</sub>-S (5#) Ca-Na-Mg-SO<sub>4</sub> (6#) Ca-Mg-HCO<sub>3</sub>-S (5#, 9#、10#)。常规离子(K<sup>+</sup>、Na<sup>+</sup>、Ca<sup>2+</sup>、Mg<sup>2+</sup>、Cl:、SO<sub>4</sub><sup>2-</sup>)含量相对关系认图 5.4-8~10。

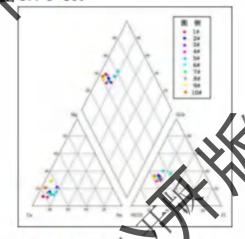



图 5.4-8 地下水水化学三线图



图 5.4-9 场区附近地下水水化学常规离子含量



## 5、场区地质、水文地质条件及包气带概况

建工程场地位于山东省滕州市木石镇境内,本区处于鲁中山地向鲁西南平原汉麓地带内,其特点为低山丘陵以及残丘与山间小型盆地、谷地、小型平原相包分布,场地地貌类型为山前平原地貌。场地处于一个发南北向的木石盆地内,盆地东西宽约 4000m,两侧的低山丘陵海拔 1%~200k,盆地海拔 57~65m,地势北高南低,地面平均坡度 3‰~5‰。从北向海流向的小沂河位于场地东侧,小沂河宽约 20m,河岸高出河床 3~5m,为本区排漫通道。

#### (1) 厂区地质条件

### 1) 场地地形地貌

拟建场地整体地形中间高,南北侧低,钻探孔孔口高程 64.55~69.92m,高差 5.37m。场区地形相对平自,场地北半部分为耕地,中间部分为空地,已基本整平,南部为现在工业设施及建筑物。

2)场地地层结构及其物理力学性质指标统计

本场区勘察深度范围内, 地基土自上而下分为如下9层。

《文堂素填土(Q4<sup>m</sup>):黄褐色,以黏性土为主,土质不均为,之少量石子、砖屑、场区普遍分布,厚度:0.50~1.80m,平均0.87m; 医底标高、33.37~68.72m,平均66.21m; 层底埋深:0.50~1.80m,平均0.87m 为近五年堆积。

①<sub>-1</sub> 层素填土(Q<sub>4</sub><sup>ml</sup>): 杂色, 松散, 以灰岩碎块为主, 充填黏性土。该层仅在部分钻孔揭露, 厚度: 0.50~1.90m, 平均 1.29m; 层底标高: 63.55~67.30m, 平均 65.89m; 层底埋深: 0.50~1.90m。平均 1.29m。为近五年堆积。

②层粉质粘土(Q4叫中): 黄褐色、有塑, 局部硬塑, 切面较光滑, 土质不均匀,

第 267 页

局部粉粒含量较高。场区普遍分布,厚度: 0.00 x 6m, 平均 2.90m; 层底标高: 57.29~68.42m, 平均 63.99m; 层底埋深: 1.00 7.60m, 平均 3.25m。

③层粉质黏土(Q4<sup>d1-p1</sup>): 褐色,可塑、局部硬塑,切面光滑,干强度及韧性高,含较多铁锰结核,局部夹少量中粗砂。含量约 15%~20%。场区普遍分布,厚度:0.40~5.00m,平均 2.03m, 房底标高:55.64~66.75m,平均 61.91m;层底埋深:2.50~9.50m,平均 5.13m,

(Q, d + pl); 红褐~黄褐色, 硬塑, 切面光滑, 子强度及韧性高, 姜石含量较高, 含量约 25%。该层仅在 63 # 、66 # 、88 # N 5 # 104 # 钻孔揭露, 厚度: 0.70~3.90m, 平均 1.78m; 层底标高: 54.05 62.82m, 平均 60.46m; 层底埋深: 6.90~8.90m, 平均 7.96m。

⑤层中风化泥质灰岩(C): 青灰色 泥质结构,中厚层状构造,岩芯表面可见溶蚀凹槽及白色方解石脉,节果面有铁质浸染,岩芯主要呈柱状,节长 10~30cm,锤击声较脆,不易碎, (水类) 60%,RQD=80%。场区普遍分布,层顶标高: 50.40~66.24m,平均(60.494)结构面为 2~3组,主要结构面类型为裂隙层面、中厚层状构造,综合判断该层岩体完整程度较完整,该层未穿透。饱和单轴板压强度 50.7~71.4000。属于较硬岩,岩体完整程度属较完整,岩体质量级别数值级。

多5层灰岩(破碎)(C): 青灰色,局部呈灰黄色,溶蚀发育、岩壳表面可见溶蚀凹槽,并有泥质充填,芯主要呈块状,块径 20~70mm,发生20%。场区普遍分布、青灰色,溶蚀发育,岩芯表面可见溶蚀凹槽,并有泥质充填,岩芯主要呈块状,块径 20~70mm,CR=70%。场区普遍分布,厚度 0.00~6.80m,平均 2.16m;层底标高:46.57~58.47m,平均 53.99m;层底埋深,9.10~19.20m,平均 13.30m。结构面大于 3 组,主要结构面类型为裂隙层面,裂隙块状或中厚层状构造,综合判断该层岩体完整程度为破碎。该层属了较坚硬岩,岩体较破碎,判定岩体基本

268 页

质量级别为IV级。

⑤2层溶洞:红褐色~黄褐色,全充填, 光填物以黏性土为主,硬塑,夹少量姜石,含量约5%~20%,差异较大。厚度: 0.20~3.80m,平均1.39m;层底标高: 48.61~63.45m,平均59.00m;层底埋深5.80~17.30m,平均8.70m。

#### (2) 构造

木石盆地发育有近南北向的断裂构造,主要断裂有化石沟断裂,木石断裂及 该二断裂派生的次数数 1-1 及倾东 2 断裂。

①化石沟断裂 又称纵 1 断裂): 为一走向近南北、倾向西、倾角、水流 断层,从事化广下址东穿过,长约 35km,绝大部分隐伏于第四系之下,据前人 资为 双破碎带已胶结,断裂对第四系没有影响。

(又称纵 3 断裂): 走向北偏东,倾向东南之倾角 70°之正断层, 隐伏于第四系之下,大致顺小沂河分布,为一不活动断裂。

③纵 1-1 断裂:为纵 1 断裂派生次级断裂、断裂走向南北,倾向西,倾角陡立之正断层,断裂规模较小,裂隙及破碎荒寒,上被充填胶结。

④倾东 2 断裂: 为一高角度正断层, 倾向东南, 倾角 70°, 该断裂上盘为石炭系地层, 下盘为奥陶系灰岩, 如果带宽 10-20m, 带内岩石破碎, 裂隙被方解石脉充填, 胶结较好, 断裂自要流型以来不活动。详见图 5.4-11。

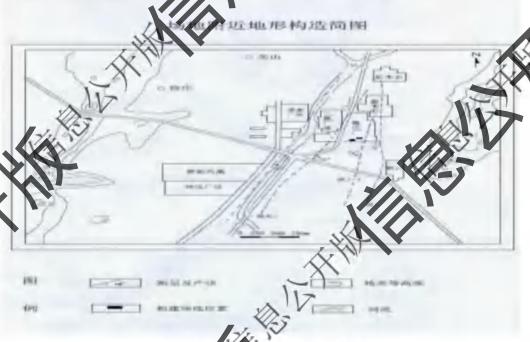



图 5.4-U 场地附近地形构造简图

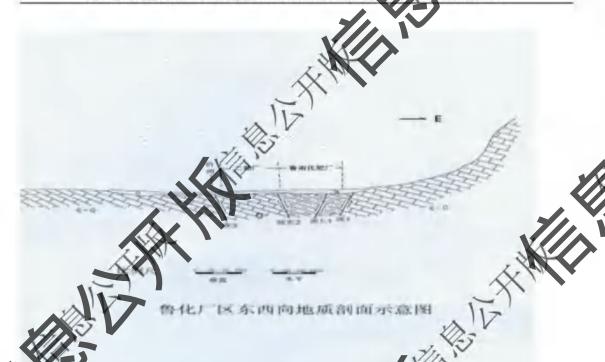



图 5.4-11(2) 鲁化厂区东西向地层的面示意图

### (2) 场区水文地质条件

拟建场地地下水属第四系孔隙水及或量量岩溶裂隙水,地下水位变化受大气降水影响,本次勘察期间为平水期,勘察深度范围内未见地下水,勘察期间现场无地表水。根据走访调查及多次,建筑料,该区域地下水位标高约为 44m,地下水位年变幅 2.0-4.0m 左右,近五年最高水位标高约为 49m。地下水补给方式主要由大气降水及上游径流补着,排泄方式主要为人工开采及地下径流。

## (1) 第四系孔隙水

主要受大气降水和场地上部大气降水渗入地下沿基岩面以及以上第四条地层渗流补给和周边河道渗流补给,径流方式以顺坡下渗为主。第四条松散岩类孔隙水水水态随季节、大气降水及地表水的补给变化而变化。多水水的动态与大气降水分裂密切,每年6月至9月份为大气降水的丰水期。遇降两时,可能存在第四系孔隙水,但无统一水面,属暂时性流水,在平水期、冷水期一般无水。

## (2) 碳酸盐岩岩溶裂隙水

赋存于溶蚀裂隙、溶洞、岩溶管道中、富水性中等,但分布极不均匀,具承压性。补给方式主要有大气降水入渗补给、何床渗漏集中补给及第四系松散岩类孔隙水渗透补给,岩溶水的径流发发和径流强度受地形、地貌、岩性和地质构造

#### (3) 场地岩土工程分析

根据《兖矿鲁南化工有限公司30万吨/年己内酰胺项目岩土工程勘察报告》了解到:

# ①场地稳定性和适宜性评价

根据本次勘察给惠分桥,拟建场地属山前平原地貌,场区内地层较稳定,发全新活动断裂通过,根据 1967 年省勘察测量大队地质资料,勘察范围东南级处式发育一系列断层,为新近不活动断层,场地内不良地质作用主要为岩溶,岩溶形态之类场溶沟、溶槽、溶蚀裂隙与溶洞,洞隙内一般充填黏性化,本次揭露洞隙最大高度为 2.9m。除此之外,场地内及其周围不存在崩塌、滑坡、泥石流等影响场地稳定性的不良地质作用。场地内无地震震陷、万浓花地层,也不存在对设计地震动参数可能产生放大作用的特殊地形地貌、综上所述,建筑场地为建筑抗震一般地段,场地稳定性较好。

拟建地形平坦,地貌简单,地面城度大部分小于10%,场地平整简单;地基 土各层地基土起伏变化不大,总分为有时稳定,工程性质较好,勘察期间未见 地下水,地面排水条件尚可。投资场边地基条件和施工条件较好,基础工程费用 较低,工程建设不会诱发发生地质灾害,拟建场地工程建设适宜性可视为较适宜。

## ②地基稳定性评价

拟建场地貌类型为山前平原, 地基稳地基土主要由第四纪黏性土, 各层 建 土起伏变化不拔, 总体分布相对稳定, 力学性质较稳定, 但是厚度变化较大, 基 岩面埋深变化范围较大, 且有岩溶发育, 建议详勘阶段进一步探明岩潭状况, 结 合名建筑物基础布置情况分别判定地基稳定性。

## ③地基土分析评价

拟建场地各层土的物理及力学性质也相对稳定了其各地基土分析评价如下:

①层素填土:黄褐色,以黏性土为主,土质不均匀,夹少量石子、砖屑,密度变化较大,工程性能差。

①-1 层素填土,杂色,松散,以灰岩碎块为主,充填黏性土。密度变化较大,

#### 工程性能差。

- ②层粉质粘土,可塑~硬塑,a<sub>1-2</sub> =0.32~0.8 Mpa<sup>-1</sup>,中高压缩性土,工程性能一般。
- ③层粉质粘土:可塑~硬塑、 =0.18~0.53Mpa-1,中高压缩性土,工程性能一般。
  - ④层黏土: 硬塑, x2=0.13~0.38Mpa-1, 中压缩性土, 工程性能较好。
  - ④-1 层黏土、60.20, al.2 =0.17~0.19Mpa-1, 中压缩性土, 工程性能较大

## ④特殊性岩尘

①层素填土、①-1层素填土,填土成分复杂并且差异性大,堆填的条件和厚度的 放案性,因此其成分、厚度及密实度缺乏规律性,且有明显的不均匀性和欠固、减生的抗剪强度低,力学性质差,稳定性差,未经有效处理不宜直接作分似建物的地基持力层,基坑开挖过程中,容易引起侧壁未稳。①层素填土、①-1层素填土层底标高较高,可予以挖除。

#### ⑤不良地质作用

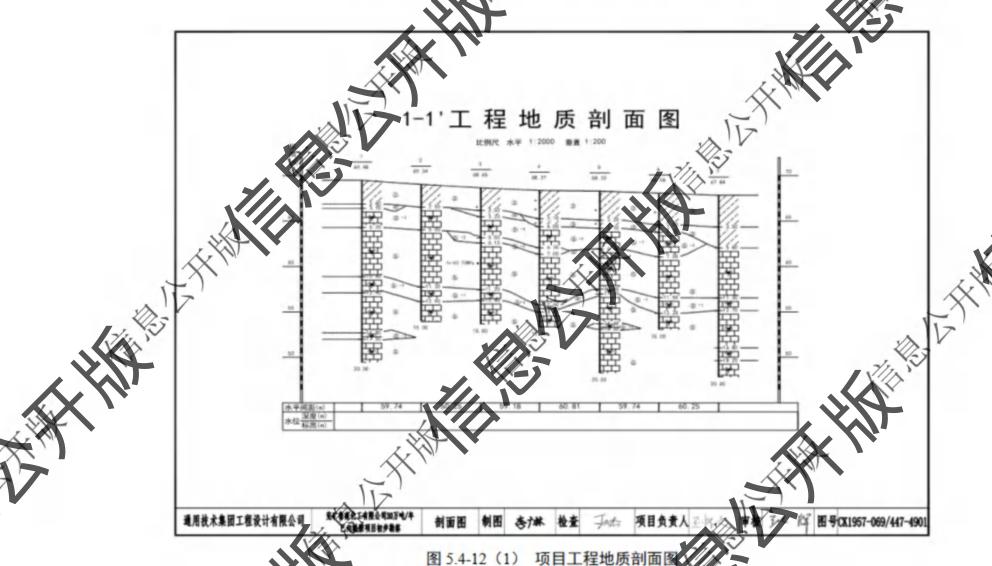
拟建场区石灰岩溶蚀现象较明显,发育规模大小不等的溶洞,在揭露灰岩的钻孔中遇洞率约 24%,平均线岩流流 35%,主要有溶蚀痕迹、溶蚀裂隙、稀疏分布的单个溶洞。根据《建筑地基基础设计规范》(GB50007-2011)6.6.2 条的规定,岩溶场地为岩溶布等发育。

根据勘察成果,溶洞普遍埋藏深度在 3.20~14.6.0 米,溶洞一般高度 0.3~3.80 米。所发育溶洞在水平及垂直方向展布上规律性较差。从钻探成果者,冷洞均处于全充填状态,充填物为硬塑状黏性土和碎石,其水力联系已处于消失或逐步减弱状态,贮水量一般不大。场地内勘探深度内未见地下水,或不考虑岩溶裂逐进一步发展对地基稳定性的影响。

## 2场区包气带易污性能评价

拟建厂区周围地表包气带岩性以粉质粘土为美元岩、颗粒较细,但裂隙比较发育,有利于降水的入渗,拟建厂区地势自北面南逐渐降低,大气降水集中时多形成地表径流,一部分以垂向入渗方式进入地下水。

拟建厂区范围内岩土层结构为粉质粘土及碎石土,包气带入渗性能较好,防


渗、防污性能差,虽然粉质粘土的渗透性较小 原 数均大于 1.00×10<sup>-7</sup> cm/s, 黏性土在个别钻孔中达到天然防渗要求,由于流积不连续,如果排放生产污水或 发生生产污水泄漏情况,则污水进入地表水或地下水后向下游径流,最终会进入 岩溶水水源地开采影响区,从而对了游水源地水质产生影响。

场区浅层地下水水位理学 6.80~2.80m 之间,主要接受降水、排水入渗补给,年变幅 1~2m,最高水位在地面下 0.5m,含水层岩土类型主要为含砂粘土及粉质粘土层,包气表发生主要为素填土、粉质黏土及部分粘土层,厚度约 3m 无关。

包气带粉质粘土层平均厚度 2.33m,渗透系数一般在 10<sup>-2</sup> cm/s,粘土层平均厚度 1.93m,渗透系数一般在 10<sup>-5</sup>~10<sup>-6</sup> cm/s。可见,天然包气带岩土层单层厚度均分 5.0m,渗透系数在 10<sup>-6</sup> cm/s~10<sup>-4</sup> cm/s,且分布连续,稳定。因此场区地下水仓,持防污性能一般,不利于地下水仓水层的保护。

钻孔柱状图、工程地质剖面图详见图 5.4-12~1

第 273 页 山东优纳



第 274 页

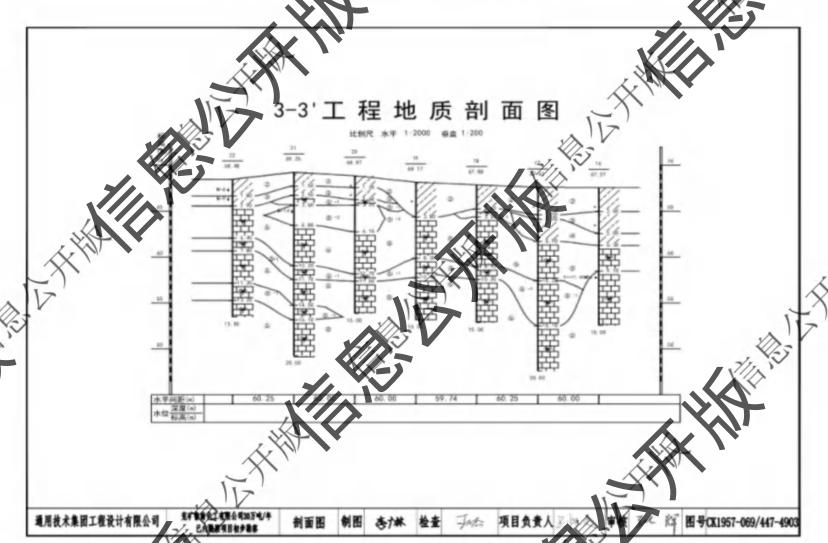



图 5.4-12(2) 项目工程地质剖面图

第 275 页

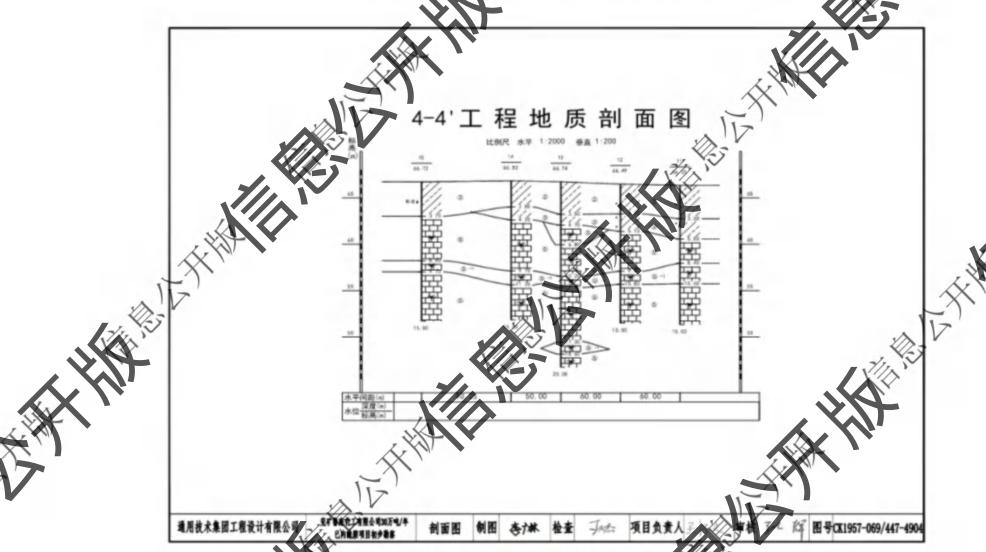



图 5.4-12 (3) 项目工程地质剖面图

第 276 页

工程名称 克矿鲁南化工有限公司30万吨/年已内成 工程编号 X=246, 157n 钻孔直径 好 10 130 稳定水位深度 处 66, 73m 孔口标高 初見水位深度 翘量日期 标問 层 层底 层底 标贯 中点 质 标高 深度 实测 描 层 述 时 深度 素填土:黄褐色,以粘性土为主,土质不均匀, 夹少量石子、砖屑。 m) 粉质整土:黄褐色。可塑,切面较光滑,土质不 均匀,局那粉粒含量较高。 中风化泥质灰岩: 青灰色, 泥质结构, 电 状构造, 岩芯表面可见溶蚀凹槽 点点 石林,节理而有铁质浸染,岩 节长10°30cm, 锤击声较脆。 CR-90%, EQD-80%. 58.83 58. 13 8, 60 。泥质结构, 中厚层 溶蚀凹槽及白色方解 支援集。岩芯主要呈柱状。 声较脆,不易碎。 台(破碎):青灰色。溶蚀发育,岩芯表面可 见溶蚀凹槽,并有泥质充填,岩芯主要呈块状, 块径20 70mm, CR-70% 中风化泥质灰岩: 青灰色, 泥质结构, 中厚层 状构造,岩岩表面可见溶蚀四槽及白色方解 石脉, 节理面有铁质浸染, 岩芯主要呈柱状, 节长10°30cm, 铺击声较能, 不易碎, CR-90%, RQD-80%. 灰岩(破碎):青灰色、溶蚀发育、岩芯表面可 见溶蚀凹槽、并有泥质充填、岩芯主要呈块核 块径20~70mm, CR=70%... 中风化泥质灰岩:青灰色,泥质结构 状构造。岩芯表面可见溶蚀凹槽及 石脉、节理面有铁质浸染、岩 节长10 30cm, 摊击声较临, CR=90%, RQD=80%. 通用技术集团工程设计有限公司 外业日期: 2019.7.13

图 5.4-13 (1) 项目 10号钻孔柱状图

第 277 页

工程名称 克矿鲁南化工有限公司30万吨/年已内截 工程编号 X=-354. 40fm 坐 稳定水价深度 孔口标高 68, 37n 标 Y=6599, 174n 初见水位深度 測量日期 层底 层底 分层 标贯 标商 深度 厚度 实测 述 指 深度 B-F 击数 粉质器土:黄褐色。可塑。切面较光滑、土质不 均匀,局部粉粒含量较高。 粉质器土: 褐色。可塑, 切面光滑, 干强度及初 性高,含较多铁锰结核,局部夹少量中相砂, 含量约15~20%。 灰岩(破碎): 青灰色, 溶蚀发育, 岩芯表面可 见溶蚀四槽, 并有泥质充填, 岩芯主要呈块状 块径20~70mm, CR=70%。 溶洞: 紅褐色, 全充填, 充填物。 61, 37 7.90 硬塑, 夹少量姜石. 中风化泥质灰岩:青灰 状构造, 岩芯表面可见 石脉, 节理面有铁线

> 《京教師》:青灰色。溶蚀发育,岩芯表面可 /效四槽,并有泥质充填,岩芯主要呈块状。 块径20°70mm, CR=70%。

中风化泥质灰岩:青灰色,泥质结构,中厚层 状构造,岩芯表面可见溶蚀凹槽及白色方解 石脉,节理面有铁质浸染,岩芯主要呈柱状。 节长10~30cm,锤击声较跳,不易碎, (20-90%, EQD-80%。

用技术集团工程设计有限公司 外业日期: 2019.7.11

图 5.4-13 (2) 项目 4 号钻孔柱状图

278 页

工程名称 兖矿鲁南化工有限公司30万吨/年已内酸 工程编号 秥 17 -233, 588a 稳定水位深度 45 测量日期 67.61m 孔口标高 初见水位深度 分层度 层底 层底 标贯 中点度 深度 NS 标高 描 述 实测 时 ft 击数 粉质黏土: 炭褐色, 可塑, 切面较光滑, 土质不 均匀, 局部粉粒含量较高。 粉质黏土:褐色,可塑,切面光滑,干强度及韧性高,含较多铁锰结核,局部夹少量中粗砂, 含量约15°20%。 黏土: 紅埔 "黄褐色, 硬塑, 切面光滑, 干强度 及韧性高, 可见铁锰结核, 层底含较多姜石。 中风化泥质灰岩: 青灰色。泥质结果 状构造、岩芯表面可见溶蚀凹槽 石脉,节理面有铁质浸染,岩石 节长10 30cm, 锤击声投脱, CR=90%, BQD=80%. 57, 41 10, 20 发育, 岩芯表面可 充填, 岩芯主要呈块状。 中风化泥质灰岩:青灰色。泥质结构,中厚层 状构造, 岩芯表面可见溶蚀凹槽及白色方解 が初記、名の表面が元治は日報及日に方等 石味、节理面有快点浸染、岩芯主要呈柱状。 节长10°30cm、報古声较龍、不易砕、 CR-90%、RQD-80%。

图 5.4-13 (3) 项目 17 钻孔柱状图

编制:

校核:

目技术集团工程设计有限公司

**小亚日期**: 2019.7.11

#### 5.4.3.4 地下水环境综合调查

为了掌握评价区地下水环境状况,本次工作 区及周边重点调查区进行了 综合环境状况调查。主要调查周边村正公布情况、饮用水水源、居民从事的经济 活动、项目区用地现状、地表水资源、污染源情况等。

# 1、鲁南高科技化工园区现状

拟建工程位于山东省滕州市鲁南高科技化工园区内。根据《山东鲁南高科技化工基地总体规划》、园区用地范围为,南至小魏(泥)河,东至安南路、西至木东路,北至文化路(现墨子路),规划建设用地 27.72km²。

园区功能定位为,建成以甲醇、醋酸、煤基烯烃、合成氨/尿素、生物法环氧化物,涵盖煤基燃料、甲醇深加工、醋酸深加工等产业链、产品涉及煤基燃料、化肥、塑料原料及制品、表面活性剂、胶黏剂、饲料添加剂、电子化学品等,具有鲜明循环经济特征的高科技化工基地。

园区内规划五个大片区,即煤气化产业区、工精深加工区、机械加工区、金融商业区、仓储区。

### 2、区域地下水开发利用现状

区内地表水、地下水均较主要,近年,由于地表水受到的污染较为严重,部分作为农田灌溉用水,可利用的水资源主要为地下水。

礼隙水主要分布在名木/南的冲洪积平原区,由于水位埋藏较浅,开采条件优越,是南部地区农业建聚发生活饮用水的重点开采对象。农业灌溉主要采用时田漫灌的方式,以机井分散开采为主,有季节性面状开采的特征。农灌开采度及开采强度与本年及上一年的降水量明显相关,降水量大的年份开采量水,降水量小的年份开采量大。开采量年内分配与季节及农业耕种活动有关。一般年份平均增减少年,枯水年份 5-6 次,农田灌溉定额为 260㎡ 亩

岩溶水的开采主要集中于南部金河水源地,主要用于落城区城市供水及部分 工业用水,具有开采量相对稳定、开采点较为集中的转点。金河水源地分布有供 水地段6处,具体情况见表5.4-5。

表5.4-5 金河水源地各傑水地段基本情况一览表

| 供水地段 | 位置 所属单位         | 开采量(万 m³/a) |
|------|-----------------|-------------|
| 泉头   | 金河乡泉头村、萨城区自来水公司 | 730         |

| 西黄沟泉 | 金河乡西黄村  | 山东华入东亚公司   | 停采 |
|------|---------|------------|----|
| 东黄沟泉 | 金河乡东黄村  | 山东         | 停采 |
| 西泥沟泉 | 金河乡西泥沟泉 | 4. 本华众级业公司 | 停采 |
| 西泥沟泉 | 金河乡东泥沟泉 | 火车站        | 73 |
| 张桥   | 薛城镇张桥 🖒 | 焦化厂        | 停采 |

目前仅有泉头和西泥海泉及火车站)2处地段开采供水,其中泉头地段为薛 城区自来水公司的供水水源域、西泥沟泉地段(火车站)则为薛城火车站生产 生活提供用水: 西黄沟泉 医泥沟泉(华众纸业)及东黄沟泉三地段为山东 纸业有限公司的位本外源地,由于企业目前停产,三供水地段也已停止及 桥供水地段原为薛城焦化厂开采水源地,目前企业停产,水源地也已停止运行 建果,泉头地段现状开采量约730×10⁴m³/a,泥沟泉地股7(火车站) 量约 73×104m3/a。

另外,在调查区北部的木石一带,多数农村生物 F采量相对较少。

### 3、区域水文地质环境问题

#### (1) 岩溶塌陷

也下水位频繁变动,第四系覆盖层土 岩溶塌陷一般是由于地下水 帷,生成土洞,形成土拱并产生拱形松动,

根据地层资料,区内南部及山间沟谷地带寒武系、奥陶系灰岩、白云岩 遍隐伏于第四系松散层之下,且岩溶发育,在大量抽取深层岩溶水的情况 备发生岩溶塌陷的地质条件,尤其南部金河水源地一带,岩溶地下水 存在岩溶場陷的风险。

# (\*) 地下水降落漏斗

内地下水开采不均匀,北部主要以分散式机民共发采 活用水,开采量相对较小。南部岩溶地下水丰富,为发溶水的主要开采区,岩 溶水开采主要以城市供水、工矿企业生产用水(1)发周边灌溉用水为主。近年来, 随着工矿企业的增加,地下水的需求量逐年增高,区内地下水开采量也随之升高, 地下水的过量开采已导致地下水降落隔斗的形成,其主要分布于官桥镇集中供水 中心、八一煤矿附近以及南部的流水源地附近。

### (3) 水质污染

根据调查,区域地下水水质普遍变差,大部分地下水已不满足地下水皿类标准,不能作为饮用水使用。根据调查,区内地下水污染源主要包括工业污染源、农业污染源以及生活污染源。

#### ①工业污染源

根据本次调查,场处区及周边 5km 范围内有多家大型工矿企业,主要有兖矿鲁南化工有限公司、联沟新材料等煤气化企业,污废水主要来自生活用水,产政基础设施用水、公共设施用水及工业用水等四个方面,现状情况下污水量、约 6万 m kd 之目前区内建有三处园区污水处理厂(鲁化净化水厂),工业废水的水份区经遗成区内地下水污染,总体表现在区内地下水的总硬度、溶解性总固体、硫酸根等均有明显升高趋势;生活污水排放对地下水水质也有一定的影响,全要表现在地下水中 COD 含量有所增加;根据本次调查。区内地下水大多已经受到不同程度的污染,局部地段地下水已经无法直接饮用。

#### ②农业污染源

区域内农业污染源主要来自农药和优加、农田施用的农药,大多含有有机磷、有机氯两种成分,施用的化肥主要最高肥、磷肥、钾肥及复合肥等,这些物质在土壤中残留时间长,不易分解、发生为黏性土和富有机质土壤残留期更长,受到大气降水的冲刷,这些产品分可能会进入地表水和地下水,对其构成威胁。

### ③生活污染源、

随着城镇的发展,人口数量不断增加,生活污水排放量不断增加,同时从类生活产生的生活垃圾也在与日俱增,这些都对周围环境造成不利影响。调查区内村户密集,多数村庄已配备有垃圾箱,但仍有少数村庄无规范域投售放点,垃圾仓在随意堆放现象。

# 5.4.4 地下水环境影响预测

#### 5.4.4.1 预测原则

项目所在区域地下水类型主要包括松散岩类孔隙水和碳酸岩类裂隙岩溶水,其中碳酸岩类裂隙岩溶水为本区主要保护含水层,厂区周边地下水流向为由东北向西南,建设项目的生产运行中,须包运行后会对地下水产生污染潜势,因此本

次主要对项目运行可能引起的岩溶水水质的文化并介顶测和评价。

根据《环境影响评价技术导则-地下水环境》中5610-2016)的规定以及附近区域的地质、水文地质条件,结合上述 54-1 建设项目类别及评价等级的判定 章节的有关内容,确定本项目一级评价。一般情况下,一级评价应采用数值法,为较准确地模拟当地地下水情况。本次拟采用数值法对地下水环境影响进行预测。

项目按照《石油化工工程防渗技术规范》(GB/T50934-2013)对厂区进行了严格地下水污染的影,按照"源头控制、分区防控、污染监控、应急响应"的原则对地下水环境进行保护,生产装置区、储罐区、地下物料、污水输送管域等均按照相关技术规范进行了防渗设计,正常情况下,不会对地下水环境造成不良影响。例此,对正常工况下地下水影响只做简单分析,对非正常工况采取数值法进行模拟。

# 4.4 水文地质概念模型

水文地质概念模型是对评价区水文地质条件的简化,是对地下水系统的科学概化,其核心为边界条件、内部结构、地下水流态三大要素,能够准确充分地反映地下水系统的文要功能和特征。根据评价区的地层岩性、水动力场、水体、场的分析,从而确定概念模型的要素。

# 5.4 5 模拟范围

在外插评价区水文地质资料的基础上,结合本次实地或发掘水质分析结果,按照评价区内的地形地貌以及水文地质条件等确定了海机范围。模拟范围为木石一金河凹陷区(官桥断块二级子系统)中的裂隙岩潭水水布区,包含项目厂区及下游的金河水源地(图 5.4-18),模拟范围面积 180km。



根据新述的水文地质描述,模拟范围内分布有第四系孔隙水和碳酸品岩类裂隙之间。其中孔隙水主要分布于官桥镇以南的平原区,由于水源水含水砂层与下部的碳酸盐岩直接接触,无稳定隔水层位,两层地下水水为烧系密切,因此参考《山东省枣庄市薛城区东黄沟水源地详查报告》的划分方法,将两层水概化为一个由岩溶发育段和第四系松散层构成统一的潜水一微承压水含水层。根据以往勘探资料,本区在埋深 250m 以下基本无岩密或溶蚀裂隙发育,本次评价将其视为本区地下水的隔水底板。可将研究区地下水流概化成非均质各向异性、三维结构、稳定地下水流系统作为初始,添扬模型。初始渗流场模型选取稳定流计算模

块,模拟模型区域天然渗流场。

#### 5.4.4.7 边界条件

水文地质概念模型边界条件由评价区具体的水文地质条件确定。评价区位于 低山平原,由于区域降水、地形、物造等自然条件与地下水开采等人类活动作用, 评价区地下水主要由北向南美向径流,水力坡度较小。根据前述的水文地质描述, 模拟范围内分布有第四条孔源水和碳酸盐岩类裂隙岩溶水,其中孔隙水主要分布 2. 由于孔隙水含水砂层与下部的碳酸盐岩直接接 下水水力联系密切,因此参考《山东省枣庄市薛城区 》的划分方法,将两层水概化为一个由岩溶发育段和第四系松散 微承压水含水层。

往勘探资料,本区在埋深 250m 以下基本无岩溶或溶蚀裂隙发育,本 內将其视为本区地下水的隔水底板。可将研究 **流概化成非均质各向** 初始渗流场模型选取 价区总面积约为 180km²。 稳定流计算模块,模拟模型区域

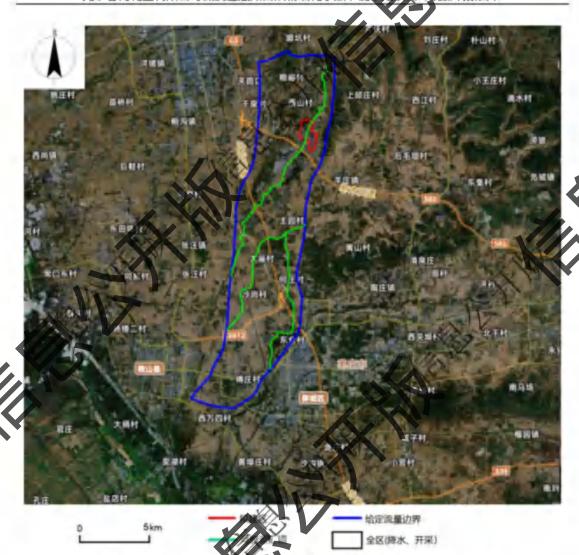



图 5.4-19 水文地质概念专型边界条件及源汇项概化示意图

#### 5.4.4.8 源汇项

模型源汇项根据采价区实际水文地质条件概化,见图 6.4-2。评价区社名页主要为大气降水风渗补给、河流渗漏补给、侧向径流补给等,排泄项主要发侧向径流排泄入地下水开采等。相关降水入渗系数、田间入渗系数、渗透系数等参数依据《水文地质手册》等技术规范与报告给定。

过程定后的地下水水量均衡表见表 5.4-13。

表 5.4-13 模型稳定后的地下水水量均衡表

| ì   | N排项  | 水量(丸) | 百分比(%) |
|-----|------|-------|--------|
|     | 降雨入渗 | 285 N | 39.16  |
| 补给项 | 河流渗漏 | 25749 | 35.36  |
|     | 边界流入 | 18553 | 25.48  |
|     | 小计   | 72813 |        |
|     | 边界流出 | 23408 | 32.15  |

第 286 页

| 排泄项 | 人工开采 | 144   | 67.85 |
|-----|------|-------|-------|
|     | 小计   | 1 100 |       |
| ±5  | (資结果 | 2     |       |

#### 5.4.4.9 水文地质参数

模拟区全部处于金河水源地调查勘探区内,取得了较丰富的水文地质资料。 模型需要的参数:含水层厚度 M;岩层的有效孔隙度 n;降水入渗系数 a;渗透 系数 K;弥散度。参数玉裹裾据以往水文地质勘察试验及类比类似条件来确定。

含水层的厚度 根据收集的以往水文地质钻孔,经过插值取平均稳定 渗透系数 E. 根据搜集所得钻孔资料显示,本区岩溶较发育,地下水富水性较紧导水性较好,通过模型识别验证。

多次是的平均有效孔隙度 n: 采取水文地质手册的经验值 20.0375。降水入渗系数取α. 根据以往水文地质勘探中的试验数据 0.2。

弥散度:依据山东省环境保护科学研究设计院有限公司《联泓新材料科技股份有限公司聚丙烯装置二反技术改造项目环境影响报告书》,山东省鲁南地质工程勘察院开展的弥散试验,本区含水层纵向弥散度 0.283m。

溶质模型是以水流模型为基础建立的不溶质模型水文地质条件的概化与所建立的水流模型一致。本次溶质是水类型模拟区的范围、含水层结构、边界类型划分、源汇项的概化等均与水流模型一致,流体概化为不可压缩的均质流体,黏度和密度均为常数。

# 5.4.4.10 地下水数学模型及模拟软件选取

在水文地质概念模型基础上建立数学模型,数学模型分为地下水流数学模型和地下水溶质运移数学模型。其表述如下:

### 地下水流数学模型

英型区气象、水文资料相对较多,地下水位动态监测资格等。结合评价区资料状况及模拟经验,本次地下水流数值模拟在模型深渐阶段采用稳定流模型,预测阶段采用非稳定流模型,以达到科学评价的各种。

根据评价区水文地质概念模型,建立评价区非均质各向同性非稳定流数学模型,用如下微分方程描述,

287 页

$$\begin{vmatrix} \frac{\partial}{\partial x} \left( T_h \frac{\partial H}{\partial x} \right) + \frac{\partial}{\partial y} \left( T_h \frac{\partial H}{\partial y} \right) + p \\ H(x, y, t) \Big|_{t=0} = H_0(x, y) \\ -K_h \frac{\partial H}{\partial n} \Big|_{\Gamma_1} = q(x, y) \\ K_h \frac{\partial H}{\partial x} \Big|_{\Gamma_2} = q(x, y) \\ (x, y \in \Gamma_1, t > 0) \\ (x, y \in \Gamma_2, t > 0)$$

式中: Ω-渗液区域(水算区范围);

H-含、焦水头 (m);

水平方向导水系数 (m²/d);

水平方向渗透系数(m/d);

μ—潜水含水层给水度(无量纲);

p—含水层的源汇项;

H₀—潜水含水层的初始水位分布(my

 $\Gamma_1$ —渗流区域的流量边界;

Γ2—渗流区域的零流量边界

7-边界外法线方向

# 2、地下水溶质运移数学模型

将地下水溶质浓度与地下水流,数学模型耦合起来,便成为地下水溶质运移数学模型的表达式,其地水水流度的偏微分方程描述如下:

a) 控制方程

$$\frac{\partial \mathcal{C}}{\partial t} = \frac{\partial}{\partial x_i} \left[ \theta D_{ij} \frac{\partial C}{\partial x_j} \right] - \frac{\partial}{\partial x_i} (\theta v_i C) - WC_z - WC - \lambda_1 \theta C - \lambda_2 \phi_z$$

R—迟滞系数,无量纲。  $R=1+\frac{\rho_b}{\theta}\frac{\partial \overline{C}}{\partial C}$ 

ρ<sub>6</sub>—介质密度, kg/(dm)<sup>3</sup>;

θ---介质孔隙度, 无量纲;

C-组分的浓度, g/L;

C 一介质骨架吸附的溶质浓度,Tekg

t—时间, d;

x, y, z—空间位置公文 m



Dij —水动力弥散系数张量, m²/q

Vi-地下水渗流速度张量, m/di

W-水流的源和汇, 1/d;

 $C_s$  —组分的浓度,g  $X_s$ 

λ, —溶解相一级反应速率, 1/d;

λ, —吸附相受及速率, 1/d。

b) 初始条件

$$C(x, y, z, t) = C_0(x, y, z)$$
  $(x, y, z) \in \Omega, t = 0$ 

式中、(7.7/2)—已知浓度分布

- Ω —模型模拟区域。
- c) 定解条件
- 1) 第一类边界—给定浓度边界

$$C(x,y,z,t)$$
 =  $c(x,y,z,t)$   $(x,y,z) \in \Gamma_1, t \ge 0$ 

式中: Γ, —表示定浓度边界;

c(x, y, z, t)—定浓度边界上的浓度分布。

2) 第二类边界—给定弥散,为

$$\theta D_{ij} = f_i(x, y, z, t) \quad (x, y, z) \in \Gamma_2, t \ge 0$$

式中: [2]通量边界;

(γ, ε, t)—边界Γ<sub>2</sub>上已知的弥散通量函数。

3),東三类边界—给定溶质通量边界

$$(\theta D_{ij} \frac{\partial C}{\partial x_i} - q_i C)\Big|_{z_i} = g_i(x, y, z, t) \quad (x, y, z)$$

式中: Γ, 一混合边界;

 $g_i(x,y,z,t)$ — $\Gamma$ ,上已知的对流一弦散息的通量函数。

联立地下水流方程和污染物运移方程,求解即可获得污染物在含水层中的浓度分布数据。本次采用数值模拟方法水股立的数学模型进行计算,污染物运移过程的模拟在地下水流数值模型的表面上进行。

#### 3、模拟软件选取

Visual MODFLOW 是三维地下水流动和内实物运移最完整、最易用的模拟 环境,这个完整的集成软件将 MODRILOW、MODPATH 和 MT3D 同最直观强大 的图形用户界面结合在一起。其全额的菜单结构使用户轻而易举地确定模拟区域 大小、选择参数单位,以及方便地设置模型参数和边界条件、运行模型模拟(MT3D 模型进行校正以及用等值线或颜色填充将其结果 MODFLOW 和 MODFA H 可视化。在建立模型标显示结果的任何时候,都可以用剖面图和平面图的形 模型网格、输入多数和结果加以可视化显示。因此,Visual MODFLOW 三维地下水流动和污染物运移模拟最普遍应用的软件。

NO DFLOW 由三个独立的模块:输入模块,运行模块和输出模块构 之间可以任意切换,以便建立或修改模型的输入参数,差行模型,校正 及显示结果。

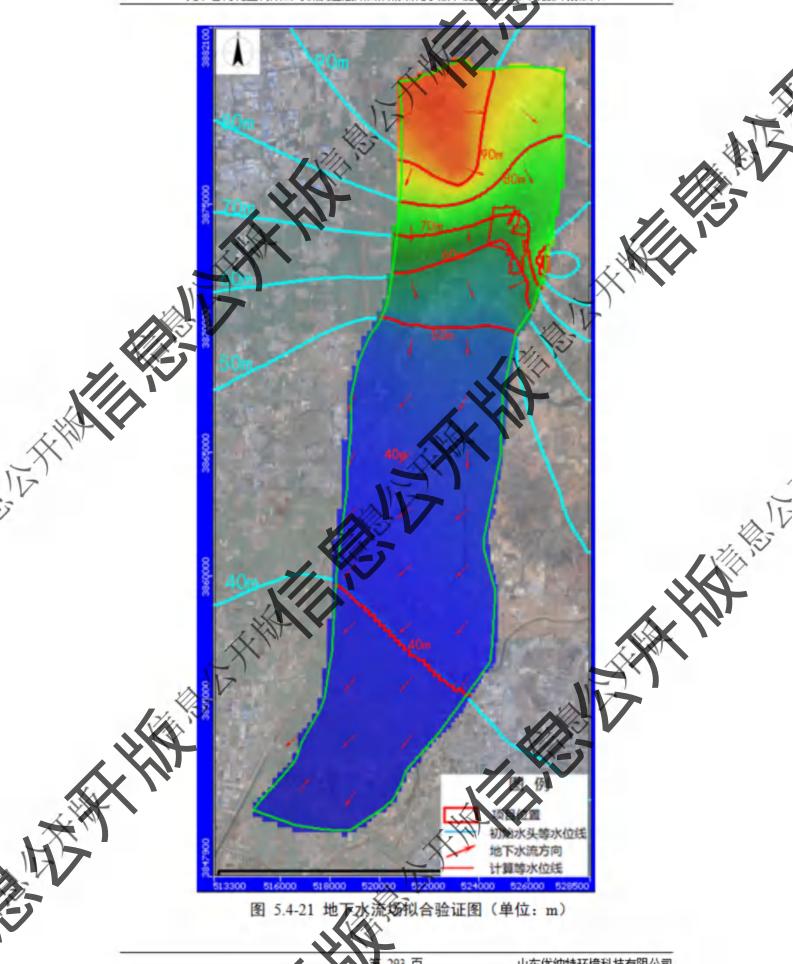
本次模拟所用的软件为 Visual Modflow 4.0~该软 基于美国地质调查局 的地下水流有限差分计算程序 MODFLOW 人。这个大滑铁卢大学水资源研究所 开发的地下水模拟软件。它继承了地下水流、算程序 MODFLOW 的优点,具有 模块化特点,处理不同的边界和源汇及背有专门独立的模块,便于整理输入数据 和修改调试模型。作为一款可护力、流模拟软件,它的界面十分友好,条理清晰, 菜单与模块化的程序相对应,更多订取的是它提供了比较好的模型数据前处理和 后处理的接口,原始数据不用对多处理就可以从软件界面输入,模型计算完成后 可以可视化显示流场及投降深等,并且可以输出图形和数据。另 Modflow 包含与 Modflow 地下水流模拟配套的地下水溶质运移模块 MTS 便于下一发建立研究区溶质运移模型。本次评价基于这两个 区地区水溶质迁移问题进行模拟。

### 也下水流数值模拟

#### 模型创建

地下水流模拟旨在为进一步模拟地下水中的海染物;移提供地下水流场等 基础条件,为进一步预测厂区不同工况下对地交水环境的影响提供科学依据。根 据本次地下水数值模拟的目的,水平方向上,网格为 200m×200m,且污染源附 近网格加密, 最小网格为 40m×40m, 到分结果如下图所示, 绿框为评价范围。 垂向上划分为1层,将区内的含 属作为统一的一层来处理。




- 2.模型平面网格剖分示意图

#### 2、模型识别验证

模型的识别和验证主要遵循以下原则

- (1) 模拟的地下水流场符合实际地下水流场情况;
- (2) 从均衡的角度出发,模拟的地下水均衡变化与客观条件基本相符;
- (3) 识别的水文地质参数合客观水文地质条件。

用 MODFLOW 软件建文概念模型,在给定参数、各补给排泄量和边界条件 算的地下水流场见图 5.4-21。从图中可以看出,模拟 在 95%置信区间内,模型总体上可以刻画模拟区的水文地 《情况,能够用于溶质运移模拟,对拟建工程在不同情景下对当 污染及其范围和程度进行模拟分析。



#### 5.4.4.12 地下水溶质运移模拟

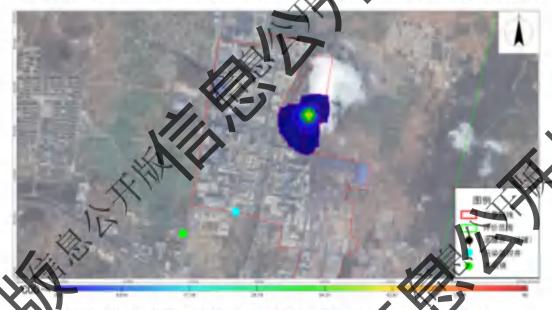
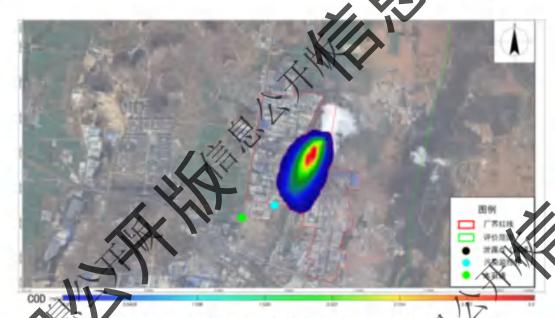
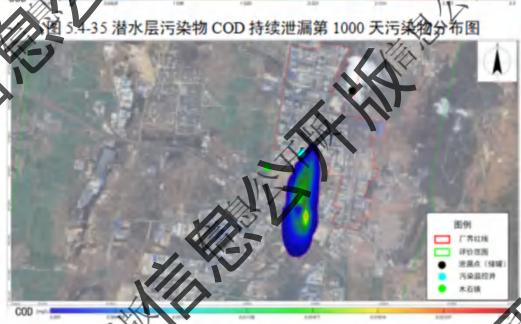
#### 2、情景二: 辛醇储罐瞬时渗漏污染

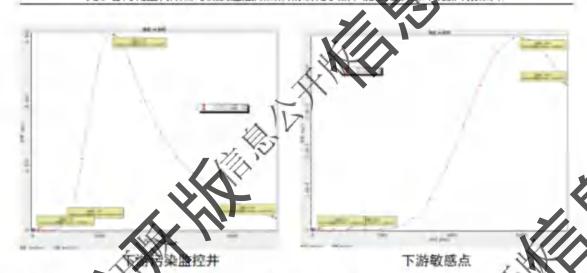
辛醇储罐短时泄漏情景下,以特征因子 COD 进行表征,COD 在各典型预测时段 100d、1000d、7300d 的污染产布中心浓度、污染最大迁移距离(检出限)及超III类污染面积见表 5.4.1

表 5.4-19. 潜水之水 层辛醇表征因子 COD 污染预测统计表

| 预测时间  | 最大夜度(mg/L) | 最大迁移距离(m) | 超Ⅲ类污染面积(rr |
|-------|------------|-----------|------------|
| 100d  | 5,000      | 422       | 48539      |
| 1000d | .50        | 1034      | 8283       |
| 7300d | 0.025      | 0         | (0)        |

全球储罐短时泄漏情景下,潜水含水层总汞第 100d、1000d、1200d 污染平面 2.24元见图 5.4-34-36。由上表及图 5.4-34-36 可知,字醇泄漏发生后,地下水表证因子 COD 在 100d、1000d 时出现超标现象,随着时间的延长,污染的中心浓度逐渐降低,污染随地下水向流场下游方向运移,渐渐消失。数值模拟显示,污染泄漏发生后 7300d 时,污染范围内辛醇表在20万 COD 浓度降到检出限以下。



图 5.4-34 潜水层污染物 COD 持续泄漏第 100 天污染物分布图

294 页





11 图 5.4-36 潜水层污染物 COD 持续泄漏第 7300 天污染物分布图 在辛醇储罐区泄漏下游设有污染监控井LH06、在敏感点处 会在泄漏发生 7300d 内,厂界浓度监控井和 1. 11 曲线见图 5.4-37; 厂界监控井、下游敏感点



漏污染物 COD 下游监控井及下游敏

# 环境影响分析

#### 犬况下对地下水环境的影响

E常状况下,厂区内污水防渗措施有效, 10处理;物料运输过程中基本不会出现泄漏 污染监控、应急响应"的原则对地下水环境进行 项目建设符合国家环保政 策措施。所以正常状况下,本项目废 ,地下水环境中,不会污染地下水, 对地下水环境影响较小。

### 5.4.6.2 非正常工况下对地下水域的影响

常事故情景模式下气化灰水池连续渗漏, 入含水层后,由于受水 散和移流等作用的影响,污染物进 不断扩散,对地不水形成椭圆形的污染晕,污染晕中心的浓度量 小。因地表水污染较轻,预测期间,泄漏未出现超标现象。

原险状况下,辛醇储罐泄漏,由于物料瞬时大量排放, 物的浓度随到泄漏点的距离呈现先上升 含水层后,由于受水流的紊动扩散和移流等作 层后不断扩散,对地下水形成椭圆形的污染晕,添烫量。 之减小。随着时间的推移和地下水的弥散作用、污染晕中心沿水流逐渐向下游移 动,污染晕中心及整个污染晕的浓度逐渐降抵,直至满足标准要求,随之,污染 范围和影响范围先增大后减小直至消失的趋势。按照本次预测假设的事故源强进

行计算,预测结果显示,污染物的污染范围在150000 左右,污染范围以外的区域中污染物浓度已经低于相关国家标准的限值。从以本项目建设运营对地下水环境影响较小。但若事故不能及时发现、及时处理,污染范围会进一步扩大,对场区及下游河流、村庄的地下水水质造成一定的影响。

由于事故存在风险事故概念,根据本次假设的情景模式进行预测,从预测结果来看,会对地下水环境产生一定的污染,所以在建设期间以及建成运营期间,应该做好对地下水环境产生一定的污染,所以在建设期间以及建成运营期间,应该做好对地下水环境产生一定的污染,所以在建设期间以及建成运营期间,应该做好对地下水环境产生一定的污染物的降解作用等,因此预测结果偏大,实际上,污染物过地下水的影响比预测结果小。

### 545%,对金涛水源地的影响分析

金河水源地与拟建项目场地处于同一水文地质单元内、位于拟建项目地下水流向下游约 20km 处,金河水源地所处区域地下水资源丰富,是薛城区城市供水水源,供水意义重大。项目对地下水环境的影响主要是运营期非正常状况/风险状况下产生的影响,根据预测结果,项目运营 700d 时,瞬时泄漏时超标污染晕最大运移距离 1034m,连续渗漏时未出现超标污染,均远远小于项目与金河水源地保护区的距离,因此本项目建设通过污水渗漏对金河水源地的影响较小。

根据调查,项目区内小沂水水和项目园区的主要纳污水体,污水处理厂处理达标的废水排入小沂河消除,因现行经济、环保技术等体制原因,污水处理厂排放标准限值高于《地不补质量标准》III类水标准,因此小沂河的地表水水质较地下水水质差。小沂河对本区地下水有补给作用,由于污水在小沂河中的运行速度明显高于地下水中,污染物若通过小沂河向下游运移可能对金河水源地区域水质产生影响。因此建议企业做好节水措施,减少废水排放。

# 26.4 九平水例行监测数据分析

为更进一步分析厂区现有装置运行对地下水环境的影响,此次评价调研厂区地下水监控井历史数据,详见表 5.4-19。

表 5.4-19 厂区地下水监控井历史监测数据一览表

|      | 1 7 7 | j'       | 监测点位      |            |           |
|------|-------|----------|-----------|------------|-----------|
| 监测项目 | 単位    | 原东沂河村    | 原东沂河村     | 厂区监控井      | 厂区监控井     |
|      |       | 7010.235 | 2015.1.16 | 2019.11.11 | 2024.3.27 |
| pH   | 无量纲   |          | 7.12      | 8.35       | 7.1       |

第 297 页

|            |                  |       |                 |        | _     |
|------------|------------------|-------|-----------------|--------|-------|
| 氨氮         | mg/L             | 0.35  | 199             | 未检出    | 0.031 |
| 硝酸盐(以N计)   | mg/L             | 11.2  | 11/1/20         | 11.5   | 9.87  |
| 亚硝酸盐 (以N计) | mg/L             | 0.007 | 朱松出             | 0.006  | 未检出   |
| 总硬度        | mg/L             | 3761  | 453             | 302    | 379   |
| 溶解性总固体     | mg/L             | War.  | -               | 550    | 671   |
| 氰化物        | mg/L             | 1/2   | 未检出             | 0.002L | 未检出   |
| 氟化物        | m <sub>s</sub> L | 0.23  | 0.262           | 0.323  | 0.394 |
| 硫酸盐        | TAL              | 125   | 84.1            | 109    | 108   |
| 氯化物        | J. gm            | ( pe  | 61.2            | 71.9   | 51.3  |
| 硫化物        | mg/L             | 0.014 |                 | 未检出    | 表象世   |
| 挥发酚        | mg/L             | 0.001 | 未检出             | 0.0003 | 八条处   |
| 料頁章        | mg/L             | 0.3   | 0.47            | 0.36   | 1.47  |
| 1          | mg/L             | 1441  |                 | 未检出    | 未检出   |
| 到 金        | mg/L             | **    | ***             | 0.8425 | 0.011 |
| 福          | mg/L             |       | -               | 大大松出   | 未检出   |
| 铅          | mg/L             | الهذا | 未检出             | 0.09   | 未检出   |
| 汞          | mg/L             | 未检出   | 未检出             | 0.04   | 未检出   |
| 砷          | mg/L             | 175   | <b>********</b> | 未检出    | 未检出   |
|            |                  |       |                 |        | +     |

根据统计历史监测数据,2010~2024年(文本监控并各监测因子均符合《地下水质量标准》(GB/T14848-2017) [[] 类标准、除溶解性总固体、氟化物、耗氧量近年来监测数据有所升高外,其他企测因子更化幅度较小,现有工程运行对厂区地下水环境影响较小。

# 5.4.6 地下水污染防疫猪加与对策

### 5.4.6.1 污染防治措施等对策

地下水保护与污染防治按照"源头控制、分区防治、污染监控、金融响应"的原则。 定程生产运行过程中要建立健全地下水保护与污染防治处措施与方法; 必须必要的监测制度, 一旦发现地下水遭受污染, 就应为分类取措施, 防微杜术, 尽量减少污染物进入地下含水层的机会和数量, 在要采取以下措施;

# 1、源头控制措施

项目产生的废水主要包括循环冷却水、生产废水、生活污水、冲洗废水均送入污水管网,装置区有部分物料储罐为半地下式布置,部分工艺管线走线地下布置。对上述各装置及其所经过的管道要定期巡查,杜绝"跑、冒、滴、漏"等事故的发生,进行严格的防渗处理,从水头上防止污水进入地下水含水层之中。

# 2、分区防治措施

(1) 厂区现有工程防渗措施

现有工程(含拟建项目依托工程)均已按照《石油化工工程防渗技术规范》 (GBT50934-2013)相关要求进行了严格防渗,具体防渗措施见表 5.4-20。

表 5.4-20 现有工程部分防渗措施一览表

|                                 | 双 3.4-2 | 以有工程部分的渗描地一克农                                                                                                                                                                                                                                                                                                       |
|---------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 防渗区域名称                          | 防渗分区等级  | 实际采取措施                                                                                                                                                                                                                                                                                                              |
| 装置区、罐区<br>地沟及地坑<br>地下管道、<br>地下罐 |         | 防腐蚀面层、结合层及隔离层;20mm 厚 1.2 水泥砂浆及<br>抹光;150mm 厚 C30 钢筋混凝土,抗渗等级为 P8、水泥;<br>泥基渗透结晶型防水涂料,掺量为凝胶材料的 1% X 5.<br>150mm 厚碎石灌 M5 水泥砂浆垫层;素土壳菜、                                                                                                                                                                                   |
| 装置区地面                           | 一般污染区   | 20mm 厚 1·2 水泥砂浆压实抹光;150mm 厚 C30 钢筋混凝土<br>抗渗等级为 P8;150mm 厚碎石灌 M5 水泥砂浆垫层;素土<br>夯实。                                                                                                                                                                                                                                    |
| 综合循环水站<br>)药间的地坑                | 重点污染区   | 防腐蚀面层、结合层及隔离层;20mm 厚 1.2 水泥砂浆找平层;200mm 厚 C30 钢筋混凝土,流渗等级为 P8,内掺水剂 基渗透结晶型防水涂料,换量水流 该材料的 1%-2%;20mm 厚 1.2 水泥砂浆找平层;1.2 水泥砂浆找平层;1.2 水泥砂浆,基土 2 水泥砂浆,基土 3 0mm 厚 2 上灌 M5 水泥砂浆;基土 次 坡夯实。                                                                                                                                     |
| 综合循环<br>水站地坪                    | 一般污染区   | 防腐蚀面层、结合层、隔离层(无腐蚀区无此工序,为环境自流平);25mm 厚(土 水泥砂浆找平层(无腐蚀区无此工序);150mm 厚(无腐蚀区为 120mm)C30 钢筋混凝土,抗渗等级为 PM:2 1mm 厚塑料薄膜;60mm 厚 C15 混凝土垫层,60mm 厚碎石夯实灌 M5 水泥砂浆;基土找坡夯实                                                                                                                                                            |
| 综合循环水站<br>加药间的地沟                | 一般污染区   | 株式                                                                                                                                                                                                                                                                                                                  |
| 集水井、<br>污水管道                    | 重点获区    | 污废水输送段: PP 缠绕结构壁管管材直接埋地                                                                                                                                                                                                                                                                                             |
| 区的技输池、                          | 重点污染区   | 事故水池垫层为 100mm 厚 C15 混凝土; 池底为 250m 厚 C40 钢筋混凝土 (局部 700mm); 池壁为底部 50mm 厚 顶部 400mm 厚 C40 钢筋混凝土, 池顶板有染化为 50mm 厚, 无梁处为 250mm 厚 C40 钢筋混凝土,港源域上保护厚度池底板为 50mm, 梁、柱为 40mm,水泥等为 35mm, 池顶板外侧 (露天)为 25mm,内侧 (与浓度)为 35mm,水泥凝土抗渗等级 P8; 池底和池壁外侧采用,mm 厚防水内约布进行覆盖处理。区域传输池、脱处水站中和水池、污水处理站各池、污水集水井等原结构厚及及保护层不同外,混煤土抗渗等级及池底等池壁外防水做法均相同。 |
| 药品储藏间、<br>加药间地坪、<br>危废暂存间       | 重点污染区   | 防腐蚀面层、结合层及隔离层; 20mm 厚 1.2 水泥砂浆找完层; 120mm 厚 C30 钢筋混凝土,抗渗等级为 P6; 0.2mm 厚塑料薄膜; 60mm 厚 C15 混凝土垫层; 150mm 厚碎石灌 M                                                                                                                                                                                                          |

| 脱盐水站<br>室内地沟 | 重点污染区 | 防腐蚀面层、结合层外隔离层;150mm 厚 C30 钢筋混凝土<br>抗渗等级为 P8,大量,光层渗透结晶型防水涂料,掺量为<br>凝胶材料的 1%22%,50mm 厚碎石灌 M5 水泥砂浆;基于<br>发坡夯实。 |
|--------------|-------|-------------------------------------------------------------------------------------------------------------|
| 脱盐水站管沟       | 重点污染区 | 底部 250mm 厚 C30 钢筋混凝土,侧壁 200mm 厚 C30 钢筋混凝土,抗遂等级为 P8,内掺水泥基渗透结晶型防水涂料掺量为凝胶材料的 1.5%;100mm 厚 C20 混凝土垫层;基大坡夯实。     |

# (2) 新建装置区(水) 潜流

对于本次新建某置,就合项目厂区分布,根据《石油化工工程防渗技术规范》 (GB/T50934-201)、中要求,将项目区域分为一般污染防治区、重点污染防治 区和非污染防治区。具体分区见表 5.4-21,本次新建装置防渗分区见图 5.4-38。

| 表 5.4-21 项目场区防 | 渗分区一览表 |
|----------------|--------|
|----------------|--------|

| XX.  | 名称             | 防渗区域及部位名称          | 防渗等级       |
|------|----------------|--------------------|------------|
|      | 装置区            | 地面                 | 一般         |
|      | 44年            | 工艺物料生产浸水地工管道       | 重点         |
|      | 地下管道 —         | 初期雨水地、管道           | 重点         |
| 生产   | 地下罐            | 工艺物料储罐民板及壁板        | 重点         |
|      | 系统管廊           | 系统管廊巢中阀门区的地面       | 一般         |
| 区置支  | <b>建盟区中集业长</b> | 雄区及其他积水坑           | 重点         |
|      | 装置区内集水坑 —      | 集液池前积水坑            | 重点         |
|      | *# 関ロ中サルカー・    | 生产污水明沟的底板及壁板       | 一般         |
|      | 装置区内排水沟        | 冲洗地坪排水沟            | 一般         |
|      | 污水井/污水池        | 方方水的检查井、水封井、渗漏液检查井 | 重点         |
|      | 初期雨水收集池        | 池底板及壁板             | 重点         |
|      | 变电解            | 事故油池底板及壁板          |            |
| 公用   | 化学校型站          | 酸碱中和池、污水沟底板及壁板     | 連点         |
| [程区, | <b>43</b>      | 厂房地面               | 一般         |
| VA   | 7,             | 排污水池底板及壁板          | 重点         |
|      | 循环水站           | 循环水池底板及壁板          | 一般         |
| KI   |                | 加药间地面              | 一般         |
| 其他   | 除重点            | 、一般防治区外的其他建筑区等     | 非污染<br>防治区 |

### 5.4.6.2 防渗要求

工程防渗的设计标准满足《石油化工工程防渗技术规范》(GB/T50934-2013)中相关要求,其基本规定如下:

300页

- 1、石油化工设备、地下管道、建构筑物质等的水计使用年限不应低于主体的设计使用年限;
- 2、一般污染防治区的防渗层的防渗性能不应低于 1.5m 厚防渗系数为 1.0× 10<sup>-1</sup>cm/s 的黏土层的防渗性能,重点污染防治区防渗层的防渗性能不应低于 6.0m 厚渗透系数为 1.0×10<sup>-1</sup>cm/s 的黏土层的防渗性能。
  - 3、防渗层可由单一或多种防渗材料组成。
  - 4、干燥气候条、下,不应采用钠基脑润土防水毯防渗层。
  - 5、污染防冷区地面应坡向排水口或排水沟。
  - 6、 有腐蚀时,防渗材料应具有耐腐蚀性能或采取防腐蚀措施。

### 45. 地木水水质监控

7、地下水监测计划

为了及时准确地掌握厂区地下水环境质量状况却地下水体中污染物的动态 变化,建立覆盖全厂的地下水长期监控系统,或无料学。合理地设置地下水污染 监控井,建立完善的监测制度,配备先进的检测仪器和设备,以便及时发现并及 时控制。项目地下水环境监测主要参考《地下水环境监测技术规范》 (HJ/T164-2004),结合评价区类、医系统和地下水径流系统特征,考虑潜在污染源位置等因素,布置地下水路流点

- (1) 地下水监测原则
- ① 重点污染防治学》 密监测原则:
- ② 以浅层地下水监测为主的原则;
- ③ 上、市游同步对比监测原则;

(4)、项目跟踪检查因子主要为: pH、总硬度、溶解性总固体、表现 代氧量、 BDD、 氧化物、氯化物、氧化物、硫化物、硫酸盐、硝酸盐、亚硝酸盐、挥发 酚类、铜、As、Hg、六价铬、铅、镉、甲醇、石油类

### (2) 监测井布置

目前充矿鲁南化工有限公司已布设地下水监控并 14 眼,分布在厂区及鲁化净化水厂上下游及两侧,拟建项目可依托厂区现有监控井,同时于新增地块新设1处地下水监控井(LH-15)。拟建项目地下水监控井位置示意图见图 5.4-29。

表 5.4-22 拟建项目依托厂区地区水上流井情况一览表

| 点位    | 监测因子                                                        | 监测频次                       | 业测分析方法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 备注   |
|-------|-------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| LH-12 | pH、总硬度、溶解性总固体、                                              | XX                         | # IA-T L-F PH-14-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 依托现有 |
| LH-14 | 氨氮、耗氧量、BOD。、氟化                                              | 117                        | 《地下水质量标准》<br>(GB/T14848-2017)、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 依托现有 |
| LH-04 | 物、氯化物、氰化物、硫化物、硫酸盐、硝酸盐、亚硝酸盐、<br>挥发酚类、铜、As 基础 文<br>价铬、铅、镉、甲酸、 | 海年 2次                      | 《生活饮用水标准检                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 依托现有 |
| LH-06 |                                                             | 短/5/本》<br>(GB5750-2006)《环境 | 依托现有                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| LH-07 |                                                             |                            | (GB5/50-2006)《环境<br>监测技术规范》等                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 依托现有 |
| LH-15 | 同时监测水位、水温、                                                  |                            | mining of the mi | 新增   |

监测计划: 定规对水质进行监测,正常工况下建议每年1~2次,丰水期与格水期各监测一次。 但发现紧急污染物泄漏情况,立即对监测并进行紧急加水并进行水质化验分析,监测频率为每月一次,直至水质恢复正常。同时及时通知有关。 建部门和当地居民,做好应急防范工作,立即查找渗漏点,进行修补。

### **企** 监测数据管理

为保证地下水监测数据有效、有序管理,须制造的类型定、明确职责,采取 下管理措施和技术措施。

### (1) 管理措施

- a.工厂应指派专人负责防止地下水污染管理工作;
- b.工厂应安排受过培训的人员参考地下水的监测工作,并委托具有资质的单位对水样进行化验,按要求及数据,新写监测报告等工作,
- c.建立地下水监测数据 含息管理系统,与鲁南高科技化工园区的地下水监测系统相联系,共同监控本地区的地下水环境情况;

d.根据本厂的实际情况,按事故的性质、类型、影响范围、严重程度分类级制定相应的应急预案。并组织人员演练和不断补充完善预案。

### 2人技术措施

建版《地下水环境监测技术规范》(HJ/T164-04)要 // 将监测结果及时建立档案,并定期向有关部门上报监测数据;

b.在日常例行监测中,一旦发现地下水水质监测数据异常,应尽快核查数据,确保数据的正确性,并将核查过的监测数据通报给安全、环保等部门,同时加密监测频次,并分析污染原因,确定泄漏污染源,及时采取应急措施;

c.周期性编写水质、水位的动态监测报告;

d定期对重点污染区和一般多多区的装置、储罐、阀门、管道等进行检查。

第 302 页

#### 5.4.6.4 风险事故应急响应措施

为了做好地下水环境保护与污染防治对策,是最大努力避免和减轻地下水污染造成的损失,应制定地下水风险事故应急响应预案,成立应急指挥部,在事故发生后及时采取措施。一旦掌握地下水环境污染征兆或发生地下水环境污染时,知情单位和个人要立即向当地政府或地下水环境污染主管部门、责任单位报告有关情况。应急指挥部要被据预事要求,组织和指挥参与现场应急工作各部门的行动,组织专家组织使事件原因、性质、危害程度等调查原因,分析发展趋势,发提出下一步预防和防治措施,迅速控制或切断事件灾害链,对污水进行到的意流,将损性降到最低限度。应急工作结束时,应协调相关职能部门和单位,做好善力多少的企出现事件,放大效应、和次生、衍生灾害,尽快恢复当地正常秩序。简单应加强管理,加强思想教育,提高全体员工的不保意识;健全管理机制,外可能发生泄漏的污染源进行认真排查、登记,建立建筑运期巡检制度,及时发现,及时解决;建立从设计、施工、试运行、企产操作以及检修全过程健全的监管体系,确保设计水平、施工质量和运行操作等的正确实施。

表 5.4-23 地下水污染应急预案内容

| 序号 | 项目                                      | 内容及要求                                                                                                                   |
|----|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 1  | 污染源概况                                   | 详述污染。数量及其分布,包括生产、辅助、公用工程                                                                                                |
| 2  | 应急计划区                                   | 列出危险。<br>於一生产装置区、辅助设施、公用工程区、环境保护<br>国际,在广风。图中标明位置                                                                       |
| 3  | 应急组织                                    | 方表指揮部~负责现场全面指挥;专业救援队伍~负责事故控<br>制、放技、善后处理;专业监测队伍负责对厂监测站的支援;                                                              |
| 4  | 应急状态分类及<br>应急响应程序                       | → 以定地下水污染事故的级别及相应的应急分类响应程序。求从空<br>发环境事件严重性和紧急程度,该预案将突发环境事件人为状况<br>重大环境事件(I级)、重大环境事件(II级)、较大环境事份(II<br>级)和一般环境事件(IV级)四级。 |
| 5  | 应急设施、设备                                 | 防止有毒有害物质外溢、扩散的应急设施、设备等材料                                                                                                |
| 6  | <b>应急通讯和交通</b>                          | 规定应急状态下的通讯方式、通知方式和了通探障、制。                                                                                               |
|    | 方急环境监测<br>及事故后评估                        | 由厂区环境监测站进行现场地下水环境大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大                                                                   |
| 8  | 立急防护措施、<br>清除泄漏措施方<br>法和器材              | 事故现场:控制事故、防止扩大、多延及连续反应。清除现场泄漏物,降低危害,相应的设施器内部各人部近区域:控制污染区域,控制和清除污染措施及相应设备配合。                                             |
| 9  | 应急浓度、排放<br>量控制、撤高组<br>织计划、医疗教<br>护与公众健康 | 事故现场:事故处理人员制定海染物的应急控制浓度、排放量,现场及邻近装置人员撤离组织计划及救护。<br>环境敏感目标:受事故影响的邻近区域人员及公众对污染物应急<br>控制浓度、排放量规定、撤离组织计划及救护。                |
| 10 | 应急状态终止<br>与恢复措施                         | 规定应急终止程序。事故现场善后,恢复措施。邻近区域解除事故警戒及善后恢复措施。建立重大环境事故责任追究、奖惩制度。                                                               |
| 11 | 人员培训与演练                                 | 应急计划分支后,平时安排人员培训与演练。                                                                                                    |

| 12 | 公众教育和信息 | 对邻近地区开展公众教育。古洲和发布有关信息。                                   |
|----|---------|----------------------------------------------------------|
| 13 | 记录和报告   | 设置应急事故专门记录,这一方面,但是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个 |
| 14 | 附件      | 与应急事故有关的多种附件材料的准备和形成。                                    |

#### 一、地下水污染应急措施

- 1、当发生地下水异常情况时、按照制定的地下水应急预案采取应急措施。
- 2、组织专业队伍对事故现场进行调查、监测,查找环境事故发生地点、事故原因,尽量将事件局部化、如可能应予以消除,采取切断生产装置等措施。依据污染情况,各理效量裁渗井,并进行试抽工作。控制污染源,对污染途径进步封闭、截流、防止事故扩散、蔓延及连锁反应,尽量缩小污染事故影响
  - 34%以采收如下污染治理措施:
    - 探明地下水污染深度、范围和污染程度。
    - 2) 挖除污染物泄漏点处的包气带土壤,并进行修为治理工作,
- (3)根据地下水污染程度,采取对厂区水井抽水的方式,随时化验水质, 根据水质情况适时调整。将抽取的地下水进行等以放集处理,做好污水接收工作。
- (5) 当地下水中的特征污染物浓度满足地下水功能区划标准后,逐步停止 井点抽水,并进行善后工作。

### 5.4.7 小结

项目在严格防渗、严格监管的条件下,对地下水环境影响较小,可满足当地地下水环境质量标准的要求、当地的地下水水质仍保留原有的利用价值。

# 5.5 声环境影响预测与评价

# 5.5.1 评价等级及评价范围确定

# 5.5.2 噪声源调查与分析

项目建成运行后,噪声污染,要为固定声源--各工序生产设备噪声及辅助

第 304 页

《精细化学品节能定数的原本中最初报告》 AND THE REPORT OF THE PARTY OF 5.5.4.1 预测模式

本次评价采用《环境影响评价技术导则 (HJ2.4-2021) 中推荐的模式进行预测,采用等效连续 A 声级进行计算,模式如下:

(1) 单个室外点声源在预测点产生的 A 声级的计算  $L_{A}(r) = L_{A}(r) (A_{atm} + A_{atm} + A_{gr} + A_{bar} + A_{miss})$ 

式中: LA(r)—距声源 处的A声级, dB(A);

LA(r<sub>0</sub>)—参考之首 r<sub>0</sub> 处的 A 声级, dB(A);

Adv-人人人发散引起的倍频带衰减, dB(A);

A 恢收引起的倍频带衰减,dB(A);

地面效应引起的倍频带衰减, dB(A);

A \_\_声屏障引起的倍频带衰减, dB(A);

Amisc—其他多方面效应引起的倍频带衰减, BA

(2) 室内声源等效为室外声源的计算

①首先计算出某个室内靠近围护结构处的各频带产业级

$$L_{P1} = L_w + 10 \lg \left( \frac{1}{R} \right) + \frac{4}{R}$$

式中: Lp1—某个室内声源在靠近围的结构处产生的倍频带声压级;

Lw—某个声源的倍频,如率级,dB(A);

r—某个声源与靠近图次结构处的距离, m;

R—房间常数,R S  $M_{*}$  S 为房间内表面面积, $m^2$  , $\alpha$  为平均吸声系数;

Q—指向性因子、通常对无指向性声源,当声源放置房间中心时,Q=4、当放在一面墙的中心时,Q=2;当放在两面墙夹角处时,Q=4;当放在三面块,角处时,Q=8;

文 大算出所有室内声源在围护结构处产生的 i 倍频带叠加入压级

$$L_{Pit}(T) = 101g \sum_{j=1}^{N} 10^{0.1L_{pip}}$$

式中,Lpii(T)—靠近围护结构处 N个室内声流产生的了倍频带的叠加声压及,dB(A);

Lplij一室内j声源i倍频带的声压级,dB(A);

N-室内声源总数;

③计算出室外靠近围护结构、的声压级

$$L_{P2i}(T) = L_{P1i}(T) / (TT/+6)$$

式中: L<sub>P2i</sub> (T) —靠近围护结构处 N 介 基 原产生的 i 倍频带的叠加声压级, dB(A);

TLi—围护结构 i 倍频带的隔声量,dB(A);

④将室外声源的声压级和透声面积换算成等效的室外声源,计算出中心位置位于透声面积(S)处义等以声源的倍频带声功率级

$$L_{w} = L_{P2}(T) + 10 \lg S$$

式中: S 透 面积, m2。

⑤然后按照室外声源预测方法计算预测点处的 A 声级。

多,参数的确定

产波几何发散引起的 A 声级衰减量(工业噪声源)

a.点声源

 $A_{div} = 20 Lg(r/r_0)$ 

b.有限长(L。)线声源

当r>L。且r。>L。时

当 r<L<sub>0</sub>3 且 r<sub>0</sub><L<sub>0</sub>3 时

当 L。3<r<L。且 L。3

 $\Delta l_{\rm div} = 20 \lg(r/r_{\rm o})$ 

 $a_{\rm div} = 10 \lg(r/r_0)$ 

 $A_{\rm div} = 151 g(r/r_0)$ 

②空气吸收引起的衰减量

项目噪声以中低频为无,空气吸收性衰减很少,本次评价预测时忽略不计。

③地面效应引起的衰损量A。

项目地面为水泥硬化路面,地面效应引起的衰减量很小,本次评价预测的格格不计。

④屏障引起的衰减 Aba

是常在向外传播过程中将受到厂房或其他车间的阻挡影响。而引起声能量的表现。 具体衰减根据不同声级的传播途径而定,本次评价预测对忽略不计。

⑤其他多方面原因引起的衰减量 Amisc

主要考虑工业场所的衰减;通过房屋群的衰减等。本次忽略不计本项衰减量。

(4) 评价点的选取

厂界外 200m 范围内声环境敏感点包括尖山村、桥口村、木石社区、鲁化生活区、鲁化职工医院,拟建项目 文 建设地点距离最近敏感点约 500m, 远大于

200m以上,根据预测结果,项目运行对敏感点方成之小,本次评价主要预测、评价项目噪声对厂界及 200m 范围敏感点的影响。

#### 5.5.4.2 预测结果

根据项目主要噪声设备经采取相应治理措施后的噪声值,利用以上预测模式和参数分别计算得出拟建项风盖要噪声设备对厂界的噪声预测值。拟建项目投入运行后,厂界噪声预测结果见表 5.5-4。

表5.34 噪声排放贡献值预测结果一览表

| 预测点名称   | 定义坐标(x,y)                 | 地面高程 (m) | 噪声时段                                                                                                                                               | 元献 矿植贡  |
|---------|---------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 本工界     | 463,668                   | 63.8     | 昼间噪声                                                                                                                                               | 37.75   |
|         |                           |          | 夜间噪声,                                                                                                                                              | 37.75   |
| 南厂界     | 339,-175                  | 60.60    | 昼间噪声                                                                                                                                               | 27.47   |
|         |                           |          | <b>夜间噪声</b>                                                                                                                                        | 27.47   |
| 五二里     | 333,-172                  | 60.42    | 屋间噪声                                                                                                                                               | 27.52   |
| 17 (12) |                           | 50.42    | 夜间噪声                                                                                                                                               | 27.52   |
| 北厂界     | -94,1407                  |          | 昼间噪声                                                                                                                                               | 37.86   |
|         |                           |          | 夜间噪声                                                                                                                                               | 37.86   |
| 尖山村     | -516,1101                 | 60 29    | 昼间噪声                                                                                                                                               | 20.37   |
|         |                           |          | 夜间噪声                                                                                                                                               | 20.37   |
| 鲁化生活区   | 112/2007                  | 67.68    | 昼间噪声                                                                                                                                               | 15.97   |
|         |                           |          | 夜间噪声                                                                                                                                               | 15.97   |
| 桥口村     | 1085,852                  | 67.53    | 昼间噪声                                                                                                                                               | 7.56    |
|         |                           |          | 夜间噪声                                                                                                                                               | 7.56    |
| 鲁化职工    | 1176,-89                  | 68.02    | 昼间噪声                                                                                                                                               | 17.08   |
|         |                           |          | 夜间噪声                                                                                                                                               | 17 (18) |
| 1167,-7 | 1167 7                    | 65.00    | 昼间噪声                                                                                                                                               | 197     |
|         | 03.00                     | 夜间噪声     | 19.04                                                                                                                                              |         |
|         | 東<br>南 下界<br>西 下界<br>北 下界 | 本 「      | 南厂界 463,668 63.8<br>南厂界 339,-175 60.60<br>西厂界 333,-172 60.42<br>北厂界 -94,1407 60.29<br>鲁化生活区 1124 67.68<br>桥口村 1085,892 67.53<br>鲁化职工 176,-89 68.02 | 本       |

# 5.54 声环境影响评价

# 7.5.1 预测结果评价

本次声环境影响评价厂界执行《工业企业》,不境噪声排放标准》(GB12348-2008)中的 3 类标准,即昼间 65dB、A)、空间 55dB(A),评价范围内敏感点执行《声环境质量标准》(GB\$096-2008)中的 2 类标准,即昼间 60dB(A),夜间 50dB(A)。本次评价叠加厂区在建项目噪声贡献值及现状监测背景值后,评价结果见表 5.5-7%。

| 预测       | 昼间 dB(A)  |     |       | 1    | 夜间 dB(A)  |     |          |      |  |
|----------|-----------|-----|-------|------|-----------|-----|----------|------|--|
| 点位       | 预测<br>贡献值 | 背景值 | 在建项目  | 预测值  | 预测<br>贡献值 | 背景值 | 在建项目 贡献值 | 预测值  |  |
| 东厂界      | 37.75     | 61  | 46.6  | 61.2 | 37.75     | :54 | 46.6     | 54.8 |  |
| 南厂界      | 27.47     | 60  | 39(0) | 60,0 | 27.47     | 54  | 39.1     | 54.1 |  |
| 西厂界      | 27.52     | 63  | 427   | 63.0 | 27.52     | 54  | 41.7     | 54.2 |  |
| 北厂界      | 37.86     | 3   | 36.1  | 57.1 | 37.86     | 51  | 36.1     | 51.3 |  |
| 尖山村      | 20.37     | 53  | 26.7  | 53,0 | 20,37     | 49  | 26.7     | 40.0 |  |
| 鲁化生活区    | 15.5%     | 54  | 25.1  | 54.0 | 15.97     | 49  | 25.1     |      |  |
| 桥口村      | 234       | 58  | 36.5  | 58.0 | 7.56      | 49  | 36.5     | 16.7 |  |
| 鲁化职工、医院、 | 17.08     | 55  | 38.1  | 55.1 | 17.08     | 49  | 38.1     | 49.3 |  |
| 木石龙      | 19.04     | 56  | 37.2  | 56.1 | 19.04     | 49  | 3/2      | 49.3 |  |

表 5.5-5 噪声预测叠加加水产价结果一览表

拟建项目主要装置距离尖山林、横口村、木石社区、鲁化生活区、鲁化职工医院等敏感点较远,实际影响发展,项目建成投运后,对周边声环境影响较小。

# 5.5.5 偶发噪声影响设

### 5.5.6.1 偶发噪声源强

项目偶发噪声包括余热锅炉排汽噪声和吹管噪声。

余热锅炉排汽噪声是锅炉在超压时为保护主设备而减压所产生的噪声,属于不定期高频喷汽噪声,每年排放次数很少,持续时间一般为几分秒,噪声级为10~504B(A);吹管噪声是在系统安装完毕、准备运行形分端除系统内的杂物所采用蒸汽吹扫时所产生的排气噪声,持续时间为几十秒,噪声级为10~130dB(A),仅在系统安装完毕后进行一次6

而

得高于 15dB(A)"。

#### 5.5.6.2 偶发噪声控制措施

- 1、吹管时间避开学校上课时间和夜间、午间等居民休息时间。
- 2、在工程安装时注意管道下生,防止大的异物进入管道,合理设计和布置管线,防止管道急拐弯、灰灰、截面巨变和 T 型汇流,管线的支架要牢固,尽量选用软接头和弹性连接。
  - 3、设计合理的文管方向,避开村庄和居民区方向。
- 4、在吹管前获得相关部门的批准;同时在厂址周围村庄和居民区发布。 明确告知公众机均排汽和吹管的时间及噪声强度,以取得周围居民的谅解。
- 就炉解时排汽安装高效消声器,可将其噪声级控制在2000B(A)以内, 2000日运营后加强运行管理,减少机炉排汽次数,避免夜间排汽。

### 3.6 小结

- 1、声环境现状监测结果表明:现状监测组通项目各广界昼夜间噪声现状值均满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准要求:项目周边环境敏感目标声环境质量均满足《声环境质量标准》(GB3096-2008)2 类功能区标准要求。
- 2、项目各厂界昼夜噪声预测值分满足《工业企业厂界环境噪声排放标准》 (GB12348-2008)3 类标准要求:项目200m 范围内声环境敏感目标木石社区、鲁化生活区、桥口村下尖山村等噪声预测值均满足《声环境质量标准》 (GB3096-2008)2 类功能区标准要求。
- 3、务必对所有噪声源严格落实本环评提出的噪声源治理措施、真正做到从设备透型、设计安装入手、增设消音、隔音、吸音等防噪、降源措施,使设备噪度对环境的影响减至最低。

项目声环境影响自查表详见表 5.5-6。

#### 表 5.5-6 声环境影响良数

| 工作内容  |      | 自查项目                                |
|-------|------|-------------------------------------|
| 评价等级与 | 评价等级 | 一级。二级。二级区                           |
| 范围    | 评价范围 | 200m 2大天 200m 小于 200m =             |
| 评价因子  | 评价因子 | 等》连续 4 声级 2 最大 A 声级 5 计权等效连续感觉噪声级 5 |
| 评价标准  | 评价标准 | ■ 地方标准□国外标准□                        |

第 310 页

| 现状评价         | 环境功能区            | 0 类区□1 类区配类区□3 类区□4a 类区□4b 类区□ |  |  |
|--------------|------------------|--------------------------------|--|--|
|              | 评价年度             | 初期口近期中野大湖。                     |  |  |
|              | 现状调查方法           | 现场实测法区观场实测加模型计算法口收集资料口         |  |  |
|              | 现状评价             | 达标百分比 100%                     |  |  |
| 県声源调查        | 噪声源调查方法          | 现场实测自已有资料区研究成果口                |  |  |
|              | 预测模型             | 母则推荐模型☑其他□                     |  |  |
|              | 预测范围             | 00m☑大于 200m□小于 200m□           |  |  |
| <b>事环境影响</b> | 预测因了             | 字效连续 A 声级☑最大 A 声级□计权等效连续感觉噪声级□ |  |  |
| 顶测与评价        | 厂界华克贡献值          | 达标☑不达标□                        |  |  |
|              | <b>東京</b><br>東声信 | 达标☑不达标□                        |  |  |
| 环境监测(        | - 排放监测           | 厂界监测☑固定位置监测□自动监测□手动监测。无监测      |  |  |
| 计划           | 产产境保护目<br>赤处噪声监测 | 监测因子: () 监测点位数 () 石监测区         |  |  |
| ANDEN        | 环境影响             | 可行☑不可行□ , ◇②3                  |  |  |

# 6 固体废物评价

### 5.6.1 固体废物处置原则

为防止固体废物污染环境,对固体废物的处置首先应考虑合理使用资源,充分回收,减少固废产生量,其次考虑安全、合理、卫生的处置,力图以最经济和可靠的方式将废物量减量化、资源、相互害化,最大限度降低对环境的不利影响。

# 5.6.2 固体废物产生及处置情况

一般固废采取处理,清天等方式处置,危险废物委托有资质单位处理,符合 "资源化、减量化、无害化"处理的环境管理要求。

根据《关于进一步加强建设项目固体废物环境管理的通知》鲁环边面(2016) 141号文件:分析了项目固体废物的产生情况。

第三产生的主要包括工艺固废、生活垃圾及辅助系统产品的固度,参照《国家》及为为自己的主要包括工艺固废、生活垃圾及辅助系统产品的重要,参照《国家》的一个专家的主要。

#### 6.3.1 一般固废贮存

本项目产生的气化灰渣暂存灰渣库,其他、股工业固体废物由厂家进行现场 更换,产生后不在厂区内进行暂存,直接由厂家回收清运出厂。

# 5.6.3.2 危险废物贮存

拟建项目危废贮存依托厂区,各危废暂存间(1445m²),根据企业实际运行

311 百

情况,现有危废暂存间利用率约为 60%,《建场合年危险废物产生总量约为 19314t/a,其中废燃料油(预精馏重组分、精馏轻组分废液、再生塔重组分、层析器燃料油)储存于燃料油罐中,输送至废气废液焚烧炉焚烧处理,其余危险废物依托现有危废暂存间暂存。同时现有危废暂存间严格按照《危险废物贮存污染控制标准》进行建设设计,整个危废间采用 2mm 厚高密度聚乙烯人工材料进行整体防渗,渗透系数≤14~20%。满足防渗要求。同时危废间采用负压抽吸+光氧催化+活性炭吸胀装置对危废暂存过程中产生的 VOC。进行收集处理,根据仍经监测,排气管各类物指标均可达标排放。

### 1) 加度与存间选址合理性分析

办据《危险废物贮存污染控制标准》(GB18597-2023)《现有危废暂存间 选《竞理性分析见表5.6-2。

表5.6-2 现有危废暂存间选址合现处分析 览表

| 选址要求                                                                                    | <b>灰目電</b> 虎                                                                                  | 符合情况 |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------|
| 贮存设施选址应满足生态环境保护法<br>律法规、规划和"三线一单"生态环境分<br>区管控的要求,建设项目应依法进行环<br>境影响评价。                   | 现有危废何。地属了工业用地,符合鲁南高科技化了园区总体规划要求以及零庄市"三线计算生态环境分区管控要求,且已执行环境影响评价制度。                             | 符合   |
| 集中贮存设施不应选在生态保护红线<br>区域、永久基本农田和其他需要特象保护的区域内,不应建在溶洞区或易通数<br>洪水、滑坡、泥石流、潮汐等严重自然<br>灾害影响的地区。 | 项有危援间不位于生态保护红线区域、永久<br>基本农田和其他需要特别保护的区域内;根<br>基地质勘查报告,不涉及溶洞区或易遭受洪<br>水、滑坡、泥石流、潮汐等严重自然灾害影响的地区。 | 符合   |
| 贮存设施不应选在江河、400、<br>渠道、水库及其最高级位线以下的滩地<br>和岸坡,以及法律法规规定禁止贮存危<br>险废物的其他地点。                  | 现有危废间均不位于江河、湖泊、运河、渠<br>道、水库及其最高水位线以下的滩地和岸<br>坡,以及法律法规规定禁止贮存危险废物的。<br>其他地点。                    | 語    |
| 贮存设施场址的位置以及其与周围环<br>境的感目标的距离应依据环境影响评<br>价大大确定。                                          | 根据现有环评及批复情况,现有危险间下为<br>及防护距离,且距离周边教感。2005以上。                                                  | 符合   |

### 2 危废暂存间贮存能力分析

拟建项目危废贮存依托厂区现有危废暂存间(44分产)根据企业实际运行情况,现有危废暂存间利用率约为60%,拟建项目年危险废物产生总量为19314比。其中废催化剂、废分子筛、废活性炭等约92000依托厂区现有危废暂存间暂存,辛醇装置重组分、轻组分、燃料油等均于罐区废燃料油罐暂存,泵送至废气废液焚烧炉焚烧处置。根据危险废物的货房,对危险废物的暂存进行分区设置,能够

满足危废暂存需求,具体储存信息见表5.6-3

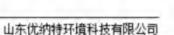
- (3) 危废贮存过程对环境影响分析(
- 1、对地表水、地下水、土壤环境影响分析

危险废物在厂区暂存时泄漏、未及时收集或者防渗不到位会对周边地表水及地下水产生影响。项目采取产格管控措施,对各危险废物均暂存于危险废物暂存间内,内设分区围堰及等流沟槽及收集槽,泄漏物料及时收集,将污染控制在厂区内,危险废物数存的地面及墙脚重新进行防腐措施,满足《危险废物贮存分类控制标准》防发要求后,对周边地表水、地下水及土壤环境影响很小人

2、太环境气气的影响分析

文章项目危险废物不露天堆置,不会产生大风扬尘,而且多量减少固废在厂 内部建存时间,避免异味产生,项目固体废物对环境空气质量影响较小。

3、对周边环境敏感目标的影响


拟建项目位于山东省政府认定的化工园区及。危质暂存间周边200m范围内 无居民区、学校、医院等敏感目标。危险废物各存过程中,加强管理,危废间进 行防渗、设置分区、围堰、导流沟槽及收集槽。定期委托有资质的单位运输处置, 贮存过程不会对周边敏感目标造成影响。

# 5.6.3 危险废物运输过程环境影响分析

危险废物转移过程少须严格执行《危险废物收集贮存运输技术规范》 (HJ2025-2012)和《危险废物转移管理办法》,危险废物转移前向环保之管部门报批危险废物转移计划,经批准后,向环保主管部门申请领取联单,并在转移前三日内报告移出地环境保护行政主管部门,并同时将预期到达时间报告接受地环境保护行政主管部门。同时,危险废物装卸、运输应委托有多质单位进行,杜龙包装、运输过程中危险废物散落、泄漏的环境影响。

危险废物运输相关要求:

- 1、危险废物运输应由持有危险废物经营许可证的单位按照其许可证的经营范围组织实施,承担危险废物运输的单位应获得交通运输部门颁发的危险货物运输资质。
  - 2、危险废物公路运输应按照《道路危险货物运输管理规定》(交通部令[2005



年]第 9 号)、JT617 以及 JT618 执行;危险原物共命运输应按《铁路危险货物运输管理规则》(铁运[2006]79 号)规定执行;危险废物水路运输应按《水路危险货物运输规则》(交通部令[1996 年]第 10 号)规定执行。

- 3、废弃危险化学品的运输应执行《危险化学品安全管理条例》有关运输的 规定。
  - 4、运输单位承运产金、物时,应在危险废物包装上设置标志。
  - 5、危险废物公益输时,运输车辆应按 GB13392 设置车辆标志。
  - 6、危险废物运输时的中转、装卸过程应遵守如下技术要求:
- (1) 卸缺区的工作人员应熟悉废物的危险特性,并配备适当的个人防护装备。 装卸金 素废物应配备特殊的防护装备。
  - 为载区应配备必要的消防设备和设施,并设置明显的指示标志。
  - (3)危险废物装卸区应设置隔离设施,液态废物卸载区设置收集槽和缓冲罐。 通过以上措施,整个过程严格按照《危险废物收集贮存运输技术规范》 (HJ2025-2012)的要求执行,对周围环境产生不利影响较小。

### 5.6.4 危险废物运输过程环境影响分析

拟建项目针对产生的固体等的特点。本着"资源化"、"减量化"和"无害化"原则,实行不同的处置方式。在微步。排环境数量的基础上,力求实现环境效益、经济效益和社会效益的较大,现将处置措施具体分析如下:

1、根据《国家选择族协名录》(2025年版),拟建辛醇装置重组分、轻度 燃料油等均为高热值废物,利用废气废液焚烧炉焚烧处置,并副产蒸汽利用,进 行减量化分无害化处理;其余废催化剂、废吸附剂、废活性炭等危险废物、统一 收集后暂存于危废贮存间,委托有资质单位处置,可避免对原则环境产生危害。

第15所述,企业对产生的固体废物采取的处置方案总体发展可行的,在加强管理,并在落实好各项污染防治措施和固体废物安全处置措施的前提下,项目产生的固体废物对周围环境的影响较小。

### 5.6.5 小结

通过以上分析可知,拟建项目产生的固体废物主要为一般固体废物和危险废物,项目采取相应的措施对其进行处置。只要建设单位在厂内储存、转运等环节

严格按《一般工业固体废物贮存和填埋污染水类》(GB18599-2020)、《危险废物贮存污染控制标准》(GB18597-2023),表求进行规范处置,杜绝二次污染的发生。落实好上述措施和建议,拟建项目产生的固体废物可以得到妥善地处置,不会对环境造成较大的影响。

综上所述,在加强管理、并在落实好各项污染防治措施和固体废物安全处置措施的前提下,项目产生的固体废物对周围环境的影响较小。

### 5.7 土壤环境影响评价

### 5.7.1 土壤污染途径分析

旗荡渠是指人类活动所产生的物质(污染物),通过各种途径进入土壤,其 数量和重度超过了土壤的容纳能力和净化速度的现象。土壤污染使土壤的性质、 组成及性状等发生变化,使污染物质积累过程逐渐占据成功,破坏土壤自然动态 不衡,从而导致土壤自然正常功能失调,土壤质量恶化,影响作物的生长发育, 以致造成产量和质量的下降,并可通过食物链分割生物和人类健康。

本工程污染物质对土壤的主要影响运径如下

表 5.7-1

#### (1) 施工期

施工期仅进行占地范围内发生发展拆除、工程基础建设、设备安装、调试等,在施工过程中注意防止资格事故能发生,基本不会对项目区土壤环境造成影响。

### (2) 运行期

本项目土壤污染途径及环境影响识别,具体见表 5.7-1 和表 5.7-2。

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79   |      | 2011  |    | Name in the |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|----|-------------|----|
| TENES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4    | 污染影响 | 生态影响型 |    |             |    |
| I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 大气沉降 | 地面漫流 | 垂直入渗  | 其他 | 盐化水酸化、酸水    | 其他 |
| THE STATE OF THE S |      |      |       |    |             |    |
| 医证期                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V    | V    | V-    |    |             |    |
| 服及加基后                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |      |       |    |             |    |

土壤环境影响类型与影响途径表

表 5.7-2 污染影响型建设项目土壤环境影响源及影响因子识别表

| 污染源      | 污染节点         | 污染途径 | 全部污染物指标。                       | 特征因子 | 备注b |
|----------|--------------|------|--------------------------------|------|-----|
| 生产车间 生产工 | <b>ナ</b> ☆丁艹 | 大气沉降 | 颗粒物、SOI、NOX、VOCs、,用醇、氯、HiS、硫酸雾 | -    | 连续  |
|          | 于广工乙         | 地面漫  | ,000 氯氮、硫化物、全盐<br>量、汞、砷、铅等     | 1    | 事故  |

315 7

|     |          | 垂直入渗 | COD、氨氮、流水物、全盐<br>量、素、硬、治等 | **  | 事故 |  |  |  |
|-----|----------|------|---------------------------|-----|----|--|--|--|
| 储罐区 | 中加まけるおと二 | 地面漫流 | cob. 激素、石油烃               | **  | 事故 |  |  |  |
| 相准区 | 物料储运     | 垂直入渗 | _cop、氨氮、石油烃               | **  | 事故 |  |  |  |
| 固废区 | 固体废物     | 垂直入渗 | DOD、氨氮、矿物油                | - 5 | 事故 |  |  |  |

a 根据工程分析结果填写。

#### 5.7.2 土壤评价等级确定

#### 5.7.2.1 建设项目 3

根据《环境影响评价技术导则土壤环境》(HJ964-2018)附录A土壤环境影响评价项目类别,本项目属于"石油、化工"石油加工、炼焦: 化学原料和化学物品制造,农药制造;涂料、染料、颜料、油墨及其类似产品制造;合成材料制造;作药、火工及焰火产品制造;水处理剂等制造;化学系品制造;生物、生化制品制造",项目类别为I类。

#### 5.7.2.2 占地规模

根据《环境影响评价技术导则土壤环境》(NJ964-2018),将建设项目占地规模分为大型(≥50hm²)、中型(5,20hm²)、小型(≤5hm²),建设项目占地主要为永久占地,占地规模约为6.2。属于中型。

### 5.7.2.3 土壤环境敏感程度

建设项目所在地局边的工资环境敏感程度分为敏感、较敏感、不敏感,判别依据见表5.7-3。人

表5.7-3 污染影响型敏感程度分级表

| 敏感程度/ | 判别依据                                                 |
|-------|------------------------------------------------------|
| 類感    | 建设项目周边存在耕地、园地、牧草地、饮用水水源地或居民区、学校、医院、疗养院、养老院等土壤环境敏感目标的 |
| 文章    | 建设项目周边存在其他土壤环境敏感。                                    |
| 不够处于  | 其他情况                                                 |

拟建项目位于充矿鲁南化工有限公司现有厂区域围发北侧新增地块,项目占地全部位于鲁南高科技化工园区起步区范围内、古地范围周边外围除园区企业外,主要以耕地为主,分布在厂区周边,均为一般农田;厂区周边有尖山村、桥口村、鲁化生活区等居民点分布,同时厂区农侧分布有墨子森林公园。因此项目周边1km 范围内存在农田、居民区等域包标,土壤环境敏感程度为"敏感"。

b 应描述污染源特征,如连续《间断》正常、事故等;涉及大气沉降途径的,应识别建设项目周边的土壤环境的威目标。

#### 5.7.2.4 评价等级

污染影响型项目根据土壤环境影响评价项目类别、占地规模与敏感程度划分评价工作等级,详见表5.7-4。

表4.7-4 土壤环境评价工作等级分级表

|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 7 |      |   | **** |      |      |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---|------|---|------|------|------|
| 项目类别   | I类项                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1               |   | Ⅲ类项目 |   |      | Ⅲ类项目 | 3    |
| 环境敏感程度 | 大中                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N. P.           | 大 | 中    | 小 | 大    | 中    | 小    |
| 敏感     | -/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11-             | = | =    | = | Ξ    | Ξ    | 7    |
| 较敏感    | (C) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =               | = | =    | Ξ | Ξ    | Ξ    |      |
| 不敏感    | ST T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =               | = | Ξ    | 三 | Ξ    | 1,3  |      |
|        | American State of the Control of the | mi : 1 1 - 11 . |   | -    | - | -    | AF   | 6.41 |

注:""表示可不用展土壤环境影响评价工作。

本项目类别属于I类项目,敏感程度为敏感,占地规模为中型,Y经查询上表

**沙** 项目土壤评价等级为一级。

### 5.7.3 调查评价范围

根据《环境影响评价技术导则 土壤环境》《HJ 964.4018),建设项目(除线性工程外)土壤环境影响现状调查评价范围环境据建设项目影响类型、污染途径、气象条件、地形地貌、水文地质条件等确定并说明,或参考表 5.7-5 进行确定,本次选择根据表 5.7-5 进行确定的方式进行分析。

2 现状调查范围

| 评价工作 | Bindalegal | 调      | 查范围 ■                                  |
|------|------------|--------|----------------------------------------|
| 等级   | 京川中文学      | 占地。范围内 | 占地范围外                                  |
| 417  | 生态影响型      |        | 5 km 范围内                               |
| 一级   | 人名英哥哈里     | ] [    | 1 km 范围内                               |
| -42  | 生态影响型      | ۵۵۵    | 2 km 范围内( )                            |
| 二级   | 污染影响型      | 全部     | 0.2 km 范围的                             |
| -40  | 生态影响型      | ] [    | 1 km                                   |
| 7    | 污染影响型      |        | 0.000000000000000000000000000000000000 |

》。 《大气沉降途径影响的,可根据主导风向下风向的最大落地浓度的。 《大学员目指开采区与各场地的占地,改、扩建类的指现有工程》(《集记程的占地》

项目属一级评价,现状调查范围为厂区占地范围及产地外 1km 范围。

### 5.7.3 土壤环境现状调查

#### 5.7.3.1 区域土壤资料调查

(1) 土地利用情况调查

项目占地用地性质为工业用地人区内土地利用现状为厂区现有停运的尿素

第 317 页

山东优纳特环境科技有限公司

装置、厂区闲置用地等,厂区外新增地块土地水户现代为工业厂房、拆迁遗留的 民房等。厂区用地范围相邻周边存在园区企业、农田及村庄等。

拟建项目占地范围土地利用现状情况见图5.7-1。

(2) 地形地貌、气候气象

该区域气象资料、地形地貌特征资料以及水文地质资料等详见第四章4.1小节内容。

(3) 土壤类型

根据《国家文填信息服务平台》调查结果,拟建项目调查评价范围内的人集类型属于调长,属于黏质土,土地利用现状为工业用地、耕地等。

沙建项目区域土壤类型见图5.7-2。

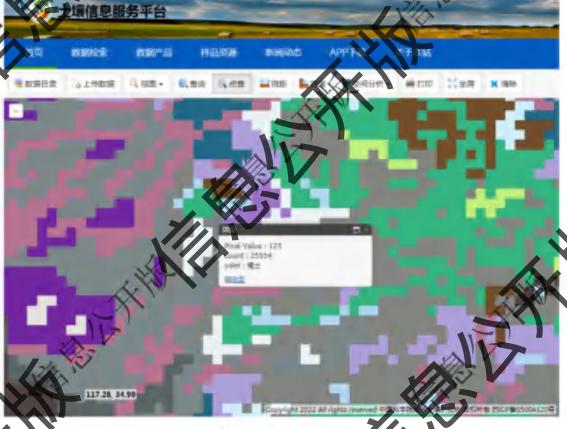



图5.7-2 区域土壤类型

### (4) 土壤结构

据厂区岩土工程勘察报告,结合原位测试及室内土工试验,钻孔揭露的地基岩土层自上而下分述如下:

第①层、黏土(Q4al+pl)

红褐色,硬塑,切面稍光滑,韧性高, 300 高,含少量铁锰氧化物。场区普遍分布,厚度: 0.50~2.10m,平均 1.15m; 层底标高: 72.00~77.70m,平均 74.74m; 层底埋深: 0.50~2.10m,平均 1.15m。

本层取土样 21 件, 进行标贯测试 12 次, 物理力学性质指标统计如下:

| 表 7.7 | 土壤     | 物理力学的  | 性质指标统计表         |
|-------|--------|--------|-----------------|
|       | 1 1 25 | ロルエノコー | 丁いく1日 いいついたも かん |

|    |                                      |       |       |        | 4 1 1 1 1 1 1 1 1 1 |        |        |        |
|----|--------------------------------------|-------|-------|--------|---------------------|--------|--------|--------|
| ì  | 动验项目                                 | 最小直   | 最人值   | 平均值    | 数据个数                | 标准差    | 变异系数   | 标准值    |
| 含  | 水量 W(%)                              | 23.80 | 4.90  | 24.40  | 21                  | 0.30   | 0.01   | 3430   |
| 容  | 重 $\gamma$ (kN/m <sup>3</sup> )      | 45.23 | 19.62 | 19.37  | 21                  | 0.10   | 0.01   | 1273   |
|    | 孔隙比。                                 | 0,711 | 0.736 | 0.726  | 21                  | 0.006  | 0.01   | 10 538 |
| 液  | 限 Wa(つ                               | 37.00 | 39.80 | 38.20  | 21                  | 0.80   | 0.02   |        |
| ¥  | 眼》(9)                                | 19.80 | 22.70 | 20.90  | 21                  | 0.80   | 010+   |        |
| 1  | 在数量                                  | 17,10 | 17.90 | 17.30  | 21                  | 0.20 4 | 250.01 |        |
|    | 性数丘                                  | 0.13  | 0.24  | 0.20   | 21                  | 0.03   | 0.15   | 0.21   |
| 貞剪 | C(kPa)                               | 26.60 | 40.30 | 37.40  | 21                  | M.     | 0.08   | 36.20  |
|    | Ф(度)                                 | 11.80 | 15.20 | 14.10  | 21                  | 0.8    | 0.06   | 13.80  |
| 压缩 | a <sub>1-2</sub> (Mpa <sup>1</sup> ) | 0.16  | 0.25  | 0.20   |                     | 0.03   | 0.13   | 0.21   |
| 试验 | Es <sub>1-2</sub> (Mpa)              | 6.92  | 10.73 | 8.90   | (- A)               | 1.03   | 0.12   | 8.50   |
| 标贯 | 实测击数N                                | 10    | 13    | 12     | 1                   | 1.00   | 0.09   | 11.5   |
| 测试 | 修正击数 N'                              | 10    | 13    | 2 12 7 | 12                  | 1.00   | 0.09   | 11.5   |

### 第②层、中风化泥灰岩(

灰白~灰黄色,岩芯呈短枝皮、上状,原岩结构部分破坏,隐晶质结构,中厚层状构造, RQD=10-69,各体内裂隙较发育,岩石表面可见溶蚀沟槽及方斛石脉,岩石坚硬程度为款者、岩体完整程度为较破碎,岩体基本质量级别为《多

场区普遍分布,厚度: 1.00~3.30m, 平均 2.07m; 层底标高: 70.30~5.20m, 平均 72.67m; 层底埋深: 2.40~3.80m, 平均 3.22m。

天取岩样 6 件,饱和抗压强度指标统计如下:

表5.7-7 土壤饱和抗压强度指标统计

| 试验项目              | 最小值   | 最大值   | 平均值   | 数据个数  | 差。安异系数 | 标准值   |
|-------------------|-------|-------|-------|-------|--------|-------|
| 饱和单轴抗压<br>强度(MPa) | 15.70 | 22.30 | 18.75 | 616 3 | 0.14   | 16.60 |

### 第③层、中风化石灰岩(O)

浅灰色~青灰色,隐晶质结构,块状构造,厚层状~巨厚层状,岩芯完整~较完整,呈柱状~长柱状,裂隙微发度,发育不均匀,局部沿裂隙面形成水蚀凹坑、

溶蚀孔洞。填充白色方解石石脉,沿节理面积水量之及暗红色次生矿物,多数地段以闭合状或微张节理裂隙为主。较硬长、采取率80%~90%,岩石质量指标RQD=70%~90%,岩体基本质量等级【1~111级,本层全区分布。

该层未穿透,最大揭露厚度 (m)。取岩样 6 件,饱和抗压强度统计如下:

## 表 7 土壤饱和抗压强度指标统计表

| 试验项目              | 最小值。最大 | 平均值   | 数据个数 | 标准差  | 变异系数 | 标准值   |
|-------------------|--------|-------|------|------|------|-------|
| 饱和单轴抗压<br>强度(MPa) | 75.0   | 42.83 | 6    | 7.49 | 0.17 | 37.54 |

#### 5.7.3.2 土壤理化 全质调查

本次平价于广区范围选取2个点位进行理化性质调查,调查情况见表5.7-9。

#### 5.7.4.多响源调查

原建项目调查范围内与建设项目产生同种特征因子或造成相同土壤环境影响后果的厂外影响源主要为厂区内现有污染源及周边企业外中峰化学等,主要为化工行业,产生特征污染物主要包括 VOC、SOA NOX 表、硫化氢、颗粒物等。

### 5.7.4 土壤环境影响预测与评价

根据项目特点,本项目对周边土壤的影响途径主要来自大气沉降、垂直入渗,本次评价根据《环境影响评价技术导则土壤环境(试行)》(HJ964-2018)的相关要求对项目的土壤环境影响进行分析评价。

### 5.7.5 土壤环境保护措施与对策

#### 5.7.5.1 建设项目大壤环境保护措施

### 1、土壤环境,量现状保障措施

根据项目厂址土壤环境现状监测结果,建设项目占地范围内土壤环境质量不存在域位超标。可以作为土壤的本底值衡量项目建成后对土壤环境的影响程度。

#### 2、源头控制措施

项目实施清洁生产及各类废物循环利用,减少污染物的排放量;生产工艺、管道、设备、污水储存及处理构筑物采取相应设制措施,防止污染物的跑、冒、滴、漏,将污染物泄漏的环境风险事故及到最低限度。

#### 3、过程防控措施

- (1) 生产过程出现操作。 (1) 生产过程出现操作。 (1) 生产装置区、储罐区等分采取量点防渗措施,可以确保一旦发生泄漏不漫流。
- (2) 拟建项目所有的管道均采取明线,除污水管道外不涉及地下管线和管槽的问题;所有地下管线和管槽均采用耐腐蚀耐高温材料、对各管道接口采取的行良好密封等措施;一般工业固废暂存设施的防渗、防腐按照《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)有关防渗要求进行建设。危废财产的管照《危险废物贮存污染控制标准》(GB18597-20分类发进行建设。

通过以上措施,建设项目采取过程阻断、污染物消减和分区防控等措施,可以将项目对土壤环境造成的影响降到最低。

#### 5.7.5.2 跟踪监测

本次土壤环境影响评价等级为一级,根据《环境影响评价技术导则土壤环境》 (HJ 964-2018),评价工作等级为一级的建设项目,一般每3年内开展1次监测工作。但是根据《山东省土壤》、防治条例》(2019年11月29日),土壤 土壤环境跟踪监测主要包括以下内容:制定跟踪监测计划、建立跟踪监测制度,并根据厂区实际及时发现问题、采取措施。拟建项目土壤监测计划见表 5.7-13,拟建项目土壤环境跟踪监测不原图详见图 5.7-7。

7-13 土壤监测计划一览表

| 监测点位 | 人监测因子                                                                     | 监测频次 | 监测分析方法、采集与处理                                                      |
|------|---------------------------------------------------------------------------|------|-------------------------------------------------------------------|
| Γ⊠.  | 《土壤环》 质量 建设用地土壤<br>污染风 应管控标准(试行)》<br>(GB30600-1018)中 45 项基本因<br>(C10-C40) | 毎年1次 | 《土壤环境质量·建设用地大壤方<br>染风险管控标准》(试验)<br>(GB36600-2018)、《环境监测技术规范》等有关规定 |

### 评价结论

#### 5.7.6. 结论

根据项目土壤环境现状监测结果,项目占地范围及评价范围内土壤环境质量不存在点位超标,土壤环境现状较好。拟建项目实取源头控制、过程防控和跟踪监测等措施后,可以将项目对土壤环境造成的影响降到最低。因此从土壤环境影响的角度,项目建设可行。

#### 5.7.6.2 土壤环境自查表

项目土壤环境影响评价主要次令及结论自查表见表 5.7-14。

### 4 土壤环境影响评价自查表

|    | 工作内容               | 完成情况                                     |              | 备补    |
|----|--------------------|------------------------------------------|--------------|-------|
|    | 影响类型人              | 污染影响型図;生态影响型□;两种兼有□                      | ;            |       |
|    | 土地利用类型             | 建设用地区;农用地口;未利用地口;                        | 4            | AX    |
|    | 占地规模               | (24) hm <sup>2</sup>                     | 11           |       |
|    | 敏感目标信息             |                                          | 12           | 77    |
| 彭尚 | 影响途径               | 大气沉降回,地面漫流回;垂直入渗回;地<br>其他( )             |              | V     |
| 別  | 全部污染物              | 颗粒物、SO2、NOx、CO、VOCs、甲醇、酸霉、汞及其化合物、砷及其化合物。 | また。<br>其代と物等 |       |
|    | 特征因子               | <b>示及其化合物、砷及其化合物、铅及其化合物</b>              | 、VOCs等       |       |
|    | 所属土壤环境影响<br>评价项目类别 | 类図, II类 口, III类口, IV类口,                  |              |       |
|    | 敏感程度               | 敏感回,较敏感口,不敏感点                            |              |       |
|    | 评价工作等级             | 一级回, 二级口, 三级口,                           |              |       |
| 现  | 资料收集               | a) ∅;b) ∅;c) □;Ø, □;                     |              |       |
| 状  | 理化特性               | 详见表 4.7-6                                |              |       |
| 调  | 现状监测点位             | 他 范围内 占地范围外                              | 深度           | 点位布置图 |

| 查    |        | 表层样点数                             | 2                        | MA                                           | 0-0.2m                               | 详见图 4.5-5 |  |
|------|--------|-----------------------------------|--------------------------|----------------------------------------------|--------------------------------------|-----------|--|
| 查内容  |        | 柱状样点数                             | 5                        |                                              | 0~0.5m,<br>0.5~1.5m,<br>1.5~3.0m     |           |  |
|      | 现状监测因子 |                                   | 页基本因子→pH<br>目-pH+石油烃     |                                              |                                      |           |  |
| 现    | 评价因子   | 建设用地 451 农用地基本项                   | 更基本因子+pH-<br>目-pH-石油烃    | +石油烃(<br>(C <sub>10</sub> -C <sub>40</sub> ) | C <sub>10</sub> -C <sub>40</sub> ) ; |           |  |
| 现状评价 | 评价标准   | GB 15/180公<br>其他                  | ∕GB 36600☑;              | 表 D.10                                       | 」; 表 D.2□;                           |           |  |
| Dr   | 现状评价结论 | 现了金沙园                             | 均不超标,土地                  | 再环境质量                                        | 现状较好。                                |           |  |
|      | 预测因子   | 石油区 家及                            | 其化合物、砷及                  | 其化合物、                                        | 铅及其化合物                               | 7//       |  |
| 影    | 预测方法   | 剂录E☑;附3                           | 录F口; 其他(                 | )                                            |                                      | 3.4       |  |
| 响预   | 预测分析内容 | 影响范围(占地范围内及占地范围外 1km)<br>影响程度(较小) |                          |                                              |                                      |           |  |
| 测    | 類別語的   | 达标结论: a)<br>不达标结论:                | a) [; b) [;              |                                              | . 11                                 |           |  |
|      | 施控措施   | 土壤环境质量<br>其他 ( )                  | 现状保障=;源                  | 头控制図;                                        | 过程随控型,                               |           |  |
| 治    |        | 监测点数                              | 监测指                      |                                              | 省测频次                                 |           |  |
| 措    | 跟踪监测   | 1 建石                              | 设用地 45 项基<br>油烃(C10-C40) | 本因子 on                                       | 1年1次                                 |           |  |
|      | 信息公开指标 |                                   | -                        |                                              |                                      |           |  |
|      | 评价结论   | 可以接受                              |                          | 17.                                          |                                      |           |  |

### 5.8 生态环境影响评价

### 5.8.1 评价范围和评价等级

注 2: 需要分别开展土壤环境影响评价工作的。

根据《环境影响评价技术录则 生态影响》(HJ19-2022)中"6.1.8 符合生态 环境分区管控要求良效开原》界(或永久用地)范围内的污染影响类改扩建项色 位于已批准规划环评的产业园区内且符合规划环评要求、不涉及生态敏感区的污染影响类建设项目,可不确定评价等级,直接进行生态影响简单分析。"拟建项目属于污染影响类建设项目,位于鲁南高科技化工园区起步区东周内,园区已取得规划环评批复,且项目占地不涉及生态敏感区,因此评价多多为简单分析。

### 5.8.2 生态现状调查与评价

拟建项目位于鲁南高科技化工园区内,项目占地范围内现状为企业闲置车间装置或闲置用地,用地类型为工业用地,厂区现状地貌为车间硬化水泥地面,新增地块用地现状地貌为已开发工业场地,拟建项目建设不改变现有用地的土地功能及土地性质。

项目土地利用类型为工业用地,周边用地类型工厂为工业用地、荒地及耕地,项目周边主要为工业园区建设用地生态系统及农田生态系统。

建设用地生态系统是受人类干扰最强烈的景观组成部分,为人造生态系统,主要包括评价区内工业企业、道路、村庄等。该类生态系统中作为生产者的绿色植被覆盖率较低,消费者在要是企业职工、村镇居民,该生态系统的典型特征是相对独立分布、居住人群变集。工业经济活动发达、整体生产力水平较高。

农田生态系统是人类干扰较为严重的类型,是对评价区环境质量起土要为态控制作用的类型。农田生态景观系统的生产力水平相对最高,生产者主要为种植的农作的一种,发生、玉米等。消费者主要为农田中的土壤动物和各种鸟类。

为自己地范围受人工活动影响,未见分布珍稀动植物种群、项目生态评价范围、 图 次作物外,物种多样性不高。

### 3 生态现状调查与评价

#### 5.8.3.1 生态影响分析

拟建项目施工期主要进行原有设备设施, 产品、土地平整、新设备安装工作, 项目占地范围不存在自然植被, 施工期, 产品、环境影响较小。

拟建项目运行过程"三废"的表示。将对周围的环境造成一定的影响。但项目的运行对周边地区的生物和水、水、气环境产生的总体影响相对较小,不会致使区域生态系统失衡和物种域少。

项目所在区域主要为水力侵蚀,侵蚀强度以轻度侵蚀为多。由于项目建设分项工程多,建设过程中扰动类型多、动土量大,不可避免地造成一些新的水土流失。通过对主体工程设计情况和项目区自然、社会情况定性分析的基础上,对项目建设过程中可能产生的水土流失情况进行定量的预测分析,区分水土流失的易发时段和主要区域,并结合主体设计中已有的水土保持措施,确定合理的水土流失防治措施。

#### 5.8.3.2 运行期生态保护措施

项目厂区道路两旁设置绿化带,绿化带的主体构成是灌木,采用生命力强、四季常绿的卷柏和冬青,不仅有效起到了固土降尘的作用,同时寓意事业蒸蒸日上。绿化带建议选择悬铃木、槐树、木槿、夹竹桃等,形成一道绿色屏障,丰富了色调,增加视觉上的层次层、不仅可以为在院内休息的员工提供一处休憩身心的场所;在生产车间间覆空地设绿化草坪;

场区各个边界金属防护林带,以乔木(常绿与落叶相间)和灌木,间温栽植不仅能有效降低粉尘、噪声的污染,还起到良好的防护作用和景观效果。

### 5.8.4 生态环境影响评价自查表

上述项目位于鲁南高科技化工园区充矿鲁南化工有限公司现有厂区内,项目 占地不涉及生态敏感区,项目周边主要为建设用地生态系统和农田生态系统,评 价范围内工业企业广泛分布,周边生态除了农作物外、均种多样性不高。项目对 周边生态环境影响较小,从生态影响角度,不良不设可行。

生态环境影响自查表见表 5.8-1。

表 5.8-1 生态环境影响评价自查表

| I         | 作内容            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ST E                 | 查项目                               |                  |  |  |
|-----------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------|------------------|--|--|
|           | 生态<br>保护<br>目标 | 世界自然遗址。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 艾态保护红线               | 界护区□;自然公 <br>□;重要生境□;<br>P生物多样性具有 | 园。;<br>重要意义的区域。; |  |  |
| 生态        | 影响方式、          | 185年2,施工活动干扰口,改变环境条件0,其他0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                                   |                  |  |  |
| 影响识别      | 评价图子           | 物种科 ( ) 生境:<br>生物 ( ) 生物 ( ) 生态系统 ( ) 生物 ( ) 生 | )<br>)<br>自然遺迹=( )   |                                   |                  |  |  |
| 1         | 等级             | 一级口                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 二级口                  | 二级口(4                             | ◇ 影响简单分析☑        |  |  |
| 1         | 价范围            | 陆域面积: ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | km²; 水域面积            | : 6 / km <sup>2</sup>             |                  |  |  |
| 1         | 调查方法           | 资料收集团; 遥愿<br>调查点位、断面:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 感调查口;调查<br>D;专家和公众   | 学说: 更加。                           |                  |  |  |
| 生态现状      | 调查时间           | 春季□; 夏季□; 秋季□; 冬季□;<br>丰水期□; 枯水期□; 平水期→;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                   |                  |  |  |
| 调查<br>与评价 | 所在区域的<br>生态问题  | 水土流失。; 沙漠化。; 石漠化。; 盐渍化。;<br>生物入侵。; 污染危害者; 其他。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                                   |                  |  |  |
|           | 评价内容           | 植被/植物群落図<br>重要物种o; 生态                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ; 水地利用図;<br>熟感区□; 其他 | 生态系统☑,生<br>也□                     | 物多样性☑;           |  |  |
| 生态影响      | 评价方法           | VEZ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>4</b>             | 定                                 | 生和定量。            |  |  |

| 评价内容   | 植被/植物群落回; 土地利用区; 大茶系充回; 生物多样性回; 重要物种口; 生态敏感区口, 土地 / 6风险口; 其他口 |
|--------|---------------------------------------------------------------|
| 对策措施   | 避让口,减缓回,生态修复。                                                 |
| 生态监测计划 | 全生命周期口;长期跟踪口;常规口;无区                                           |
| 环境管理   | 环境监理口,环境影响后评价口,其他口                                            |
| 生态影响   | 可行团 不可行口                                                      |
|        | 对策措施<br>生态监测<br>计划<br>环境管理                                    |

## 5.9 退役期环境影响以

拟建项目退入人后由于生产不再进行,因此将不再产生废水、废气、烧声、固废等环境运染物,遗留的主要是生产车间、仓库、办公楼及废弃设备等。

如果**该项**目用地作为其他工业用地,设备可回收利用,废弃的设备不含放射 多种独或剧毒物质,因此拟建项目在退役后对环境基本无影响。

根据《企业拆除活动污染防治技术规定(试行)》《企业设备、建(构)筑物拆除活动污染防治技术指南》(T/CAEPI16-2018)》《关于加强工业企业关停、搬迁及原址场地再开发利用过程中污染影览等作的通知》环发[2014]66号等环保管理文件要求,对厂区设备拆除过程的扩展管理、风险防控提出以下要求,

(1) 拆除施工前,企业应组织设计及标除活动可能污染土壤、水和大气的风险点及周边环境敏感目标。并创定污染防治方案,编制《拆除活动环境应急预案》,储备必要的应急装备、协会,落实应急救援人员,加强拆除、运输过程的风险防控,同时提供。这不断布置图、主要产品、原辅料、工艺设备、主要污染物及污染防治措施等环境信息资料,拆除过程中如遇紧急或不明情况,及发展应对处置,并向当地政府和环境保护主管部门报告。

(2) 转种设备、装备的拆除或拆解应委托专业机构开展,拆除活动实施过程。 程序是根据现场情况和污染防治需要,完善调整污染防治方案。

3. 拆除活动应充分利用原有雨污分流、废水收集处理、对拆除现场 及拆除过程中产生的各类废水进行收集处理、禁止随意扩放。没有收集系统或原 有收集系统不可用的,应采取临时收集措施;物料放至、拆解、清洗、临时堆放 等区域,应设置适当的防雨、防渗、拦挡等隔离措施,必要时设置围堰。防止废 水外溢或渗漏。

(4) 拆除活动应尽量减少固体废物的产生,对遗留的固体废物以及拆除活

动产生的建筑垃圾、一般固废、危险废物等需要等为有存的,应当分类贮存,贮存区域应当采取必要的防渗漏等措施,并制定占金处理或利用处置方案。

- (5) 防止遗留物料、残留污染物污染土壤,识别和登记拟拆除生产设施设备、构筑物中遗留的物料、残留污染物,妥善收集并明确后续处理方案。
- (6) 划分拆除活动施工区域,对各区域遗留物料、残留污染物分类清理, 选择合适的收集包装或逐禁设施。
- (7)设备抵贷业程应防止设备放空、清洗、拆除、转移过程发生污染物造漏、遗撒, 拆除和拆解过程应妥善收集和处理泄漏物质, 泄漏物质不明确的 应进行取样分后。

(9) 拆除活动结束后,应编制《企业拆除活动》境保护工作总结报告》, 并保存拆除过程中污染防治相关资料,拆除过程为不境检测报告、污染物处置协 议或转移联单等存档;若拆除活动实施了环境监理,则应同时保存环境监理资料。

# 第6章 环境风险评价

### 6.1 环境风险评价目的和重点。

#### 6.1.1 评价目的

环境风险评价目的是分析和预测建设项目存在的潜在环境风险、有害因素, 建设项目建设和运行期间可能发生的突发性环境事件或事故,引起有毒有害和易燃易爆等物质的地流、所造成的人身与环境影响和损害程度,提出合理可能的 范、应急与减缓措施,以使建设项目事故率、损失和环境影响达到可接受的水平。

项目此序和生产过程中使用/产生一定量的化学品,在外界因素的破坏下,储存少属具有发生泄漏以及火灾等突发性风险事故的可能性。为避免和控制事故的发生,减轻风险事故对周围环境的影响,需对项目运行过程中可能发生的对环境造成影响的事故风险进行分析。

### 6.1.2 评价内容和重点

- (1) 回顾性评价厂区现有风险源、风险防范措施设置情况;
- (2) 结合工艺、物料、产品、设备产品等,识别风险评价重点和评价因子。
- (3) 计算主要的事故污染物,放量, 预测风险事故影响的程度和范围。
- (4)针对工程具体情况和高处环境,提出相应风险防范、应急和减缓措施。

### 6.2 现有工程回顾性区位

### 6.2.1 现有工程风险源调查

### 6.2.1.1 现有工程风险物质调查

根据现有工程环评资料及实际建设情况,现有工程风险的重定要为原料、产品等,主要为甲醇、甲醛等,甲醇、甲醛属于有毒、易燃物质,主要风险为这些有毒、易燃物质发生泄漏后引起的火灾、爆炸及对环境的洋生、次生污染。

### 6.2.2 现有工程环境风险管控建议

根据现有工程风险回顾性分析可知,现有工程雨水系统总排口(含泄洪渠)不具备监视设施。

建设企业在雨水系统总排口(冷泄洪渠)设置监视设施,以便随时观察雨水

排放口水流情况, 防止雨水、消防水和泄漏物通过雨水排放口进入外环境。

- 6.3 拟建项目风险调查
- 6.3.1 建设项目风险源调查
- 6.3.1.1 风险物质数量及分布情况

项目大气、地表水及地下水风险源,主要包括原辅材料、中间产品、最终产品、污染物、火发、爆炸样生/次生污染物等。

- 6.9 环境风险管理
- 6.9.1. 太气不境风险防范措施
  - **大**、环境风险防范体系
    - 1、大气环境风险三级防范体系

项目厂区需建设大气环境风险三级防范体系,具体建设内容如下

- (1) 一级防控措施,工艺设计与安全方面、风区、装置区、管线等须采取 密封防泄漏措施。
- (2) 二级防控措施:环境风险源重点区域须安装可燃气体报警器及有毒气体报警器,自动控制,联锁装置,发动切断系统等,可有效减少泄漏量、缩短泄漏时间的措施。
- (3) 三级防控措施, 事故后应急处置措施, 厂区须配套喷淋消防系统(配套灭火器、建设有消防站及消防水池)、事故引风喷淋系统、泡沫覆盖、徐键区均须设置围堰等措施, 并有效转移到废水、固废、备用储存设施中等、以有效降低事故状态下大气释放源强、缩短时间、减少排放量。

● 须采用的大气风险防范措施详见表 6.9-1。

表 6.9-1 项目须采取的大气风险防范措施

| 类别  | 措施分项                            | 大气风险防护堵除具体内容                                                                                            |
|-----|---------------------------------|---------------------------------------------------------------------------------------------------------|
|     | 安全、环保设计措施                       | 严格按照《建设设计院》、1000 石油化工企业设计防火规范》进行安全设计。 合理布置平面设置                                                          |
| 事故预 | 防火、防爆、<br>防泄漏措施                 | 建筑物按火灾危险性和耐火等级严格进行防火分区,设置必需的防火门窗、防爆灯设施,设计环形消防通道                                                         |
| 防措施 | 安全自动控制与联锁报<br>警系统、紧急切断与<br>停车措施 | 采用DCS 控制系统进行自动控制,对储运过程进行监控和自动控制了各操作参数报警、越限联锁及机泵、阀门等取货交要通过 DCS 控制;设置紧急切断与停车措施;配金、全型制系统,一旦发生事故,立即通过远程控制系统 |

第 329 页

山东优纳特环境科技有限公司

| 事故预        | 可燃气体、有毒气体<br>检测报警系统                             | 生产区及罐区配置了地大大、有毒气体报警器                                               |
|------------|-------------------------------------------------|--------------------------------------------------------------------|
| 警措施        | 泄漏、火灾、爆炸<br>事故报警系统                              | 各重要部位權区認及沒有自动控制系统和设置完善的报警联锁系统、以及水消防系统和ABC干粉灭火器等                    |
|            | 终止事故源的基本方案                                      | 严格按照公司突发环境事件应急预案终止事故源,配套突发事故紧急切断、停车、堵漏、消防和输转等措施                    |
| 应急处<br>置措施 | 对释放至大气的危险。<br>物质的控制方案                           | 针对不同事故类型,结合泄漏物料理化性质,采取水幕、<br>喷淋、中和、覆盖及负压引风至吸收装置等措施,减少大<br>气中的危险物质。 |
|            | 应急区域与安全编导                                       | 及置应急区域和安全隔离方案                                                      |
|            | 应急防火 等 援方案                                      | 配备一定能力的应急防护设施、设备,重大事故应式,是动应急预案,与当地政府形成应急联动                         |
| 外环境        | 环境区次 货范区的 返 页 页 页 页 页 页 页 页 页 页 页 页 页 页 页 页 页 页 | 根据事故类型设立风险防范区和应急撤离方案                                               |
| 敏感目<br>标保护 | 不能等影响人员的<br>- 基本保护措施                            | 事故发生后,及时通知有关环保部门和政府,配合公安、消防等部门做好公众的疏散、撤离、防护及教治工作                   |
|            | 紧急避难场所的设置                                       | 配备紧急救援站和有毒气体的防护航空。                                                 |

#### 不境风险应急撤离及疏散要求

厂内应急人员进入及撤离事故现场:

发生初期事故时,应急人员在做好防护的基础上,simin 内进入事故现场展开救援,当事故无法控制,威胁到应急人员长命安全时,立即进行撤离,沿公司厂区道路向就近上风向或侧风向厂区域入日集合,并进行疏散。

根据事故发生位置和当时的人而等气象情况,由后勤保障人员指挥,向上风向疏散,并在上风向设立紧急避难场势,进行人员清点,将结果报告指挥组。根据事故严重程度由保工科学员指挥疏导交通,确保及时、安全完成紧急疏散任务。

周边区域人员疏散撤离

①周边区域、员疏散、撤离原则:分别按东、南、西、北四个方向迅速发离 危险区域到安全地带。疏散过程中尽量佩戴口罩等防护措施,向上风向撤离,在 10%以为完成转移。发生事故时对周边进行交通管制,并组织整、海上风向疏散。

《加高地点及后勤保障:根据事故发生位置和当时风险关系情况,向上风向疏散,并在上风向设立紧急避难场所。撤离地点 化力安全地带内的广场,并为撤离人员提供食品、饮用水等生活必需品。根据区域特点,拟建项目设置 2 处紧急避难场所,发生事故时,可根据当时风向、选择位于上风向的紧急避难所。

交通管制:

①发生突发环境事故时, 保卫积协同交警部门, 对周边道路进行管控, 限制

无关车辆进入现场附近。

②临时安置场所设在上风向区域的交地,由了业应急总指挥和当地政府根据现场风向、救援情况指定。

③发生有毒有害气体扩散事件时,公司东南西北四个方向的道路全部进行交通管制,不允许车辆进入。现场具体的道路隔离和交通疏导方案由现场公安人员根据实际风向等情况进行调整。企业应急人员进行协助。

应急疏散通复效应急安置场所见图 6.9-1。

3、与园区有富有害预警体系的衔接

鲁南高沙技化工园区设有安全监测监控平台系统及智慧园区系统,对园区重大方位原进行在线实时监控,该系统实现了鲁南高科技化工园区危险化学品企业数据处,并通过建立辖区内危化品企业工业数据的采集系统,电子化应急预案系统,事故现场侦探系统,危化品数据库系统、案例数据库专家会商系统,四维工厂及电子沙盘系统、评估以及应急处置标准化人资金数据等集信息化多功能于一体的应急指挥平台,为园区提供实时监控和安全监管,预防和消除事故风险。同时为进一步加强园区安全环保综合监管、园区建有智慧园区项目。

园区建成了鲁南高科技化工态区 环境监测监控中心,通过在园区企业安装在线监测、自动监控、污染源视频 繁色》超标流量仪、易燃有毒气体监测预警等监测、监控设备,对园区环境发金风险进行整体监控,具备 pH、COD、氨氮、重金属砷、铬、有毒有害工体等多项监测能力。同时,结合智慧化工园区建设、整合安全、环保、应急、能源、安防等板块,深化信息系统集成和应用,接入 放区各类企业安全环保应急信息、监测监控设备,实现对园区全面深入的智慧监管。

金沙子鱼发生超标,立即通过平台报警,并可以通过电话和短信的文式发送 全相关为责人,及时启动应急预案,进行应急处置。

同时智慧系统可对园区内发生的气体超标报警情况进行溯源,根据各个监测 点的实时数据和周边情况信息,通过大数据环境预警模型进行智能分析,找出园 区内涉及的危险源,立即进行相关处理。

有毒有害气体应急救援指挥系统可实现远程应急指挥调度。提供数据接口供政府其他部门获取数据,支持各种安全生产实发事件信息的接收和报送,对事件

信息进行管理,及时发布事故救援信息。并将近少发照实际位置在地图上进行标注,并将危险点位置,消防设施位置,园区救援队伍、医疗队伍的位置,消防取水点的位置、物资库位置进行实地标准。

园区通过搭建"点、线、面" 文级监控网络,通过预警平台,针对有毒有害气体环境事故,实现"第一时间发现、第一时间预警、第一时间响应",进一步完善园区管理智能化,保障区区产生。

#### 6.9.2 地表水水熔风险防范措施

### 6.9.2.1 事故 废水收集措施

在装置区、储罐区等场所设废水收集系统和初期雨水收集池,并与厂区事故 水水发生。在装置开停工、检修、生产过程中,可能产生对环境有污染液体漫流 到装置单元周围,因此设置围堰和导流设施。消防废水通效废水收集系统进入事 故地,再分批送污水处理厂处理。确保发生事故时,世况的化学品及灭火时产生 的废水可完全被收集处理,不会通过渗透和水水蒸流污染地下水和地表水。

目前厂区现有工程均设置有事故池、黑水净化水厂也设有事故废水总收集池,确保事故废水不会直接排入周边地表水体不同时可最大程度地避免了对污水设施的冲击,从而降低了水环境事业为产的概率。当发生事故时,消防水首先切入事故池贮存,再用泵输送到污水处理。 进行处理。

参照《化工建设项包环境保护设计标准》(GB/T50483-2019),本次评价 对拟建项目事故水池有效客积进行核算如下:

$$V_{3} = (V_{1}+V_{2}-V_{3})_{max} + V_{4}+V_{5}$$

$$V_{2} = \sum_{i} Q_{i} t_{i} t_{i}$$

$$V_{5} = 10 qF$$

$$q = q_{3} m$$

根据以上公式,计算过程及计算结果见表 6.9 %

东厂区现有厂区范围内,最大事故废水量约为600m3、,通过界区新建事故水排水管线,事故水自流排入厂区现有粉煤事故传输池(有效容积 1500m3),后经管道自流输送至鲁化净化水厂总事故水池,容积约 20000m3,能够满足事故状态事故废水收集暂存转运需要,不减足厂区事故水收集暂存需求。

#### 6.9.2.2 三级风险防控体系

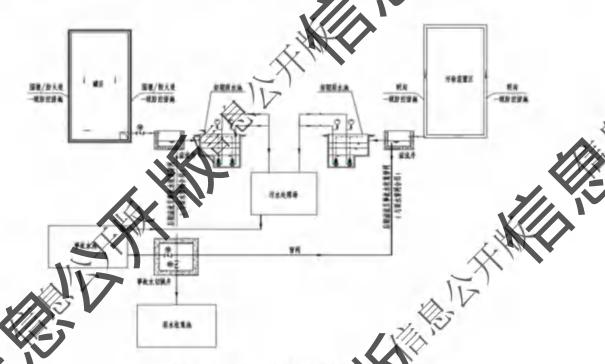
充矿鲁南化工有限公司现已建立了从污染源、过程处理和最终排放的防控体系,设置"单元--厂区-园区"事故废水三级防控措施,确保事故废水不外流出园区,最大程度降低周边地表现了境受到污染的风险。

### 1、一级防控--单元级防水槽施

装置区设置不低于《50mm》高的围堰,用于收集一般事故泄漏的物料,防止轻微事故泄漏时危效的污染水漫流。罐区设置防火堤,采用现浇混凝土结构,从堤容积能够容纳陈火堤内最大罐的容积。当发生一般事故时,可利用围堰和防火堤控制泄漏物料的转移,防止泄漏物料及污染消防排水造成环境污染。可通过排水,换设施将泄漏的物料和废水排至污染雨水收集池。事故水池。后期经泵提升发到方水处理厂处理。

#### 2、二级防控--厂区级防控措施

根据厂区各装置分布特点及全厂坚向标意、设置事故水池及雨污管线。其中西厂区设置 3 座事故水池,有效容积均为 1000 加。东厂区设置粉煤事故转输池、208 综合废水池、甲醇事故水池及本次拟建辛醇事故水池,各事故水池设置事故水转输泵,可将事故水池泵送至多水净化水厂总事故水池(有效容积 20000 m³)。


工艺生产装置根据污染物 人类进入污染区划分,必要时污染区设置围堰收集污染排水。将初期污染两水 地面冲洗水、检修可能产生的含油污水和污染消防排水导入各装置界区的浮染两水池,然后送污水处理系统进行处理,回收利用。

防火堤、围堰外设置切换阀,正常情况下,后期雨水经确认没有污染时、经切换阀门排入清净雨水系统。当发生事故时,有污染的各生产装置和辅助生产设施界区内滑防事故污水首先经装置区内管线重力排入各装置区内资染雨水池,污染雨水池前设置溢流井,污染雨水池储满后,事故水经溢流水流至雨水管线,由雨水管线最终送事故水池收集储存。

厂区事故废水防控流程见图 6.9-2. 事故水收集 计多统示意图见图 6.9-3。

333 页

山东优纳特环境科技有限公司



#### 图6.9-2 事故废水收集流程子太隆

#### 3、三级防控--园区级防控措施

根据《鲁南高科技化工园区突发水污染事件"—园—策—图"》,鲁南高科技化工园区共设置 4 处园区公共事故水池,总容积 61960㎡。企业发生突发水污染事件时,若事故废水失控无法,制在一一流围内,可将事故废水通过雨水管网导排入园区公共事故水池,待以发集更后,分批转移至园区污水处理厂处理。

同时小沂河园区段没有4座闸、坝,其中钢板闸2座,节制闸1座、溢流坝 1座。在应急过程中、河通过客闸拦截污染团或上游来水,降低污染团推移速度

综上所述,企业现已建立"单元--厂区--园区"事故废水防控体系,可禁证在发生突发环境事件时,事故废水不外流出园区,最大程度降低园区外环境受到污染的风险。

### 3.3 地下水环境风险防范措施

地下水风险防范措施应采取源头控制和分区防渗光流,似建项目应采取的防 渗措施具体见第5章5.4.6 小节。在做好防渗工作的制造下,通过厂区内各设施 合理布局、合理分配、各类其他污染物有效控制(如降雨、生活垃圾)、定期对 污废水装置与防渗结构检查等工作,可防止除渗漏以外其他方面对地下水的污染,即便是事故状态下,只要防渗层水被破坏,均能有效控制污染源。 为能及时发现隐蔽性的污水泄漏,通过被发生简为布设监控井,定期监测地下水质,可补充"源头控制、防渗"等措施的不定、结合场址区水文地质条件、污染物在含水层中的运移特征、生产装置位置,来确定监控井与厂区的位置关系,既能及时发现泄漏,又可作为地下水污染治理的抽水井。同时依托企业现有地下水监控井,加强对地下水水质的监控,及时发现事故并预警。地下水监控井设置见第5章54.6地下水环境风护措施。

为了做好地区外还境保护与污染防治对策,尽最大努力避免和减轻地下少多杂造成的损失。这制定地下水风险事故应急响应预案,成立应急指挥部,事故发生后及时来取措施。一旦掌握地下水环境污染征兆或发生地下水环境污染时,知情免入如个人要立即向当地政府或地下水环境污染主管部门、遗传单位报告有关情况。应急指挥部要根据预案要求,组织和指挥参与现场应急工作各部门的行动,在积专家组根据事件原因、性质、危害程度等调查原因、分析发展趋势,并提出不一步预防和防治措施,迅速控制或切断事件及事链,对污水进行封闭、截流,将损失降到最低限度。应急工作结束时,应按高相关职能部门和单位,做好善后工作,防止出现事件"放大效应"和机气,好生灾害,尽快恢复正常秩序。

加强管理,加强思想教育、清美全体员工的环保意识;健全管理机制,对可能发生泄漏的污染源进行认真就是一登记,建立健全定期巡检制度,及时发现,及时解决;建立从设计、施工、试运行、生产操作以及检修全过程健全的监管体系,确保设计水平、施工员量和运行操作等的正确实施。

### 6.9.4 环保设施安全风险管理

根据国务院安委会办公室《关于进一步加强环保设备设施安全推产工作的通知》《大安委办明电[2022]17号)文件要求,企业应强化环保设备设施安全运行管理。针对环保设备安全风险,企业已制定相关环保管理制度和大保设施操作规程,主要包括环境管理职责制度、环保运行设施维护保护制度、操作规程等。

严格落实各类环保设备设施建设、运行、维护、检修、拆除的主体责任,把环保设备设施安全落实到生产经营工作的全边程、各方面。要严格落实涉环保设备设施新、改、扩建项目环保和安全"三同时"有关要求,在选用污染防治技术时要充分考虑安全因素。要严格,加行动火、受限空间、登高、吊装、检维修等危

险作业审批制度,落实安全隔离措施,实施或设计之监护和科学施救。要建立健全环保设备设施台账和稳定运行、维护管理、责任落实制度,建立健全环保设施安全生产规章制度和操作规程,开展安全风险评估和隐患排查治理,及时消除隐患。要加强涉环保设备设施岗位义员操作规程、风险管控、应急处置、典型事故警示等专项安全培训教育。

重点环保设备设施资充分需虑安全风险,对建设项目开展环境影响评价、安全预评价或安全条件等合性分析,确保风险可控后方可施工和投入生产、传承。

- (一) 立顷发计。企业要委托具备相应资质(建设部门核发的综合、分义等项等设计资质) 的设计单位对建设项目及其环保设备设施进行设计,落实安全生产组分表术要求,自行开展或组织环保和安全专家参与设计审查,出具审查报告,并发更多意见进行修改完善。不得采用国家、地方淘汰的设备、产品和工艺。
- (二)建设验收。施工单位严格按照设计方案和相关施工技术标准、规范施工。建设项目竣工后,企业要按照法律法规规定的标准和程序,对环保设备设施进行验收,并形成书面报告,确保环保设备设施符合环境保护和安全生产要求。
- (三)评估整改。已建成的重点环保设备设施且未进行正规设计的,企业要委托有相应资质的设计单位开展文计分断。并组织专家评审。根据诊断结果,对不符合环境保护和安全生产要数据。测定并落实整改措施,实行销号闭环管理。

### 6.9.5 应急体系及监测

#### 6.9.5.1 应急物资

根据《关于印发》环境应急资源调查指南(试行)>的通知《环办应急》(1917 号),拟建项目投运后应配备环境应急物资(根据环境风险类型自主选择),突 发环境事件应急物资见表 6.9-3。

表 6.9-3 应急物资配备一览表

| 主要作业方式或资源功能 | 重点应急逐渐之称                                                                                       |
|-------------|------------------------------------------------------------------------------------------------|
| 污染源切断       | 沙包沙袋,快速膨胀袋,溢漏围提下水道阻流袋,排水井保护垫、沟渠器封袋<br>充气式堵水气囊                                                  |
| 污染物控制       | 围油栏(常规围油栏、橡胶围油栏、PVC 围油栏、防火围油栏)<br>浮桶(聚乙烯浮桶、料污浮桶、管道浮桶、泡沫浮桶、警示浮球)<br>水工材料(土工布、土工膜、彩条布、钢丝格栅、导流管件) |
| 污染物收集       | 收油机,,水泵(包括防爆潜水泵)<br>吸油毡(1000m),吸污卷、吸污袋                                                         |

| 主要作业方式或资源功能    | 重点的表演。                                                                                                                                                                                                                        |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | 吨桶、油糞、储罐                                                                                                                                                                                                                      |
| 污染物降解          | 溶药装置: 搅拌机、搅拌浆<br>加药装置: 水泵、阀门、流量计,加药管<br>水污染、大气污染、固体废物处理一体化装置<br>吸附剂: 活性炭、硅胶、矾土、白土、膨润土、沸石<br>中和剂、硫酸、盐酸、硝酸,碳酸钠、碳酸氢钠、氢氧化钙、氢氧化铁、氢化钙<br>氧化铁、氢化钙<br>聚水剂、聚丙烯酰胺、三氯化铁、聚合氯化铝、聚合硫酸铁<br>氧化液原剂: 双氧水、高锰酸钾、次氯酸钠,焦亚硫酸钠、亚硫酸氢钠、硫酸亚铁<br>沉淀剂: 硫化钠 |
|                | 预警装置<br>防毒面具、防化服、防化靴、防化手套、防化护目镜、防辐射服<br>氧气(空气)呼吸器、呼吸面具<br>安全帽、手套、安全鞋、工作服、安全警示背心、安全绳<br>碘片等                                                                                                                                    |
| <b>沙急通信和指挥</b> | 应急指挥及信息系统<br>对讲机、定位仪                                                                                                                                                                                                          |

#### 5.55.2 应急监测方案

1、应急监测方案的确定

厂区内一旦发生泄漏、火灾、爆炸事故后、需要及时迅速对厂区内外大气环境、水环境进行监测,掌握第一手监测。 增、水环境进行监测,掌握第一手监测。

- (1) 厂区内监测科接到环境信息后,根据接报的情况判断可能的污染物质,进行应急准备,并文即或为有关人员,委托开展监测。
- (2) 环境监测人员应光速到达事故现场,使用小型、便携、简易、快速检测仪器或装置,在良知能短的时间内了解下述内容:

①污染物质种类,②污染物质的浓度,③污染的范围及其可能的危害工作出判断。实施应急监测是做好突发性环境污染事故处置、处理的前提和关键。

- 2000 不能现场进行监测的项目,必须在最短时间内到达2000 通来样,一般 2007 10 分钟,迅速送至实验室进行化验。
  - (4) 监测数据可用电话或书面的形式以最快速度上移应急指挥中心。
- (5) 应急监测应做到事故发生直到事故最终处理关系的全过程监测,其监测频次以满足较少损失和事故处理以及事故发生后的生产恢复的需求。

厂区内发生事故后,事故发生时应急监测方案见表 6.9-4。

表 6.9 表 事故应急监测计划

项目 监测制度

BIL

|            | 监测因子          | SO <sub>2</sub> 、NO <sub>x</sub> 、CO、H <sub>2</sub> S、NMH 大格据事故装置确定其他监测因子) |
|------------|---------------|----------------------------------------------------------------------------|
| 大气应        | 监测频率          | 按照事故持续时间决定监测的,事故发生及处理过程中进行随时监测,过后30分钟一次直到应急结束。                             |
| 急监测        | 监测布点          | 按事故发生时的主导风间的下风向,考虑区域功能,主要考虑下风向的敏感点:木石镇骓地。                                  |
|            | 采样分析。<br>数据处理 | 按照《空气和废务监测分析方法》《环境监测技术规范》的有关规定进行。                                          |
| 121        | 监测项目          | 根据事故范围选择适当的监测因子,事故选择 pH、COD、SS、石油类、含义、总额、总磷等。                              |
| 水环境        | 监测布点          | 可根据事故擴水的去向布点监测,可布置在厂区总排口等。                                                 |
| 应急环<br>境监测 | 监测频           | 它黑事故持续时间决定监测时间,事故发生及处理过程中进行逐步总<br>例,过后30分钟一次直到应急结束。                        |
|            | 采崔公<br>数据处理   | 安照《环境水质监测质量保证手册》《水和废水监测分析方法》()<br>长规定进行。                                   |

有点位置及频次

发生事故后,首先可能受到影响区域的为厂区内,再次为户区外及周边距离 较近的村庄,距离厂界最近的村庄为木石镇驻地,大气监狱布点的位置设置于发 少事故的生产装置、厂界以及下风向距厂界 50m、190m 和 200m 处进行布点, 监测频次为事故发生及处理过程进行实时监狱。25 5 20min 一次直至应急结束。

水监测布点的位置设于厂区污水总排口 事故发生及处理过程中进行实时监测, 过后 20min 一次直至应急结束。

### 3、监测人员防护措施

根据事故发生的类型。确定监测人员是否采取防护措施,厂区内发生泄漏及 火灾事故后,监测人员的防护措施应按照各危化品的泄漏防护措施进行防护,才 能进入现场进行取样监例。

### 6.9.6 联动机制

当广区发生突发环境事件时首先启动企业应急预案进行紧急处理。若污染物 扩散之广界、企业应急预案无法应对时应及时通知鲁南高秋光。上园管委会,进 行团区范围内应急响应,企业应急预案同时保持响应。在污染为扩散出园区边界 时应及时通知滕州市人民政府,启动滕州市突发环境事件应急预案,进行滕州市 范围内应急响应,园区应急预案和企业应急预案同时保持响应。

#### 6.9.6.1 应急机构

滕州市作为一个整体应建立突发性事故应急机构。应急机构应包括一级应急 机构和二级应急机构,一级应急机构包括二级应急机构。

山东优纳特环境科技有限公司

- ①一级应急机构:建议一级应急机构由版外方域交领导,包括滕州市安全监督局、消防、环保局及区内等有关生产企业组成,设置地区指挥部和专业救援队。地区指挥部负责区域的全面指挥、救援、管制和疏散工作。专业救援队对企业专业救援队伍进行支援。
- ②二级应急机构:区内的各生产企业构成二级应急机构。各企业应急机构由 厂指挥部和专业救援队的组成。厂指挥部负责现场的全面指挥工作,专业救援队 伍负责事故控制、救援和善后处理工作。

区内单个企业发生的突发性事故,由二级应急机构采取措施进行处理、表发生的事故上较严重,二级应急机构没有能力控制,则应立即对接一级应急机构,由一级交急机构介入协同处理。

企业发生突发性环境事故后,企业应根据事故严重情况和镇域应急预案形成 除动机制,将事故影响降低到最低程度。由企业及鲁南高科技化工园管委会二级 应急机构采取措施进行处理,当发生的事故比较严重时,企业没有能力或难以进 行控制时,通过及时上报鲁南高科技化工园管委会,由鲁南高科技化工园管委会 启动园区应急预案,通过一级应急机构不入进行协同处理。

园区应急救援体系与下层次企业应急发援体系、上层次区域救援体系应建立协调机制,在程序响应、事故处理、后处理等方面建立最优化、高效的联动机制。减少不必要的资源浪费和最大程度减轻事故危害。镇域内应急预案组成一般为区级与企业级。

区域应急体系图见图 6.9-3。

**\$3** 



6.9.6.2 响应启动条件

为保障在突发环境事件好,能够根据发生事件不同程度及后果,及时确定和 采取相应的救援方案,现义应急救援行动方案分为以下三个等级。

(1) 一级预案启动条件及响应处理方案:

一级预案是所发生的事故为生产车间、储罐区、原料区内储存或使用的易燃 易爆发机溶剂等遇明火或电线管路导致引起火灾灾害。对周围环境的影响主要为 大气、对和土壤环境,其影响估计可能波及其他装置或周边发生。企业的事件。 启动一级预案后,事件车间立即启动应急报警系统。指挥部制定处置方案后安排 各应急救援队开展应急救援工作,在启动此预案的高的安排应急人员对项目厂区 人员、周边居住区居民等进行应急疏散、救援、特别是下风向范围内的职工和周 边居民,周边居民的疏散工作由应急救援队员配合县政府、派出所等部门进行引 导疏散。友邻单位、社会援助队伍进入厂区时,指挥部应责成专人联络,引导并 告知安全、环保注意事项。本公司的救援专业、 生是外单位事件的救援队和社会救援力量的组成部分,一旦接到救援任务,要文即组织人员,及时赶赴事件现场协助救援。

(2) 二级预案启动条件及响应处理方案:

二级预案为岗位管道、阅读、接头泄漏、储罐区、原料区物料泄漏,消防废水、废气超标排放、非正常工况引发火灾爆炸引发的次生灾害事故,对周围环境的影响主要为大气、和土壤环境,仅局限在事故发生区等范围内,对周边其处装置没有影响的事件,只要启动此预案即能利用本单位应急救援力量制止事件。

小量世間可控制情况启动二级应急预案,即,岗位巡检工发现后,认真检查 判处办场情况,迅速汇报班组长。班组长应立即汇报车间主任。车间主任立即联 系统等间根据现场情况安排应急处置措施。必要时汇报分管安全生产副总经理。 事件处置期间安全环保部根据介质流向和空气扩散的影响区域划定警戒区。

如启动二级预案后由于事态进一步扩大,双系检情无法控制,其影响可能波及其他装置或周围社区、企业时须升级为大级办案。

#### 6.9.6.3 响应流程

- (1) 最早发现者应立即向美丽反素 、值班经理、安全环保部报警,同时 向有关车间、科室报告,采取 第一条切断事件源;
- (2) 车间负责人起为现场启立即组织人员迅速查明事件发生源,燃烧的具体部位及原因。凡能切断,其或其他措施能处理而消除事件的,则以自救为主
- (3) 副总经理到达事件现场后,事件车间负责人立即向副总经理证据《灾部位和范围,副总经理根据事件能否控制,现场安排灭火或者做出装置局部或全部停车的决定。
- 等一安全环保部、保卫科应急队到达事件现场后,对政场进行监测,设置 警戒统确定警戒区域,安排专人看管,禁止与救援无方的人员和车辆入内;
  - (5) 各车间建立抢救小组,一旦发生事故出现的最富无要做自救互救工作;
- (6) 应急救援指挥部到达事件现场后,我据事件状态及危害程度做出相应的应急决定,并命令各应急救援队立即开展救援。如事件扩大时,应请求滕州市有关部门、有关单位支援。



事故应急救援系统的应急响应程序按过程, 为接警、响应级别确定、应急启动、救援行动、清理和处理现场(应急结束) 人会事项(报告、评估)等过程。



图 6.9-4 企业应急响应流程图

### 6.10 突发环境事件应急预案编制要求

应急预案修订须按照《企业事业单位实发环境事件应急预案备案管理办法 (试行)》的规定,组织召开办企业事工作,进行备案,企业结合环境应急预案 实施情况,至少每三年对环境应急预案进行一次回顾性评估,面临的环境风险发 生重大变化、需要重新进行环境风险评估的、应急管理组织体系与职责发生重大 变化的、环境应急监测预警及报告机制、应对流程和措施、应急保障措施发生工 大变化、重要应急资源发生重大变化、在突发事件实际应对和应急演练中发现问 题,需要对环境应急预案做出重大调整及其他需要修订的情况下,应息预算需要 及时间本。

### 6.N 评价结论与建议

拟建项目为化工项目,主要风险物质为辛醇、是了酸、煤气(CO、H₂)、硫化氢、硫酸等,根据《建设项目环境风险评价技术导则》(HJ169-2018),拟建项目大气环境风险潜势为 IV+,地表水及地下水环境风险潜势为 IV,评价等级为一级。拟建项目环境风险潜势综合等级为 IV+,属于存在较大环境风险的建

设项目,项目投运后,须按照《建设项目环境》,参与价管理办法(试行)》(部令 2015 年第 37 号)要求开展环境影响后评价。

拟建项目采用成熟的生产工艺和设备,并在设计中充分考虑了各种危险因素和可能造成的危害,并采取了相应的防范措施。因此,只要各工作岗位严格遵守岗位操作规程,避免误操作,加强设备的维护和管理,严格落实环评提出的各项防范措施和应急预案后。其不靠风险就可防可控,项目建设是可行的。

项目设有完善的《气环境风险防范措施、水污染风险防范措施、地下水风险防范措施等。事故应急监测充分依托社会上的第三方机构,并在发生环境风险事故时与地市环境保护监测站的应急监测系统联动,制定周围敏感目标应急撤离风险方。为了防范事故和减少事故的危害,加强危险物料管理、完善安全生产制度、多类排查存在的环境风险,杜绝环境风险事故发生。当事故发生时,采用应急措施,并根据实时情况和事故种类确定人群疏散范围、建设单位必须做好风险事故应急预案的编制或修订、组织和实施工作、定善公司风险防范体系。

建设项目环境风险评价自查表详见表系数

表 6.11-1 环境风险评价自查表

|     | 工作内容       |        | 1000        | 项目情况                                                       |            |                       |  |  |
|-----|------------|--------|-------------|------------------------------------------------------------|------------|-----------------------|--|--|
|     | 危险         | 名称     | 即列 co.      | H <sub>2</sub> S、辛醇、<br>NO <sub>2</sub> 、NH <sub>3</sub> 、 |            | 、硫酸、SO <sub>2</sub> 、 |  |  |
|     | 物质         | 存在总量   |             |                                                            |            |                       |  |  |
| XI, |            | +4     | 50 m 范围内人口  | 10 m 范围内人口数 12647 人 5km 范围内人口数 59709 人                     |            |                       |  |  |
| 险   |            | 1      | 每公里管段周边 20  | 多公里管段周边 200m 范围内人口数(最大)                                    |            |                       |  |  |
| 调   | 环境         | Wat at | 地表水功能夠感性    | F1□                                                        | F2√        |                       |  |  |
| 查   | 教感性レ       | 地表水    | 环境敏感目标分级    | S1 🗆                                                       | S2□        | - 133v                |  |  |
|     |            | 地下水    | 地下水功能夠感性    | G1 🗆                                                       | G2 √       | 7 G3 🗆                |  |  |
|     |            |        | 包气带防污性能     | D1                                                         | D.         | 203□                  |  |  |
|     | 列          | Q值     | Q<1 =       | 1≤Q<10 =                                                   | Walley Co. | Q>100v                |  |  |
| 1   |            | M值     | M1 ☑        | M2                                                         |            | M4 🗆                  |  |  |
| 7   |            | P值     | P1 √        | P2 🔽                                                       | P3 🗆       | P4 🗆                  |  |  |
| 1   | *ア4辛気と同じ   | 大气     | E1 v        | , (4)                                                      |            | E3 🗆                  |  |  |
|     | 环境敏感<br>程度 | 地表水    | EI 🗆 🛴 E2 v |                                                            | E3 🗆       |                       |  |  |
|     | 任次         | 地下水    | E1 🗆        | E2V                                                        |            | E3 🗆                  |  |  |
| 环   | 境风险潜势      | IV+    | V IV        | → III <sub>□</sub>                                         | II =       | In                    |  |  |
|     | 评价等级       | 一级     | 1 定级:       |                                                            | 三级二        | 简单分析口                 |  |  |
| X,  | 物质危险性      | 有毒有    | 事 √ 易燃易爆 √  |                                                            |            |                       |  |  |

| . —      | in a constant | de la companya de la |                                      |                                 | T 1999                       |                              | . 5. 6144                        |  |
|----------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|------------------------------|------------------------------|----------------------------------|--|
|          | 邓险类型          | 泄漏⊸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                    | 灾、爆炸                            | 以为女伴生次生污染物排放 √               |                              |                                  |  |
| 别        | 影响途径          | 大气                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | 地表                              |                              |                              | 地下水。                             |  |
| 事故情      | <b>新分析</b>    | 源强设定方法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (社)                                  | 注述                              | 经验                           | 估算法=                         | 其他估算法。                           |  |
|          |               | 预测模型                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A \$2                                | ÀB √                            | AFTOX √ 其他 □                 |                              | 其他□                              |  |
|          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2                                  | 大气毒性                            | 终点浓                          | 度-1,最                        | 大影响范围 60m                        |  |
|          |               | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 東小利                                  | 大气毒性                            | 终点浓                          | 度-2,最为                       | 大影响范围 1200                       |  |
|          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | 大气毒性                            | 终点浓                          | 度-1,最                        | 大影响范围 0m。                        |  |
| ш        |               | 1 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 最常见                                  | 大气毒性                            | 终点浓                          | 度-2,最为                       | 大影响范围 50%                        |  |
| XI,      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E-ti-                                | 大气毒性                            | 终点浓                          | 度-1,最大                       | 影响范围入                            |  |
| 佥        | 大气人           | 湯测                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 最不利                                  | 大气毒性                            | 终点浓                          | 度-2,最大                       | 影响范围                             |  |
| 页        |               | 组果 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 1 1 1 1 1 1                        | 大气毒性                            | 终点浓                          | 度-1,最                        | 大影响范围 930章                       |  |
| 则        | AV            | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 最常见                                  | 大气毒性                            | 终点浓                          | 度-2,最大                       | 影响范围 2320m                       |  |
|          | (5)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                    | 大气毒性                            | 终点浓                          | 度-1,最大                       | 影响范围 2680n                       |  |
|          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 最不利                                  | 大气毒性                            | 终点液                          | 度公最大                         | 影响范围 3580m                       |  |
|          |               | H <sub>2</sub> S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | 大气毒性                            | 终点如                          | 大最大                          | 影响范围 1020m                       |  |
| > 1      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 最常见                                  | 大气毒性                            |                              | 度-1,最大                       | 影响范围 1400n                       |  |
|          | 地表水           | 最                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 近环境敏感                                | 目标                              | 4到                           | 大时间                          | h                                |  |
|          | 447.4         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 下游                                   | <b>下区边</b>                      | 达时间                          | 100 d                        |                                  |  |
| 1        | 地下水           | 最                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 近环境敏感                                | 目話                              | ,到过                          | 村间 /                         | ď                                |  |
| 重点风险防范措施 |               | ①从总图布置、<br>等方面采取防范<br>②事故废水采取<br>③地下水采取<br>④制定环境交急                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | がプロ                                  | 区 园区的三分区防渗、i<br>时态急监测力          | 级防控<br>设置应领<br>方案,依          | 措施;<br>急预案的购<br>托厂区现         | 有应急监测体系                          |  |
|          |               | 拟建项目为少工项目,主要风险物质为辛醇、异丁醛、煤气(CO、H、硫化氢、硫矿等、根据、建设项目环境风险评价技术导则》、HJ169-2018<br>拟建项目大一环境风险潜势为 IV+,地表水及地下水环境风险潜势为<br>减少等级为一级。环境风险潜势综合等级为 IV+,属于存在较大环境<br>险的建设项目,项目投运后,须按照《建设项目环境影响后评价管理                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                 |                              |                              |                                  |  |
| 评价       | 活路と           | 范措施等,事故<br>风险事故时与地<br>目标应急撤离区                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 不境风险防力<br>效应急监测充<br>地方环境保护<br>风险方案。为 | 选措施、水流分依托社会<br>产监测站的原<br>可了防范事故 | 亏染风的<br>会上的第<br>立急监测<br>故和减少 | 金防范措施<br>第三方机构<br>则系统<br>以系统 | 新 地下中図险時<br>新 并在 生环<br>大 制 正 周围敏 |  |
|          | •             | 事故发生。当事确定人群疏散东<br>组织和实施工作                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 数发生时,<br>包围,建设单                      | 采用应急的<br>位必须做的<br>可风险防 <b>克</b> |                              | 4根据实验                        | 付情况和事故种的<br>注案的编制或修订             |  |

344页

山东优纳持环境科技有限公司

## 第7章 碳排放影响评价

### 7.1 政策符合性分析

气候变化是当前世界面临的最严峻挑战之一。积极应对气候变化是我国实现可持续发展的内在要求,是加强生态文明建设、实现美丽中国目标的重要抓手,是我国履行负责任大国责任。推动构建人类命运共同体的重大历史担当。2020年9月在联合国大会上提出我国"二氧化碳排放力争于2030年前达到峰值,对力争取2060年前次现碳中和"的庄严承诺。

根据《国务院关于印发 2030 年前成本峰行动方案的通知》《国务院关于加快建立健全绿色低碳循环发展经常体系的指导意见》《关于加强高耗能、高排放建设项目生态环境源头防控的投资意见》《中共中央 国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》《山东省委、省政府关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的实施意见》及《关于开展重点行业建设项目碳排放环境影响评价试点的通知》等国家及地方出台的相关政策系统对本项目碳排放环境影响评价试点的通知》等国家及地方出台的相关政策系统对本项目碳排放环境影响评价试点的通知》等国家及地方出台的相关政策系统对本项目碳排放进行政策符合性分析,分析结果见表 7.1-1。通过分析,本项目的建设坚持绿色低碳高质量发展理念,贯彻"碳达峰、碳中和"战略,推进能源各种高温低碳化,符合相关政策要求。

### 7.6 温室气体排放评价结论与建议

### 7.6.1 温室气体排放结论

项目涉及的温室气体排放环节主要包括燃料燃烧、工业过程、二氧化碳回收利用、购入和输出电力和热力产生的 氧化碳排放。通过采取源头控制、落实节能和提高能效技术,开展余热区长等加强温室气体排放管理等措施后,可以将建

设项目温室气体排放控制在较低水平。

#### 7.6.2 建议

- 1、落实节能和提高能效技术; 提高工业生产过程能源使用效率, 对项目主体工程, 提出降低能损, 改进高能产工艺, 提高能源综合利用效率, 实施碳减排工程等, 进一步加强对金铁、金压和放散可燃气体的回收利用。
- 2、碳排放管理方面 **设置**能源及温室气体排放管理机构及人员等,配备能源计量/检测设备 **没**属碳排放监测、报告和核查工作。
- 3、按《用影单》能源计量器具配备和管理通则》(GB17167-2096)的要求, 实行各生产业、工段耗能专人管理,建立合理奖罚制度,并严格执行、确保节能 除水石、落到实处。

对于难以避免的排放源,可以考虑采用碳捕集技术。可利用捕获的二氧 化碳合成甲醇,为生产设备提供原料。

346 页

# 第8章 环境保护措施及其外行性论证

### 8.1 环境保护措施不足

由工程分析 (4) 项目采取的主要环境保护治理措施见表 8.1-1。

### 8.2 废水处理措施及可行性分析

以建项国建成后,预处理后的粉煤气化灰水、低温甲醇洗甲醇州分离塔废水、 在水水 国收汽提塔废水,以及公辅工程脱盐水站排污水、循环系统排污水、职工生活污水等排至鲁化净化水厂接管处理,外排水质能表况鲁化净化水厂设计进 水指标要求。

鲁化净化水厂采用"原水→调节池→祝水发产A/O 反应池→二沉池→USB 反硝化池→接触氧化池→混凝反应池→二烷池→V 型滤池→三级出水池→(UF 超滤→RO反渗透→锅炉水池)→冷如水池→出水"工艺路线,经园区企业预处理后的污水进入鲁化净化水厂等等边进行水质调节,然后进入初沉池去除污水中SS,后进入A/O生物反应池。USI及硝化池、接触氧化池处理系统,以完成去除有机物、硝化反硝化和生物除磷等功能,处理后污水进入混凝反应池、V型滤池进一步除SS、氟人处理后外排小沂河。

根据鲁化净化水厂近两年处理水量实测数据统计,大部分时段已接近满负荷运行,在企制时段存在超负荷运行的情况;同时为进一步加强园区中区回用量,节约水分源,减少废水外排,加强生态园区建设,提高周边水分源质量。鲁化净化水厂建布实施鲁南高科技化工园区鲁化净化水厂提标扩建项目、扩建工程建成后外排废水与中水系统外排废水均质处理后执行控制标准,同时外排废水主要指标(COD、NH3-N、TP、TN、氟化物、全盐量、硫酸盐)减足《流域水污染物综合排放标准第 1 部分;南四湖东平湖流域》(DB37/3416.1-2023)中表 3 一般保护区域标准,其他指标满足《流域水污染物综合排放标准第 1 部分;南四湖东平湖流域》(DB37/3416.1-2023)中表 3 一般保护区域标准,其他指标满足《流域水污染物综合排放标准第 1 部分;南四湖东平湖流域》(DB37/3416.1-2023)表 1、表义的一般保护区域标准及《污水综合排放标准》

(GB8978-1996)表 4 中一级标准要求。

鲁南高科技化工园区鲁化净化水厂提标改造工程将现有 2.6 万 m³/d 污水处理系统工艺改造为"调节池+初沉池+AO 生物反应池+二沉池+混凝沉淀池+三沉池+均质池+出水"工艺,并新建 12万 m³/d 污水处理系统工艺为"调节罐+初沉池+两级低氧生化池+高效二沉油、高密度池+均质池+出水",同时新建 3.0 万 m³/d 中水系统工艺中微污染水处理单元采用"调节池+高效沉淀池+反硝化池+臭氧催化池+BAF 滤池水水火滤池"工艺,中水回用单元采用"超滤+弱酸钠床+反流水水膜浓缩及蒸发结晶装置采用"浓盐水调节池+高效沉淀池+多介质过滤器+果肉质化氧化池+多介质过滤器+果肉质化氧化池+多介质过滤器+果肉质量等。

各前鲁化净化水厂改造正在施工建设中,预计于2026年6月投入运行,改造工程建成后鲁化净化水厂污水处理系统能力达到 3.0万 m³/d。拟建项目建成后,排入复议净化水厂废水处理系统水量约3.4万 m³/d,在鲁化净化水厂设计能力范围水

结合鲁化净化水厂运行现状、设计成为、建设进度、处理工艺分析,拟建项目废水依托其处理是可行。

### 8.3 废气治理措施及页行体分析

# 8.3.1 有组织废气治理技施及其可行性分析

综上,拟建项目各有组织废气采取的废气治理措施均为排污许可证电话。 发技术规范中所列可行技术。

### 8.3 人。无组织废气治理措施及其可行性分析

为减少挥发性有机物无组织排放,建设单位从生产工艺发展。设备选型开始, 到日常管理、采取控制和治理技术入手,切实地有针对发现采取有效环保措施,最 大限 度减少无组织排放。

### (1) 大力推进清洁生产

优先选用先进密闭的生产工艺,强化性产、输送、进出料、干燥以及采样等 易泄漏环节的密闭性,加强无组织废气收集和有效处理。

### (2) 加强装置设备无组织排放控制措施

对于精馏塔、汽提塔等不凝气及真空复气等、须避免无组织排放,应进行收集净化处理,避免直接放空。正常工机采用集中收集净化后有组织排放或燃烧后排放等措施;非正常工况应急情况不的泄放气应排放火炬系统,经过充分燃烧后排放。本项目各工艺装置的文艺尾气收集处理详见上述各装置尾气处理分析。

对含有挥发性有机构料的工艺管线,除与阀门、仪表、设备等连接可采用法兰外,螺纹连接管道、采用密封焊。阀门、仪表、设备法兰的密封面和垫片提高密封等级; 所有设备的液面计及视镜加设保护设施。

储罐水手吸责气经管道收集至废气废液焚烧炉装置焚烧处理。

文建立"泄漏检测与修复(LDAR)"管理制度

为为产装置的管线法兰、阀门、泵、压缩机、开口腐敛开口管线、泄压 设备等可能泄漏点应开展泄漏检测与修复(LRAX)。明确工作程序、检测 方法、检测频率、泄漏浓度限值、修复要求等关键要素、对密封点设置编号和标识,泄漏超标的密封点要及时修复。建立信息管理平台,全面分析泄漏点信息, 对易泄漏环节制定针对性改进措施,通过源头控制减少 VOCs 泄漏排放。

### (4) 循环水站

《挥发性有机物无组织排发控制标准》(GB37822-2019)要求,对循环水冷却水系统,每6个月对流光烧热器进口和出口的循环冷却水中的总有机碳(TQC)浓度进行检测,各品口浓度大于进口浓度 10%,则认定发生了泄漏,应进行泄漏源修复与记录。当出现泄漏事故时,关闭循环系统,处理漏点,同时将条架的循环水送往窗水处理厂进行处理,以上措施可以减少挥发性有机物的挽散。

综上所述,在落实了本报告书中提出的无组织排放减排措施前提了根据环境空气影响预测结论,项目建成后对周围环境敏感目标影响放发。 农度可以满足国家相关标准要求。

### 8.4 固体废物处置措施及可行性分析

根据项目实际运行情况,项目预精馏重组分、精馏轻组分废液、再生塔重组分、层析器燃料油作为燃料油全部送至拟建废气废液焚烧炉焚烧处理;变换废催化剂、变换催化剂废脱毒剂、变换废耐火瓷球、CO深冷分离废分子筛、PSA制

氢废吸附剂、硫回收废 SCR 催化剂、废二氧化疗 () 作化剂、辛醇装置净化废活性、废净化催化剂、羰基合成废催化剂、加氢废催化剂、焚烧炉废布袋、焚烧炉飞灰暂存危废暂存间外委处置,气化租渣、气化细渣、气化除尘器废布袋外售综合利用;生活垃圾由环卫部门发现清运。

项目依托厂区现有危险废物暂存间,按要求进行防风、防雨、防晒和防渗漏,并按照要求进行标识。 般固体废物的处理措施和处置方案满足《一般工业固体废物贮存和填埋系》控制标准》(GB18599-2020)要求,危险废物处理措施和处置方案满足、危险废物贮存污染控制标准》(GB18597-2023)要求。

综上所述: 项目运营过程中产生的固废都根据自身的特点得到合理地利用和 处理,不外排,不会对周围环境及人群造成影响。

## 8. 》 声治理措施及可行性分析

项目噪声源以机械性噪声及空气动力型噪声为主,其中机械性噪声主要由固体 振动产生,空气动力型噪声主要由气体振动产生。

针对机械性噪声采取的措施主要有:

- ①在设备选型上,首先选择装备先进的很景声设备,并采取适当的降噪措施,如机组基础设置衬垫,使之与建筑,构隔升,从源头减小噪声的影响;
  - ②合理布置产噪声设备》使产学各尽量远离厂界,使设备与厂界距离>10m;
- ③加强设备的维修保养,保证相对运动件结合面的良好润滑并降低结合面的表面粗糙度,使设备处于最佳工作状态;
  - ④泵类尽量设立在泵房,采取隔音罩,设立减振基座。与供水管用软接火 主接
- ⑤管旗与墙体接触的地方采用弹性支撑,穿墙管道安装弹性垫层, 定值水泥基础 对原机座与基础使用 ZGT 型阻尼钢弹簧减振器连接。
  - 会交交气动力性噪声采取的措施主要有:
  - ①风机进出口考虑安装消声器;采用隔离布置,采用须振基底,采用柔性接头;

项目根据不同的噪声设备,采取有针对性的噪声治理措施如基础减振、柔性接口等措施。通过合理布局预留是够衰减距离、采用先进设备、加装消音器等多



The solution of the solution o

# 第9章 环境影响经济场益分析

## 9.1 经济效益

环境经济损益分析的目的是核算建设项目投入的环保投资和所能收到的环保效益,并比较其大小,从该体建设项目环保投资的经济价值,使建设项目设计趋于科学、合理、完善、保险建设项目的经济效益、采用费用—效益法,分析比较其环保费用与不保险益的大小。

项目总投资(0.459.85万元,全部投资回收期税后约8.24年(含建设版)、项目生产条件良好,产品市场广阔,财务和经济效益可观,其盈利能力及抗风险能力强。各项经济投资指标均符合国家有关要求,这说明从财务上来讲,项目的发行总量著,是合理可行的。

## 社会效益分析

拟建项目的建设不仅具有较好的环境效益, 经交效益, 而且具有一定的社会效益。

- (1) 拟建项目的建设可以供给区区下游化工装置原料,完善厂区上下游产业链条,促进当地化工行业的发展,对当地建设意义重大。
- (2) 拟建项目将合成 转化为高附加值的辛醇产品,助力高端化工产业高效、绿色化发展 /
- (3) (2) 拟建项目的建设可为社会提供就业岗位,解决部分剩余劳动为 就业问题,减轻当地政府的就业负担,有利于社会安定和经济繁荣。

## 9.3 环保投资及效益分析

## 9.3.1 环保投资估算

拟建项目新增环保投资 33000 万元,占总投资的 6.6%,与国内同类项目环保投资指标进行比较,环保投资比例 5厘、适当,可保证环保措施的落实。

(的有机统一,同时可以提升企业的经济效果) 一次 "我们就让机会。该项目的建设符合国家产业政 一层 "这标排放的前提下,拟建项目的运行具有

# 第10章 环境管理及控测计划

建设项目的环境管理与监测计划是落实环境保护工作的保障,为把环评的有关方案或建议纳入项目开发建设规划、实施、运行、监督与管理的全过程,帮助建设单位协调项目建设与区域环境保护的关系,有必要建立一套结构化的环境管理与监测计划体系。在项目建设期,该体系可纳入工程建设管理体系,在项目建成后,该体系可纳入项目区域和管理体系。在每一套体系内都应强化环境管理与监测计划体系,发格实好各阶段的环保措施。

## 10.1 环境管理

## 10.1. 环境管理目的

度制 三同时"制度为建设指导思想,拟建项目必须加强的境管理和监测计划, 依各种污染物的排放达到国家有关排放标准要求,从质观高企业的管理水平和社 会环境质量,使企业得以最优化发展。为此,建设项目应当配备专门的环境管理 及监测机构,并确定相应的职责,制定监测计划。

#### 10.1.2 机构设置

根据《中共充矿鲁南化工有限》、司委员会充矿鲁南化工有限公司关于机构调整及人员任职的通知》,充矿各级企工有限公司主要设置安全监察部(生态环保部)对企业生态环境保护和安全生产进行管理,下设安全监察部(生态环保部)部长1名、生态环保部上任工程师1名,并单独聘请第三方环保管家协助企业开展生态环境保护相关工作。

为保障企业各项环境保护工作推行,现有工程以红头文件的形式换布了生态环境保护责任制、生态环境保护设施管理办法、环境监测管理对法、环境管理台账管理制度、关于建立网络发环境监管体系的实施意见、关于印发创建清洁文明工厂的实施细则的通知、污染源在线监控小时超标考核办法(试行)、固定污染源在线监测数据标记管理办法、重污染天气车辆管控门禁系统管理办法、固体废物管理办法、环保"红黄牌"执行标准及考核办法等专项环境保护制度。

10.1.3 机构任务及主要内容

1、环保科的主要职责和各

- (1) 全面负责全厂环境管理工作,编制 环分块、和计划,并组织实施。
- (2) 根据全厂各车间的生产工艺、技术状况和排污特点,制定各车间各污染源排放污染物的排放指标,并纳入全厂三废控制指标体系进行统一考核管理。
  - (3)制定环境监测制度,组织监督各项监测工作,建立监测档案。
- (4) 负责定期检查和维护各项环保设施,保证其正常运行以使各项指标符合排放标准,对全厂排送总量控制要从严把关,并建立环保档案。
  - (5) 搞好环保证据的统计工作和全厂环保资料的管理工作。
- (6) 定期对全厂职工进行环保知识和法律的宣传教育,组织各类技术。 提高全厂职工的环保意识和人员素质。
  - 了负责搞好全厂绿化工作。
  - 本间或班组环保员的主要职责和任务
  - (1) 掌握生产排污和环保设施的运行情况,发现问题发时汇报,及时解决。
- (2) 负责各车间(工段)的主要污染物排放量统计工作,随时了解掌握生产 排污量是否正常,并及时汇报,同时协助环保监测站人员实施监测任务。
  - (3) 在非正常情况下,可直接向人为领导报告。

## 10.1.4 排污口规范化管理

排污口是污染物进入环境、水等境产生影响的通道。强化排污口的管理是实施污染物总量控制的基础工作之一,也是区域环境管理逐步实现污染物排放科学化、定量化的重要系数、以建项目主要排污口为厂区总排水口及各废气排气管、在项目运营后应重点针对这些排放口进行规范化管理。

10.1.4.1 排污口规范化管理的基本原则

- (人) 向环境排放污染物的排污口必须规范化:
- 2 根据工程特点和国家列入的总量控制指标,确定数据工程将厂区污水排入口及废气排气筒作为管理的重点;
- (3) 排污口应便于采样与计量检测,便于日常现场监督检查。

### 10.4.1.2 排气筒规范化设置

参照《固定源废气监测技术规范》(HJ-1397-2007)、《固定污染源废气监测点位设置技术规范》(DB37/72535-3019)的相关要求如下。

355 万

- 1、监测点位设置技术要求
- 1) 监测断面及监测孔要求
- (1) 监测断面应设置在规则的圆形或矩形烟道上,应便于测试人员开展监测工作,应避开对测试人员操作有危险的场所。
- (2) 对于输送高温或有量有害气体的烟道,监测断面应设置在烟道的负压段; 若负压段不满足设置要求 应在正压段设置带有闸板阀的密封检测孔。
- (3)对于默核、污染物,监测断面优先设置在垂直管段,应避开烟道学兴和断面急剧变化的部位。设置在距弯头、阀门、变径管下游方向不小于,各直径(或当量直径)和距上述部件上游方向不小于 2 倍直径(或当量直径)处。对矩形发。其当量直径 D=2AB/(A+B),式中 A、B 为边长。
- (5) 对于气态污染物,监测断面设置的 产上处规定限制。如果同时测定排气流量,监测断面应按(3)、(4) 中的要求设置。
- (6) 在选定的监测断面上开资监测1, 监测孔的内径应≥90mm。监测孔在不使用时应用盖板或管帽封闭、逐角对应易打开。
- (7) 烟道直径≤im 内圆形烟道,设置一个监测孔;烟道直径大于 1m 不大于 4m 的圆形烟道,设置相互垂直的两个监测孔;烟道直径>4m 的圆形烟道,设置相互垂直的、个监测孔。
- (8) 矩形, 超道根据监测断面面积划分,由测点数确定监测孔数、监测孔应设置在侧面烟道等面积小块中心线。截面宽度≥4m时, 应在烟道两侧开设监测孔。 监测平台要求
- (1)距离坠落高度基准面 0.5m 以上的监测平台及通道的所有敞开边缘应设置防护栏杆,防护栏杆的高度应≥1.2m。
- (2)监测平台的防护栏杆应设置踢脚板,踢脚板应采用不小于 100mm×2mm 的钢板制造,其顶部在平台面之上高度应到100mm,底部距平台面应≤10mm。
  - (3) 监测平台应设置在监测孔工工方 1.2m~1.3m 处,应永久、安全、便于

#### 监测及采样。

- (4)监测平台周围空间应保证测试人员正常方便操作监测设备或采样装置。
- (5) 监测平台可操作面积应≥2m; 单边长度应≥1.2m, 且不小于监测断面直径(或当量直径)的 1/3.若监测断面有多个监测孔且水平排列,则监测平台区域应涵盖所有监测孔, 若监测断面有多个监测孔且竖直排列,则应设置多层监测平台。通过监测平台的通道宽度应≥0.9m。
- (6) 监测不会减板应采用厚度≥4mm 的花纹钢板或钢板网铺设(孔径)子 10mm×20mm、监测平台及通道的载荷应≥3kN/m²。
  - (7) 监测于台及通道的制造安装应符合 GB4053.3 要求。

#### 监测梯要求

- 监测平台与地面之间应保障安全通行,设置安全方式直达监测平台。
  ② 置固定式钢梯或转梯到达监测平台,应符合 GB 30 3 和 ●B 4053.2 要求。
- (2) 监测平台与坠落高度基准面之间距离迟过 2n 时,不应使用直梯通往监测平台,应安装固定式钢斜梯、转梯或升度深到达监测平台。梯子无障碍宽度≥0.9 m,梯子倾角不超过 45 度。每段料梯或转梯的最大垂直高度不超过 5m,否则应设置缓冲平台,缓冲平台的分类要求可监测平台。
- (3)监测平台距地面高度 1 且按照相关管理规定需要安装自动监控设备的外排口监测点位,对设置通往监测平台的固定式升降梯。

## 10.1.4.3 污水排放口級準米设置

参照《山东省污水排放口环境信息公开技术规范》(DB 37/T 2643 22 4)的相关要求如 (DB 37/T 2643 22 4)

- 火1) 排污口的设置必须合理确定,按照环监(96)470 平文件要求,进行 数据 **管理**。
  - 2) 排污口与采样点设置技术要求如下:
- ①排污口及采样点原则上应设置在厂界附近,还详点的设置应符合《污水监测技术规范》(HJ T91.1-2019)的规定,确保公众及环保执法人员可以在排污口清楚地看到污染源的排污情况并且不受限制地进行水质采样。
  - ②对暂不具备条件、排污口确震设置在厂区内部的,至少满足下列任一要求:



- ●排污口及采样点采用开放性通道与厂区及果实施,通道宽度应≥60 cm。公 众及执法人员经过通道可了解污染源排污情况并且不受限制地进行水质采样;
- ●厂界附近或独立的排污管道末端应设置一处开放性的污水采样点,方便采样和流量测定:有压排污管道应安装取样阀门;污水面在地下或距地面>im 的,应建设取样台阶或梯架;用嘴管和暗渠排污的单位(含直排和排入市政管网),应设置能满足采样条件的坚并或修建一段明渠。明渠两侧应设置一定高度的围堰,防止厂区未经处理的流污水汇入。
- ③排污□和采样点处水深一般情况下应<1.2m, 周围应设置既能方便来程, 又能保障、反安全的护栏等设施;排污□和采样点处水深≥1.2m的,应设置水深 警先表表。并强化安全防护设施设置。
  - 少方, 励有条件的单位在排污口采样点处设置夜间照明设施, 方便夜间采样。 144排污口立标管理

根据《山东省污水排放口环境信息公开技术》的有排污口附近应设置排污口标志牌且满足以下要求。

- (1)排污口或采样点在厂界附近或一里外的,排污口标志牌应就近在排污口或采样点附近醒目处设置。
- (2)排污口及采样点采用的或性通道与厂区外界相连通的;通道长度<50 m 的,排污口标志牌应在的排污口处设置;通道长度≥50m的,应在通道入口醒目 处和近排污口处各设置之处标志牌。
- (3) 排污口桥志牌的形状宜采取矩形,长度应>600mm,宽度应>300 份,标志牌上缘距离地面 2m。
- 少理 # 规质量以及字体等要求应符合环境保护图形成 # 放口 (源) (OB/115562.1-1995)及关于印发排放口标志牌技术规模的通知 ※ 环办[2003]95号)的有关规定。
- (5) 排污口标志牌辅助标志的内容依次数、\*\*排污口标志牌、排污口编号、 执行的排放标准、主要污染物及允许排放限值、排放去向、\*\*环境保护局监制、 监督举报电话等字样。

- (6)排污口的图形标志和辅助标志应在标志算,单面显示,易于被公众和 环保执法人员发现和识别。
- (7) 鼓励有条件单位,在排污口附近醒目处或标志牌设置电子显示屏或在排污单位网站,实时公布排污口水污染物在线监测数据及其他环境信息;公开其他环境信息可参照《国家和产品控企业自行监测及信息公开办法(试行)》执行。
- (8)排污口标志牌的人图和格式经设区市环境保护行政主管部门审定后由 排污单位制作。
  - (9) 排活了建设过程中按照《山东省污水排放口环境信息公开技术》。 要求进行建设。

大方面图形标志见表 10.1-1。

表 10.1-1 排放口图形标志

| 序号   | 提示图像符号                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.1-1 排放口图形标<br>警告图像符号 |                  | 功能            |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|---------------|
| 1    | PTERIORS  ALTERNATION  ALTERNAT |                         | <b>废气排放</b><br>口 | 表示废气向<br>大气排放 |
| 2    | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | 污水排放口            | 表示污水向水体排放     |
| 3    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                       | 一般固体废物贮存         | 表示包装          |
| 14/2 | A PORT -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | 危险市场             | 表示危险废物。循存处置场所 |
| 5    | D(((                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M                       | <b>学</b> 源       | 表示噪声向 外环境排放   |

10.1.4.5 排污口建档管理

(1)要求使用国家环保局统一印制的《中华人民共和国规范化排污口标志 牌登记证》,并按要求填写有关

结合工程的废气、废水、噪声排放口(源)以及固体废物堆场设立专门排放口图形标志牌,按要求加强管理(2)

## 10.1.5 危险废物收集 外存、转运全过程控制

为严格保障项目收集、处存及转运全过程的安全性及环保要求,企业在项目运营过程中应采取设置控制措施:

- (1) 上台监督之存车间的管理人员做好危险废物进出的记录,记录上盖主明危险废物类别、组别、名称、来源、数量、特性、入库日期、存取位置、出库 以外分类收单位名称;
- 一方危险废物的转移和运输应按《危险废物转移管理办法》的规定报批危险废物转移计划,填写好转运联单,并必须交由有资质的单位承运。做好每次外运处置废弃物的运输登记,认真填写危险废物转换联单。
- (3) 废弃物处置单位的运输人员必须掌握危险化学品运输的安全知识,了解所运载危险化学品的性质、危害特性、包装容器的使用特性和发生意外时的应急措施。运输车辆必须具有车辆发发物运输许可证。驾驶人员必须由取得驾驶执照的熟练人员担任。
- (4) 处置单位在运输后检疫弃物时必须配备押运人员,并随时处于押运人员的监管之下,不得起装、超载,严格按照所在城市规定的行车时间和行车路线行驶,不得进入危险化学品运输车辆禁止通行的区域。
- (5) 危险废弃物在运输途中若发生被盗、丢失、流散、泄漏禁情况时,公司及报运人员必须立即向当地公安部门报告,并采取一切可能改整示措施。
- 6) 项目区金属桶和密闭塑料桶粘贴符合《危险废物》存在,杂控制标准》 (GB 18597-2023)中附录 A 所要求的危险废物标签;《各种序区配有明显标识牌

## 10.2 信息公开

- 1、公布方式:企业通过对外网站或报纸、广播、电视、厂区外的电子屏幕 等便于公众知晓的方式公开自行监测信息。
  - 2、公开内容

- ①基础信息:企业名称、法人代表、所属发生,为理位置、生产周期、联系方式、委托检测机构名称等;
  - ②自行监测方案
- ③自行监测结果:全部监测点 监测时间、污染物种类及浓度、标准限值、达标情况、污染物排放方式及排放去向等。
  - ④未开展自行监测的原因
  - ⑤污染源监测年度报告。
- 3、公布BM、企业基础信息应随监测数据一并公布,基础信息、监测文章 如有调整要比时,应于变更后的 5 日内公布最新内容;
- 企监测数据应于每次检测完成后的次日公布;自动监测数据应实时公布监测 其中废水自动监测设备为每 2h 均值,废气自动监测设备为每 1h 均值。每年一月底公布上年度自行监测年度报告。

## 10.3 环境监测

环境监测是环境管理工作的一个重要组成部分,它通过技术手段测定环境质量因素的代表值以把握环境质量的状况。通过长时期积累的大量环境监测数据,可以据此判断该地区的环境质量状况是否符合国家的规定,可以预测环境质量的变化趋势,进而可以找出发地区的主要环境问题,甚至主要原因。在此基础上才有可能提出相应的治理方案、控制方案、预防方案以及法规和标准等一整套的环境管理办法,做出正确的环境决策。

# 10.3.1 监测目的

环境监测是环境保护中最重要的环节和技术支持,开展监测的目的主于:

上检查、跟踪项目投产后运行过程中各项环保措施的**产**施情况和效果,

掌握环境质量的变化动态;

- (2) 了解项目环境工程设施的运行状况,确保设施的正常运行;
- (3) 了解与项目有关的环境质量监控实施情况;
- (4) 为改善项目区周围区域环境质量提供技术支持。

### 10.3.2 环境监测站职能

- (1) 认真贯彻国家有关环保法律法规、根据国家环境质量标准和污染物排放浓度,制定监测站的规章制度、监测计划和工作方案。
- (2)配合有资质监测单位对本公司污染源和厂区附近环境质量进行定期和不定期监测,根据监测项目、内容、频率按时完成监测任务,掌握污染源排放情况和变化规律,为污染资制和环境管理提供真实、有效数据。
- (3) 定期,各类污染防治设施(设备)运行情况进行检测评价,随时筹据 其正常与非正常运行状况。监测结果异常时及时上报,查明原因。
- - 建立质量保证体系,实施监测站规范化建设,不断提高监测质量和水平。
  - (6) 参加本公司环保设施污染事故调查工作和环境针研工作。

#### 10.3.3 监测计划及分析方法

#### 10.3.3.1 监测制定

根据工程排污特点及实际情况,高建立企全各项监测制度并保证其实施。监测计划要注重拟建项目特征污染状态监测,建立健全各项监测制度并保证其实施。监测分析方法按照现行国家。部类场布的标准和有关规定执行。根据《排污单位自行监测技术指南 总则》《1819-2017》、《国家重点监控企业自行监测及信息公开办法(试行》》(19发[2013]81号)、《排污单位自行监测技术指索》、发加工-合成气和液体燃料生产》(HJ 1247-2022)、《排污单位自行监测技术指南火力发电及锅炉》(HJ 820-2017)、《排污许可证申请与核发技术规论、探索加工-合成气和液体燃料生产》(HJ 1101-2020)、《排污单位自分监测技术指南石流体发工业》(HJ 947-2018)、《排污许可证申请与核发技术规论、不化工业》(HJ 853-2017)中的要求,同时结合厂区现有工程在线监例设备及自行监测方案制定本次项目监测方案。

10.3.3.2 污染源监测方案

1、自行监测方案

### 10.4.1 环保设施验收建议

AND THE REPORT OF THE PARTY OF

# 第11章 评价结论、措施及建议

## 11.1 评价结论

### 11.1.1 项目概况

交矿鲁南化工有限公司保贷应高效合成精细化学品节能示范项目新上一套3000吨/日半废锅粉煤气烧炉计配套变换、热回收、气体净化、变压吸附制氢、深冷分离、硫风烧粉散等装置,其中气体净化装置依托厂区现有粉煤低温更整份装置进行改造、新建1套40万吨年辛醇装置,利用新建气化系统产出合成。氢气、风时外购为烯生产辛醇,以实现产业链延伸,提高产品附加值、气化富余金块分类的鲁化厂区下游规划项目原料气。同时配套建设储罐区、装卸站台、总变、装置变电所、装置机柜间、循环水站、冷凝液精制、基故水池、废气处理系统等公辅储运环保装置。

项目建设性质属于新建项目,总占地约《8.2062, 其中新增用地指标 23ha, 项目占地全部位于鲁南高科技化工园区规划起步区范围内。项目总投资 50 亿元, 建成后可年产 40 万吨辛醇, 并副产 4.64 万吨异丁醛、6 万吨丙烷、2.6 万吨硫酸。项目新增职工定员 426 人,年生产 500h。

本项目通过实施能源化工资模型推行动,推动煤炭清洁高效转化,延伸产业链、提高附加值,不断可含端处、园区化、终端化升级,构建"从原料到终端的全产业链发展新格局"。

## 11.1.2 符合产业政策及相关规划

## 11.1.2.1 资产业规划

《产业结构调整指导目录(2024年本)》,拟建筑多属平允许类项目; 项目》属于《自然资源要素支撑产业高质量发展指导目录(2024年本)》中限 制和禁止用地目录内的建设项目,且未列入《市场》(2020年版)》, 故项目建设符合国家和地方产业政策要求。

究矿鲁南化工有限公司微反应高效合成精细化学品节能示范项目现已取得山东省建设项目备案证明,项目代码2007-570400-89-01-675052。山东省发展和改革委员会于2025年8月29日长夕3关于兖矿鲁南化工有限公司微反应高效合

成精细化学品节能示范项目节能报告的审查意义。批复文号:鲁发改项审[2025]336号。

#### 11.1.2.2 符合相关环保规范

拟建项目不属于企业限批, 不属于局部禁批或限批, 亦不属于区域限批, 可满足建设项目审批的原则要求, 符合有关国家法律法规的规定, 符合山东省各项环境保护规范要求。

### 11.1.2.3 符合相关规划, 选业合理

拟建项目就近位于山东省滕州市鲁南高科技化工园起步区范围内、党制各个化工有限公司现有厂区及北侧新增地块,根据《滕州市木石镇国土空间规划 2025年)》国土空间用地布局规划图,项目占地全部属于工业用地,根据《粤南高科技化工园区总体发展规划(2023-2035年)》、项目占地属于工业用地、根据鲁南高科技化工园区管理委员会出具的《关》同意完矿鲁南化工有限公司微反应高效合成精细化学品节能示范项目》成建设的意见》,项目符合《鲁南高科技化工园区总体发展规划(2016-2030)、加《鲁南高科技化工园区产业发展规划》要求。项目生产运营过程中采取有效的污染防治措施后污染物达标排放,对周围环境影响较小,项目周围复发液、地、暖供应有保障,交通便利等条件,故拟建项目选址合理。

## 11.1.3 污染物排放情况

## 11.1.3.1 废气排放情况

1、有组织废气: 拟建项目有组织废气主要为气化装置各工艺环节废气、低温甲醇洗装置洗涤塔放空气、硫回收制酸装置尾气及辛醇废气废液放烧炉尾气和蒸汽流水炉尾气等。

 性大气污染物综合排放标准》(DB37/2376-2018) 表 重点控制区标准,甲醇能够满足《挥发性有机物排放标准第6部分、有机工行业》(DB37/2801.6-2018) 表 2 标准要求,硫化氢能够满足《恶臭污染物排放标准》(GB14554-93)表 2 要求,气化捞渣机经15m排气筒的排放,污染物氨、硫化氢能够满足《恶臭污染物排放标准》(GB145/4)(表 2 要求。

粉煤低温甲醇洗水洗烧尾气经 107m 排气筒 P5 排放,尾气中硫化氢能够满足《恶臭污染物糖放炼准》(GB14554-93) 表 2 要求,VOCs、甲醇能够满足《挥发性有机物排放标准第 6 部分:有机化工行业》(DB37/2801.6-2018) 表 2 标准要求。

金额收制酸装置采用 SCR+酸雾捕集器+双氧水洗涤塔对定气进行处理,经60% 排入筒 P6 排放,尾气中硫酸雾可以满足《石油炼制工业工业污染物排放标准》(GB31570-2015)表 3 要求,同时 SO₂、氮氧水物排放恢度可满足《区域性大气污染物综合排放标准》(DB37/2376-2012)素 ✓ 标准要求,氨排放浓度满足《火电厂烟气脱硝工程技术规范》(HJ 568-22%)中 SCR 脱硝工艺氨选逸质量浓度限值要求;

辛醇装置工艺废气、储罐呼吸废气管道收集后,密闭输送至废气废液焚烧炉稳燃烧处理,经50m排气筒产级换》尾气中颗粒物、SO2、NOx排放浓度均满足山东省《区域性大气》系物综合排放标准》(DB37/2376-2019)表1重点控制区限值以及《危险废物及烧污染控制标准》(GB18484-2020)表3限值要次,CO排放浓度满足《危险废物焚烧污染控制标准》(GB18484-2020)表3限值要次,VOCs排放浓度和排放速率均满足《挥发性有机物排放标准(第5部分,有机化工行业》(DB37/2801.6-2018)表1排放限值要求,氨排放浓度满足《火电风险能确工程技术规范》(HJ 563-2010)中SNCR脱磷及发氨速逸质量浓度很值要求。

蒸汽过热炉采用先进的低氮燃烧器,燃烧尾气量 70% 排气筒 P8 排放,尾气中颗粒物、SO<sub>2</sub>、NOx 排放浓度均满足山东省《锅炉大气污染物排放标准》(DB37/2374-2018)表 2 重点控制区表 2 重点控制区排放限值要求。

2、无组织废气:主要包括装置设备与管线组件密封点泄漏废气等。经采取

相应措施后,VOCs厂界浓度满足《挥发性和外外的放标准 第 6 部分:有机化工行业》(DB37/2801.6-2018)表 3 厂界监控点浓度限值要求; 氨、硫化氢、臭气浓度厂界排放浓度均满足《恶臭污染物排放标准》(GB 14554-93)表 1 二级"新扩改建"标准要求。VOCs厂区内无组织排放监控点浓度满足《挥发性有机物无组织排放控制标准》(GZ37228-2019)表 A.1厂区内 VOCs 无组织排放要求。11.1.3.2 废水排放情况

拟建项目建设的处排废水主要为气化灰水、粉煤低温甲醇洗水分离塔壳、辛醇废水回收匀提塔废水、地面冲洗废水、循环水站排污水及脱盐水站排污水

新建筑比灰水经预处理后与其他废水同厂区现有工程废水混合后,需满足鲁南海沙域化工园区鲁化净化水厂进水指标要求由鲁化净化水厂接管处理,经鲁化净化水厂处理后外排至小沂河。外排水质主要指标(COO、XAS-N、TP、TN、氟化物、全盐量、硫酸盐)满足《流域水污染物综合排发标准第1部分。南四湖东平湖流域》(DB37/3416.1-2023)中表 3 一般保护区域标准,其他指标满足《流域水污染物综合排放标准第1部分。南四湖东平湖流域》(DB37/3416.1-2023)表 1、表 2 一般保护区域标准及《污水综合训放标准》(GB8978-1996)表 4 一级标准。

## 11.1.33 噪声排放情况

项目建成使用运营后,主要或量多染源是各工序生产设备噪声及辅助设施噪声,经采取隔音、基础减振等措施后,各厂界噪声均满足《工业企业厂界环境噪声排放标准》(GB18512、2018)3类功能区标准要求。

## 11.13.4 固体废物排放情况

拟建项目新增主要固废包括气化粗渣、气化细渣、变换废催化剂、变换催化剂,则脱毒剂、变换废耐火瓷球、CO深冷分离废分子筛、PSA制氢废吸附剂、硫 的 放发 SER 催化剂、废二氧化硫转化催化剂、辛醇装置净化废活性、废净化催化剂、羰基合成废催化剂、加氢废催化剂、废精制催化剂、预精馏重组分、精馏轻组分废液、再生塔重组分、层析器燃料油、焚烧炉、水、废矿物油、废矿物油桶、焚烧炉废布袋、气化除尘器废布袋等。

其中气化粗渣、气化细渣、气化除尘器废布袋等属于一般固废,外售综合利用; 预精馏重组分、精馏轻组分废液、再生塔重组分、层析器燃料油为危险废物

送至拟建废气废液焚烧炉焚烧处置; 其他危险废物为外委有资质单位运输处置;

经采取有效处置措施后,一般固体废物的处理措施和处置方案满足《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)要求,危险废物处理措施和处置方案满足《危险废物处存污染控制标准》(GB18597-2023)要求。

## 11.1.4 环境质量现状

拟建项目所在区域环境下气质量属于二类功能区,厂区东侧 1km 范围存在墨子森林公园、水流、类功能区要求; 地表水环境功能为地表水Ⅲ类水体、类心区域属于工业和农业用水区域,确定地下水质量功能为Ⅲ类; 评价区域位于工业园区, 确定产环境功能为 3 类功能区域。

### 

#### (2) 基本污染物的长期监测数据

评价基准年 2022 年评价区域内 SO 和 24 小时平均第 98 百分位数、CO的 24 小时平均第 95 百分位数 20 日最大 8 小时滑动平均值的第 90 百分位数满足《环境空气质量标准》(GB3095-2012)二级标准; PM<sub>10</sub>和 PM<sub>25</sub>年均值、24 小时平均第 95 百分位数超出《环境空气质量标准》(GB3095-2012)二级标准。

## (3) 补测数据

1#监测点位单醇小时浓度、日均浓度,氨、硫化氢小时值均能满足《文旗影响评价技术导则大气环境》(HJ2.2-2018)附录 D; VOCs、非甲烷总体》时值均能满足《大气污染物综合排放标准》(GB16297-1996)表 2. 元光度排放监控浓度限值 1/2 要求。2#监测点位监测点 SO2、NO2、O3 日均浓度值 (95) 日最大 8h平均值)和小时浓度值,PM10、PM25 日均浓度 CO小时浓度值的能满足《环境空气质量标准》(GB3095-2012)一级标准要求,甲醇少时浓度 日均浓度,氨、硫化氢小时值均能满足《环境影响评价技术导则大气环境》(HJ2.2-2018)附录 D; VOCs、非甲烷总烃小时值均能满足《大气污染物综合排放标准》(GB16297-1996)表 2. 无组织排放监控浓度限值 1/2 要求。

#### 11.1.4.2 地表水质量现状

现状监测期间,地表水 4 个监测断面中 BOL 均不满足《地表水环境质量标准》(GB3838-2002)表 1 中III类标准要求,其余各监测因子均满足《地表水环境质量标准》(GB3838-2002)表 1 中间类标准要求。

#### 11.1.4.3 地下水质量现状,

#### 11.1.4.4 声环境质量现状

## 11.1.4.5 土壤环境质量现状

现状监测期间土壤各类似因平均能满足《土壤环境质量-建设用地土壤污染风险管控标准》(试验)《B36600-2018)中筛选值的第一类、第二类用规标准以及《土壤环境质量 农用地土壤污染风险管控标准》(GB15618-2014)类1农用地土壤污染风险标准筛选值,表明项目区域土壤环境质量现状较好。

因此,似建项目周边区域环境质量现状较好,工程在此建设基本符合当地环 意功能区别的要求。

## 11.15 环境影响评价

## 11.1.5.1 环境空气影响评价

项目废气污染源正常排放下污染源短期浓度贡献值的最大浓度占标率小于 100%;新增污染源正常排放下污染物年均浓度贡献值最大浓度占标率小于 30%; 污染物浓度均符合环境质量标准的要求。且拟建项目建成后,主要污染物 VOCs、 THE VE

根据软件进一步预测结果,设施范围内 PM<sub>10</sub>、PM<sub>25</sub>、SO<sub>2</sub>、NOx、VOCs、甲醇、氨、硫化氢、CO、碳酸素在网络点短期浓度最大值均不超过相应标准限值要求,厂区外无超标区域、项目无需设置大气环境防护距离。

结合项目选业、条源的排放强度与排放方式、大气污染控制措施以及总量 控制等方面综合进行评价,项目建设对环境空气质量影响较小,项目建设可行。 11.1.5.2.地域水环境影响评价

#### 11.1.5.3 地下水环境影响评价

拟建项目对地下水造成影响的环节工要是生产物料、生产废水的产生、输送、存储等环节。拟建项目物料及废产收集管 从采用明管输送,项目整体严格进行分区防渗,可以有效地防止项目或 多种 区附近地下水造成污染,工程投产后对周围地下水不会造成明显影响,不会影响当地地下水的原有利用价值。

## 11.1.5.4 声环境影响深深

根据拟建项目噪声预测结果,在运行期间采用减振、隔声等降噪措施。然合考虑在建及拟建项目高噪声设备运行产生的噪声影响,并叠加现状监测值后,企业厂界量间、夜间噪声预测值均能满足《工业企业厂界环境噪声排放标准》 (BN348-2008)中3类标准,尖山村、桥口村、木石社区、黄沙生活区、鲁化职工医院等声环境敏感目标处昼间、夜间噪声预测值均能, 是是《声环境质量标准》 (GB3096-2008)2类功能区标准要求。

## 11.1.5.5 固体废物影响评价

拟建项目固体废物均得到综合利用或有效处置,一般工业固体废物的处理措施和处置方案满足《一般工业。固体废物贮存和填埋污染控制标准》

(GB18599-2020)要求,危险废物的处理措施的少量方案满足《危险废物贮存污染控制标准》(GB18597-2023)要求。不会从周围环境产生不利影响。

拟建项目固体废物均得到了有效处置,在加强对固体废物转运过程的现场管理,并在落实好各项污染防治措施和固体废物综合利用等处置措施的前提下,工程产生的固体废物对环境的影响较小。

## 11.1.5.6 生态环境影响下介

拟建项目在**全**度。科技化工园区起步区范围内建设,项目占地范围内均分之 开发的工业用地关,涉及重要生态功能区,在做好施工期管理及污染防治的减援 下,项目建设对生态环境的影响较小,可为环境所接受。

## 114人,环境风险影响评价

及建项目主要风险源为合成气管线、酸性气管线、等整罐区、异丁醛罐区、 外罐区等泄漏风险,项目生产工艺和设备成熟可靠。本次于价针对可能发生的 事故类型,提出了相应的风险防范措施和应急颁客,通过从设计、安装、调试、 投运管理等全程加强管理,并严格落实环评提出的各项防范措施和应急预案后, 其环境风险可防可控,项目建设是可见的。

## 11.1.6 环境污染防治措施可须

拟建项目所采用的废气、废水、噪声、固体废物防治措施技术成熟,经济合理,效益明显、可操作性温、在此基础上能够保证拟建工程实施后,实现经济、环境效益的双赢。

## 11.1.7 环境经济损益分析

拟建筑目是一个经济效益、社会效益较好的项目。项目采取的环况措施适当 且《环保投资合理,项目具有良好的环境效益、社会》《水经济效益。

## M. 环境管理及监测计划

为保护环境,保证工程污染防治措施的有效实施, 化建项目应建立和完善环境管理和监测机构,建立、健全相应的环境监测制度,配备相应监测仪器、设备,以便及时发现问题,及时调整生产及环保设施操作参数,从而避免污染事故发生。

## 11.1.9 公众参与

根据《环境影响评价公众参与办法》(生态环境部部令第4号),拟建项目于2025年9月22日-9月26日在滕州市人民政府网站进行了征求意见稿公示,公示时间为5个工作日;并于公宋期间于枣庄日报进行了两期公示;并于2025年10月\*\*日于鲁南高科技(人)园区网站进行了报批前公示。

项目在公示期间,来收到4.众的电话、邮件、书面信件或其他任何关于拟建项目的环境保护实施的反馈意见。项目公众参与符合《环境影响评价公众》为为 法》(生态环境部部令 第 4号)的要求。

## 11.1.10 总结

水建项目符合环境功能区划,符合产业政策和清洁生产的要求,符合所在鲁南高科技化工园区总体规划,符合滕州市国土空间规划及多连市生态环境分区管控要求。充分利用自身技术优势,推动煤炭清洁高效转化。延伸产业链、提高附加值,不断向高端化、园区化、终端化升级、粉盆从原料到终端"的全产业链发展新格局,可降低生产成本,有利于低碳金茶和绿色发展,项目采取了有效的污染治理措施,各污染物均可实现达标排放,不满足环境质量底线要求。

综上,企业在全面落实本报告提出的各项环保措施的基础上,从环保单度分析,拟建筑目是可行的。

# NX建议

- (1) 在项目施工过程中应加强环境管理工作,采用挥发性低的材料以减少 施工作业挥发性有机物排放,妥善处理施工废水和固体废物,合理安排运输车辆 路线和 运输时间,尽可能减轻施工期对环境的影响;
- (2) 厂区周边 200m 范围存在声环境保护目标,为进一步减小企业运营噪声对周边敏感目标的影响,建议设备选购时应订购质量好、声功率级低、高效节

能的设备,从根本上降低噪声污染。坚持对待 清洁及正常运行。

- (3) 拟建项目建成后,企业应按照 ISO14000 标准要求,逐步理顺全厂环 境管理关系,抓好企业环境管理工作。同时,应全面开展清洁生产审核,持续改
- 和物流管理,减少和杜绝跑、冒、滴、漏的发生 生产事故发生,保证生产有效平稳地进行。
- 应严格落实环评报告书提出的环保整改措施, 并在 验收合格后主体工程方可投入正式运行。

山东优纳特环境科技有限公司